через что не проходит ультразвук

Ультразвук и медицина

через что не проходит ультразвук. Смотреть фото через что не проходит ультразвук. Смотреть картинку через что не проходит ультразвук. Картинка про через что не проходит ультразвук. Фото через что не проходит ультразвук

УЗИ аппарат HM70A

Экспертный класс по доступной цене. Монокристальные датчики, полноэкранный режим отображения, эластография, 3D/4D в корпусе ноутбука. Гибкая трансформация в стационарный сканер при наличии тележки.

Основные принципы метода и физические характеристики

Скорость ультразвуковых волн в мягких тканях тела человека в среднем составляет 1,540 м/сек и практически не зависит от частоты. Датчик является одним из основных компонентов диагностических систем, который конвертирует электрические сигналы в ультразвуковые колебания и производит электрические сигналы, получая отраженное эхо от внутренних тканей пациента. Идеальный датчик должен быть эффективен как излучатель и чувствителен как приемник, иметь хорошие характеристики излучаемых им импульсов со строго определенными показателями, а также принимать широкий диапазон частот, отраженных от исследуемых тканей.

В электронных датчиках ультразвуковые колебания возбуждаются благодаря подаче высоковольтных импульсов на пьезо-кристалы, из которых состоит датчик (пьезоэлектрический эффект был открыт Пьером и Марией Кьюри в 1880 году). Количество раз, сколько кристалл вибрирует за секунду, определяет частоту датчика. С увеличением частоты уменьшается длина волны генерируемых колебаний, что отражается на улучшении разрешения, однако, поглощение ультразвуковых колебаний тканями тела пропорционально возрастанию частоты, что влечет за собой уменьшение глубины проникновения. Поэтому датчики с высокой частотой колебаний обеспечивают лучшее разрешение изображения при исследовании не глубоко расположенных тканей, так же как низкочастотные датчики позволяют обследовать более глубоко расположенные органы, уступая высокочастотным качеством изображения. Это разногласие является основным определяющим фактором при использовании датчиков.

В ежедневной клинической практике применяются различные конструкции датчиков, представляющие собой диски с одним элементом, а также объединяющие несколько элементов, расположенных по окружности или вдоль длины датчика, производящие различные форматы изображения, которые необходимы или предпочтительны при проведении диагностики различных органов.

Источник

Рекомендации по выбору и установке ультразвуковых отпугивателей

Покупая ультразвуковой отпугиватель, иногда хозяин недвижимости надеется на моментальный эффект и часто не читает инструкцию. Однако даже лучшее устройство не будет нормально работать, если его установить без учета нюансов:

через что не проходит ультразвук. Смотреть фото через что не проходит ультразвук. Смотреть картинку через что не проходит ультразвук. Картинка про через что не проходит ультразвук. Фото через что не проходит ультразвук

Перед покупкой оборудования оценивают мощность, зону покрытия и тип питания прибора. Идеальным способом защиты будет монтаж нескольких отпугивателей в точки, откуда лучи распространяются на 200 и более градусов. Так ультразвук покроет всю площадь, вредители не смогут скрыться в укромных уголках.

Примерная схема установки отпугивателей в одноэтажном доме, в подвале или на чердаке

Помещение ровной прямоугольной формы потребует немного усилий для защиты. Прибор устанавливают в соответствии с правилами:

Отпугиватель не убивает грызунов, а изгоняет, поэтому для них всегда оставляют выходное отверстие. Были случаи, когда прибор включали в сарае без окон с закрытыми дверями. Часто замечали, что через некоторое время, когда хозяин открывал двери, оттуда на него бросались испуганные крысы, иногда часть животных погибала в муках, не найдя выхода.

Выбирают отпугиватель грызунов по мощности, с учетом площади комнаты, складского помещения. Например, для пространства 400 м 2 покупают 2 устройства с покрытием до 200-300 м 2 . Их ставят по углам (не затрагивая выход), излучатель направляют в центр.

Схема монтажа отпугивателя для 2 этажного дома с чердаком и подвалом

Особых отличий в монтаже нет, отпугиватель грызунов размещают с учетом выхода, перегородок и других препятствий.

На каждом этаже устанавливают не менее 1 прибора. Через перекрытия и стены ультразвук не проходит, поэтому нельзя поставить один ультразвуковой отпугиватель в подвале или цоколе и ждать, что крысы уйдут из всего дома.

Чем больше приборов работает, чем больше лучей направленно в центр комнаты, чем большая площадь помещения перекрывается излучателями, тем эффективнее работа отпугивателей и выше вероятность полного изгнания грызунов.

Схема установки отпугивателя в домах с 2, 3 и более этажами идентична приведенной выше. Основное требование – поставить нужное количество приборов с учетом всех перегородок, мебели так, чтобы перекрывать всю площадь помещения. В жилых помещениях устройства ставят на расстоянии не менее 2 м от человека.

Один мощный отпугиватель в комнате с перегородками работает хуже, чем 2 чуть менее мощных устройства, излучатели которых направлены в центр.

Как и где устанавливают отпугиватели в складских помещениях

Пустые склады встречаются крайне редко, но если вы собираетесь изгнать мышей и крыс из ангара, куда потом поставите стеллажи, можно обойтись 1-2 отпугивателями. Их ставят по известной схеме – поворачивают раструб в центр, выход оставляют открытым.

Первоначальные разовые вложения окупятся сохранностью товаров, продукции и складского оборудования – экономия тут неуместна.

Как поставить отпугиватели мышей и крыс на участке

Схема монтажа отпугивателя грызунов на участке повторяет особенности схемы в помещениях:

Кстати! Новорожденные грызуны 2 недели от рождения глухие! 😎

Чтобы защитить участок с высокой эффективностью, звоните нашим менеджерам. Специалист поможет подобрать тип и необходимое количество приборов ЭкоСнайпер с нужными характеристиками, мощностью и свойствами.

Источник

Ультразвук. Основы теории распространения ультразвуковых волн

Основные параметры ультразвука

Основными параметрами волны являются длина волны и период. Число циклов совершенных за одну секунду называется частотой и измеряется в Герцах (Гц). Время, требуемое чтобы совершить полный цикл, называется периодом и измеряется в секундах. Взаимосвязь между частотой и периодом волны приведено в формуле:

через что не проходит ультразвук. Смотреть фото через что не проходит ультразвук. Смотреть картинку через что не проходит ультразвук. Картинка про через что не проходит ультразвук. Фото через что не проходит ультразвук,

Скорость звука в идеальном упругом материале при заданной температуре и давлении является постоянной. Связь между скоростью ультразвука и длиной волны следующая:

через что не проходит ультразвук. Смотреть фото через что не проходит ультразвук. Смотреть картинку через что не проходит ультразвук. Картинка про через что не проходит ультразвук. Фото через что не проходит ультразвук,

В твердых веществах для продольных волн скорость звука [1]

через что не проходит ультразвук. Смотреть фото через что не проходит ультразвук. Смотреть картинку через что не проходит ультразвук. Картинка про через что не проходит ультразвук. Фото через что не проходит ультразвук,

Для поперечных волн она определяется по формуле

через что не проходит ультразвук. Смотреть фото через что не проходит ультразвук. Смотреть картинку через что не проходит ультразвук. Картинка про через что не проходит ультразвук. Фото через что не проходит ультразвук,

Дисперсия звука — зависимость фазовой скорости монохроматических звуковых волн от их частоты. Дисперсия скорости звука может быть обусловлена как физическими свойствами среды, так и присутствием в ней посторонних включений и наличием границ тела, в котором звуковая волна распространяется.

Разновидности ультразвуковых волн

Большинство методов ультразвукового исследования использует либо продольные, либо поперечные волны. Также существуют и другие формы распространения ультразвука, включая поверхностные волны и волны Лэмба.

Продольные ультразвуковые волны – волны, направление распространения которых совпадает с направлением смещений и скоростей частиц среды.

Поперечные ультразвуковые волны – волны, распространяющиеся в направлении, перпендикулярном к плоскости, в которой лежат направления смещений и скоростей частиц тела, то же, что и сдвиговые волны [2].

Поверхностные (Рэлеевские) ультразвуковые волны имеют эллиптическое движение частиц и распространяются по поверхности материала. Их скорость приблизительно составляет 90% скорости распространения поперечной волны, а их проникновение вглубь материала равно примерно одной длине волны [3].

Волна Лэмба — упругая волна, распространяющиеся в твёрдой пластине (слое) со свободными границами, в которой колебательное смещение частиц происходит как в направлении распространения волны, так и перпендикулярно плоскости пластины. Лэмба волны представляют собой один из типов нормальных волн в упругом волноводе – в пластине со свободными границами. Т.к. эти волны должны удовлетворять не только уравнениям теории упругости, но и граничным условиям на поверхности пластины, картина движения в них и их свойства более сложны, чем у волн в неограниченных твёрдых телах.

Визуализация ультразвуковых волн

Интенсивность и мощность ультразвука

Интенсивность звука (сила звука) — средняя по времени энергия, переносимая звуковой волной через единичную площадку, перпендикулярную к направлению распространения волны, в единицу времени. Для периодического звука усреднение производится либо за промежуток времени большой по сравнению с периодом, либо за целое число периодов [2]. Интенсивность ультразвука – величина, которая выражает мощность акустического поля в точке [6].

Для плоской синусоидальной бегущей волны интенсивность ультразвука I определяется по формуле

через что не проходит ультразвук. Смотреть фото через что не проходит ультразвук. Смотреть картинку через что не проходит ультразвук. Картинка про через что не проходит ультразвук. Фото через что не проходит ультразвук,

В сферической бегущей волне интенсивность ультразвука обратно пропорциональна квадрату расстояния от источника. В стоячей волне I = 0, т. е. потока звуковой энергии в среднем нет. Интенсивность ультразвука в гармонической плоской бегущей волне равна плотности энергии звуковой волны, умноженной на скорость звука. Поток звуковой энергии характеризуют так называемым вектором Умова — вектором плотности потока энергии звуковой волны, который можно представить как произведение интенсивности ультразвука на вектор волновой нормали, т. е. единичный вектор, перпендикулярный фронту волны. Если звуковое поле представляет собой суперпозицию гармонических волн различной частоты, то для вектора средней плотности потока звуковой энергии имеет место аддитивность составляющих.

Для излучателей, создающих плоскую волну, говорят об интенсивности излучения, понимая под этим удельную мощность излучателя, т. е. излучаемую мощность звука, отнесённую к единице площади излучающей поверхности.

Мощность звука — энергия, передаваемая звуковой волной через рассматриваемую поверхность в единицу времени. Различают мгновенное значение мощности ультразвука и среднее за период или за длительное время. Наибольший интерес представляет среднее значение мощности ультразвука, отнесённое к единице площади, т. н. средняя удельная мощность звука, или интенсивность звука [2].

МатериалПлотность, кг/м 3Скорость продольной волны, м/cСкорость поперечной волны, м/cАкустический импеданс, 10 3 кг/(м 2 *с)
Акрил118026703,15
Воздух0,13300,00033
Алюминий27006320313017,064
Латунь81004430212035,883
Медь89004700226041,830
Стекло36004260256015,336
Никель88005630296049,544
Полиамид (нейлон)1100262010802,882
Сталь (низколегированный сплав)78505940325046,629
Титан45406230318026,284
Вольфрам1910054602620104,286
Вода (293К)100014801,480

Затухание ультразвука

Одной из основных характеристик ультразвука является его затухание. Затухание ультразвука – это уменьшение амплитуды и, следовательно, интенсивности звуковой волны по мере ее распространения. Затухание ультразвука происходит из-за ряда причин. Основными из них являются:

Рассеяние ультразвука происходит из-за резкого изменения свойств среды – её плотности и модулей упругости — на границе неоднородностей, размеры которых сравнимы с длиной волны. В газах это могут быть, например, жидкие капли, в водной среде — пузырьки воздуха, в твёрдых телах — различные инородные включения или отдельные кристаллиты в поликристаллах и т. п. Особый интерес представляет рассеяние на хаотически распределённых в пространстве неоднородностях.

Поглощение ультразвука может быть обусловлено различными механизмами. Большую роль играет вязкость и теплопроводность среды, взаимодействие волны с различными молекулярными процессами вещества, с тепловыми колебаниями кристаллической решётки и др.

Коэффициент затухания выражают либо в децибелах на метр (дБ/м), либо в неперах на метр (Нп/м).

Для плоской волны коэффициент затухания по амплитуде с расстоянием определяется по формуле [4]

через что не проходит ультразвук. Смотреть фото через что не проходит ультразвук. Смотреть картинку через что не проходит ультразвук. Картинка про через что не проходит ультразвук. Фото через что не проходит ультразвук,

Коэффициент затухания от времени определяется [5]

через что не проходит ультразвук. Смотреть фото через что не проходит ультразвук. Смотреть картинку через что не проходит ультразвук. Картинка про через что не проходит ультразвук. Фото через что не проходит ультразвук,

Для измерения коэффициента также используют единицу дБ/м, в этом случае

через что не проходит ультразвук. Смотреть фото через что не проходит ультразвук. Смотреть картинку через что не проходит ультразвук. Картинка про через что не проходит ультразвук. Фото через что не проходит ультразвук,

Децибел (дБ) – логарифмическая единица измерения отношения энергий или мощностей в акустике [2].

через что не проходит ультразвук. Смотреть фото через что не проходит ультразвук. Смотреть картинку через что не проходит ультразвук. Картинка про через что не проходит ультразвук. Фото через что не проходит ультразвук,

Тогда связь между единицами измерения (дБ/м) и (1/м) будет:

через что не проходит ультразвук. Смотреть фото через что не проходит ультразвук. Смотреть картинку через что не проходит ультразвук. Картинка про через что не проходит ультразвук. Фото через что не проходит ультразвукНп/м»/>,

Отражение ультразвука от границы раздела сред

При падении звуковой волны на границу раздела сред, часть энергии будет отражаться в первую среду, а остальная энергия будет проходить во вторую среду. Соотношение между отраженной энергией и энергией, проходящей во вторую среду, определяется волновыми сопротивлениями первой и второй среды. При отсутствии дисперсии скорости звука волновое сопротивление не зависит от формы волны и выражается формулой:

через что не проходит ультразвук. Смотреть фото через что не проходит ультразвук. Смотреть картинку через что не проходит ультразвук. Картинка про через что не проходит ультразвук. Фото через что не проходит ультразвук,

Коэффициенты отражения и прохождения будут определяться следующим образом

через что не проходит ультразвук. Смотреть фото через что не проходит ультразвук. Смотреть картинку через что не проходит ультразвук. Картинка про через что не проходит ультразвук. Фото через что не проходит ультразвук,

через что не проходит ультразвук. Смотреть фото через что не проходит ультразвук. Смотреть картинку через что не проходит ультразвук. Картинка про через что не проходит ультразвук. Фото через что не проходит ультразвук,

Стоит отметить также, что если вторая среда акустически более «мягкая», т.е. Z1>Z2, то при отражении фаза волны изменяется на 180˚ [1].

Коэффициент пропускания энергии τ из одной среды в другую определяется отношением интенсивности волны, проходящей во вторую среду, к интенсивности падающей волны

через что не проходит ультразвук. Смотреть фото через что не проходит ультразвук. Смотреть картинку через что не проходит ультразвук. Картинка про через что не проходит ультразвук. Фото через что не проходит ультразвук,

Интерференция и дифракция ультразвуковых волн

Интерференция звука — неравномерность пространственного распределения амплитуды результирующей звуковой волны в зависимости от соотношения между фазами волн, складывающихся в той или иной точке пространства. При сложении гармонических волн одинаковой частоты результирующее пространственное распределение амплитуд образует не зависящую от времени интерференционную картину, которая соответствует изменению разности фаз составляющих волн при переходе от точки к точке. Для двух интерферирующих волн эта картина на плоскости имеет вид чередующихся полос усиления и ослабления амплитуды величины, характеризующей звуковое поле (например, звукового давления). Для двух плоских волн полосы прямолинейны с амплитудой, меняющейся поперёк полос соответственно изменению разности фаз. Важный частный случай интерференции — сложение плоской волны с её отражением от плоской границы; при этом образуется стоячая волна с плоскостями узлов и пучностей, расположенными параллельно границе.

Дифракция звука — отклонение поведения звука от законов геометрической акустики, обусловленное волновой природой звука. Результат дифракции звука — расхождение ультразвуковых пучков при удалении от излучателя или после прохождения через отверстие в экране, загибание звуковых волн в область тени позади препятствий, больших по сравнению с длиной волны, отсутствие тени позади препятствий, малых по сравнению с длиной волны, и т. п. Звуковые поля, создаваемые дифракцией исходной волны на препятствиях, помещённых в среду, на неоднородностях самой среды, а также на неровностях и неоднородностях границ среды, называются рассеянными полями. Для объектов, на которых происходит дифракция звука, больших по сравнению с длиной волны λ, степень отклонений от геометрической картины зависит от значения волнового параметра

через что не проходит ультразвук. Смотреть фото через что не проходит ультразвук. Смотреть картинку через что не проходит ультразвук. Картинка про через что не проходит ультразвук. Фото через что не проходит ультразвук,

Излучатели ультразвука

Наибольшее распространение в качестве излучателей ультразвука получили электроакустические преобразователи. В подавляющем большинстве излучателей ультразвука этого типа, а именно в пьезоэлектрических преобразователях, магнитострикционных преобразователях, электродинамических излучателях, электромагнитных и электростатических излучателях, электрическая энергия преобразуется в энергию колебаний какого-либо твердого тела (излучающей пластинки, стержня, диафрагмы и т.п.), которое и излучает в окружающую среду акустические волны. Все перечисленные преобразователи, как правило, линейны, и, следовательно, колебания излучающей системы воспроизводят по форме возбуждающий электрический сигнал; лишь при очень больших амплитудах колебаний вблизи верхней границы динамического диапазона излучателя ультразвука могут возникнуть нелинейные искажения.

В преобразователях, предназначенных для излучения монохроматической волны, используется явление резонанса: они работают на одном из собственных колебаний механической колебательной системы, на частоту которого настраивается генератор электрических колебаний, возбуждающий преобразователь. Электроакустические преобразователи, не обладающие твердотельной излучающей системой, применяются в качестве излучателей ультразвука сравнительно редко; к ним относятся, например, излучатели ультразвука, основанные на электрическом разряде в жидкости или на электрострикции жидкости [2].

Характеристики излучателя ультразвука

К основным характеристикам излучателей ультразвука относятся их частотный спектр, излучаемая мощность звука, направленность излучения. В случае моночастотного излучения основными характеристиками являются рабочая частота излучателя ультразвука и его частотная полоса, границы которой определяются падением излучаемой мощности в два раза по сравнению с её значением на частоте максимального излучения. Для резонансных электроакустических преобразователей рабочей частотой является собственная частота f0 преобразователя, а ширина полосы Δf определяется его добротностью Q.

через что не проходит ультразвук. Смотреть фото через что не проходит ультразвук. Смотреть картинку через что не проходит ультразвук. Картинка про через что не проходит ультразвук. Фото через что не проходит ультразвук,

Излучатели ультразвука (электроакустические преобразователи) характеризуются чувствительностью, электроакустическим коэффициентом полезного действия и собственным электрическим импедансом.

Эффективность электроакустических преобразователей, излучающих акустическую энергию в озвучиваемую среду, характеризуют величиной их электроакустического коэффициента полезного действия, представляющего собой отношение излучаемой акустической мощности к затрачиваемой электрической. В акустоэлектронике для оценки эффективности излучателей ультразвука используют так называемый коэффициент электрических потерь, равный отношению (в дБ) электрической мощности к акустической. Эффективность ультразвуковых инструментов, используемых при ультразвуковой сварке, механической обработке и тому подобное, характеризуют так называемым коэффициентом эффективности, представляющим собой отношение квадрата амплитуды колебательного смещения на рабочем конце концентратора к электрической мощности, потребляемой преобразователем. Иногда для характеристики преобразования энергии в излучателях ультразвука используют эффективный коэффициент электромеханической связи.

Звуковое поле излучателя

Звуковое поле преобразователя делят на две зоны: ближнюю зону и дальнюю зону. Ближняя зона это район прямо перед преобразователем, где амплитуда эха проходит через серию максимумов и минимумов. Ближняя зона заканчивается на последнем максимуме, который располагается на расстоянии N от преобразователя. Известно, что расположение последнего максимума является естественным фокусом преобразователя. Дальняя зона это район находящийся за N, где давление звукового поля постепенно уменьшается до нуля [1].

Положение последнего максимума N на акустической оси в свою очередь зависит от диаметра и длины волны и для дискового круглого излучателя выражается формулой

через что не проходит ультразвук. Смотреть фото через что не проходит ультразвук. Смотреть картинку через что не проходит ультразвук. Картинка про через что не проходит ультразвук. Фото через что не проходит ультразвук,

Однако поскольку D обычно значительно больше λ, уравнение можно упростить и привести к виду

через что не проходит ультразвук. Смотреть фото через что не проходит ультразвук. Смотреть картинку через что не проходит ультразвук. Картинка про через что не проходит ультразвук. Фото через что не проходит ультразвук,

Характеристики звукового поля определяются конструкцией ультразвукового преобразователя. Следовательно, от его формы зависит распространение звука в исследуемой области и чувствительность датчика.

Применение ультразвука

Многообразные применения ультразвука, при которых используются различные его особенности, можно условно разбить на три направления. Первое связано с получением информации посредством ультразвуковых волн, второе — с активным воздействием на вещество и третье — с обработкой и передачей сигналов (направления перечислены в порядке их исторического становления). При каждом конкретном применении используется ультразвук определённого частотного диапазона.

Получение информации с помощью ультразвуковых методов. Ультразвуковые методы широко используются в научных исследованиях для изучения свойств и строения веществ, для выяснения проходящих в них процессов на макро- и микроуровнях. Эти методы основаны главным образом на зависимости скорости распространения и затухания акустических волн от свойств веществ и от процессов, в них происходящих.

Воздействие ультразвука на вещество. Активное воздействие ультразвука на вещество, приводящее к необратимым изменениям в нём, или воздействие ультразвука на физические процессы, влияющее на их ход, обусловлено в большинстве случаев нелинейными эффектами в звуковом поле. Такое воздействие широко используется в промышленной технологии; при этом решаемые с помощью ультразвуковой технологии задачи, а также и сам механизм ультразвукового воздействия различны для разных сред.

Обработка и передача сигналов. Ультразвуковые устройства применяются для преобразования и аналоговой обработки электрических сигналов в различных отраслях радиоэлектроники, например в радиолокации, связи, вычислительной технике, и для управления световыми сигналами в оптике и оптоэлектронике. В устройствах для управления электрическими сигналами используются следующие особенности ультразвука: малая по сравнению с электромагнитными волнами скорость распространения; малое поглощение в кристаллах и соответственно высокая добротность резонаторов [2].

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *