буфер ssd что это
Сам ты винчестер! Разбираемся в конструкции SSD
Привет, Гиктаймс! До тех пор, пока твердотельные накопители не перещеголяют HDD по соотношению цены и ёмкости, покупатели будут продолжать кивать на жёсткие диски и рассказывать, что «вон там точно такие же диски раздают намного дешевле». Поэтому, во имя великой борьбы с увеличивающейся энтропией и просто ликбеза ради необходимо поговорить о конструктивных особенностях SSD.
Когда явления или предметы прогрессируют, принято считать, что они становятся сложнее. Уж в компьютерной индустрии — так наверняка. Пользователям такие истины являются в виде «теорий заговора», мол, все устройства сегодня выходят из строя на следующий день после гарантии. Энтузиасты, кстати, в таких причитаниях тоже не отстают и сетуют, что новые технологии уже не починишь с помощью скотча и паяльника, и подозрения только усугубляются год от года. К слову, аналогичный путь уже прошла автомобильная промышленность.
Но с SSD история сложилась иначе — они не стали следующим этапом эволюции накопителей предыдущего типа, а вышли в открытую продажу, когда жёсткие диски уже были, мягко говоря, не новшеством. Десятилетия подряд считывающая головка в HDD носится себе над ферромагнитным слоем и считывает информацию с дорожек на «блинах». Конечно, с годами механика усложнилась и сегодня эта самая головка работает даже не в вакууме (хотя мифы вокруг жёстких дисков твердят обратное), а в гелии, но согласитесь — это всего лишь обновленные декорации к старой пьесе.
С твердотельными накопителями же ситуация обстоит проще и сложнее одновременно. Их даже прежними «мерялками» не измерить. Раньше производительность жёстких дисков можно было определять «на глазок» по скорости вращения шпинделя (любой пионер знает, что 7200 об/мин при прочих равных круче, чем 5400 об/мин) и объёму кэш-памяти. Но «патефонный» принцип считывания информации уходит в историю, а на его место пришла разномастная флэш-память, толпа производителей контроллеров, причём каждый со своим модельным рядом, и всё это при всё том же буфере памяти да с новыми аббревиатурами IOPS, TBW, DWPD и прочих неведомых словах.
А ведь всё это — даже не маркетинговые термины-пустышки, а важная информация, которая поможет выбрать SSD, предугадать его срок службы и даже заранее предсказать скорость новейших моделей. Сегодня мы разберёмся, что контролируют контроллеры и зачем им нужен кэш, в чём измеряется надёжность SSD и о чём на самом деле сообщают стандартные аббревиатуры.
Контроллер — «заведующий» флэш-памятью в SSD
Никто не любит лишнюю бюрократию, особенно в компьютерных комплектующих, но с момента своего изобретения накопителям был жизненно важен правильный режим работы. Такую миссию можно было бы возложить и на «мозги», то есть, операционную систему ПК, но несовместимости и конфликты ПО всех достали ещё с незапамятных времён, поэтому жёсткие диски общаются с компьютером посредством интегральной схемы, а на печатной плате SSD зиждятся контроллер и работник его балда — кэш.
Схема работы твердотельного накопителя сходна с типовой возней в сетевом супермаркете. Контроллер — это такой завхоз… ой, простите, администратор магазина. Руководит приемом товаров (файлов), распределяет их складу (запись в ячейки в флэш-памяти), командует грузчиками, когда нужно пополнить торговый зал (чтение из ячеек памяти) или требует перенести товары на витрины с молочными продуктами на место бытовой химии (функция TRIM).
Накопитель Kingston SSDNow V300 — спасибо товарищу SandForce за наш счастливый апгрейд!
Контроллеры остаются скромными трудягами без своей героической летописи: ну вот не получится так просто взять и расписать их поступательную эволюцию. Если копать совсем уж глубоко, микросхемы такого типа восходят корнями к старенькому Intel 8051 и представляют собой не больно интеллектуальный, но достаточно быстрый и надёжный «мозговой центр» накопителя. Состоит он из процессора с ядрами ARM/RISC, в повседневной работе находит и исправляет ошибки памяти, оперирует данными из буфера (кэша), контролирует передачу данных на интерфейсы SATA/PCIe, шифрует файлы, когда это требуется, да ещё умно «размазывает» данные по NAND, чтобы ячейки изнашивались равномерно и накопитель прослужил дольше. А курирует все эти хлопотные занятия микропрограмма (firmware), известная в народе как «прошивка».
Сегодня в массовых SSD контроллеры используют строго параллельное подключение к памяти. Потому что один-единственный грузчик Вася не будет успевать выполнять задачи администратора так быстро, как от него требуется. Другое дело, что с распределением обязанностей между коллективом грузчиков работа завертится в должном темпе. Теперь вы понимаете преимущества многоканального подключения NAND для операций при большой глубине очереди.
Производителей контроллеров сегодня немало (SandForce, Phison, Marvell, Indilinx, LAMD, MDX, Intel, Silicon Motion), но отличаются между собой далеко не кардинальным образом. Разница обнаруживается на уровне бизнес-подхода. К примеру, SandForce и Phison отпускают производителям SSD контроллеры «под ключ» — с прошивкой и софтом для обслуживания. Остальные производители продают контроллеры дешевле, но при большей доле самообслуживания производителями. Или же не продают их вообще и оставляют для своих продуктов — так поступают, к примеру, Intel и Samsung.
За годы широкого использования SSD на свет появились поистине «меметичные» модели контроллеров. Одним из таких представителей считается SandForce SF-2281 — суперзвезда индустрии SSD, которая, как и многие наши кумиры, не сподобилась вовремя уйти и стать классикой. Несколько лет тому назад, когда эта модель отправилась в серию, производители SSD расхватывали её огромными тиражами. Всё потому, что помимо пресловутого «сервиса с человеческим лицом» LSI SandForce включил в свой контроллер очень интересную фичу — сжатие данных.
Контроллер SandForce SF-2281 обходился без отдельной кэш-памяти, а вот современные Phison с ней взаимодействуют обязательно
В отличие от жёстких дисков, где местоположение файлов в памяти зависит от файловой системы, в SSD файлы складируются блоками туда, по наитию контроллера. И в этом нет ничего зазорного — хорошее вино не становится хуже, если его наливают не из такой сказочно красивой бочки, как в рекламном буклете. Но, если для последовательных операций распределение файлов уже выполнено оптимальным образом, то перемещение/копирование пачки мелких файлов — работа хлопотная (огромное количество однотипных операций) и трудозатратная. Учитывая, что наиболее мелкие файлы в рутине операционной системе или являются часть программ, или представляют собой документы, LSI научила контроллеры SF-2281 сжимать такие файлы и за счёт этого неплохо повышать скорость работы.
Кроме того, 2281-й был уникален по причине отсутствия отдельной кэш-памяти на повседневные нужды — все операции выполнялись в рамках служебной памяти контроллера. По соотношению цены/производительности и долговечности такие накопители «рулили» долго, но сегодня к такой модели сформировалось отношение, как к Windows XP (в смысле, что хорошие были времена, но кто прошлое помянет…), поэтому все новые накопители Kingston постепенно переехали на аппаратную платформу Phison. Производительность на базе таких моделей варьируется в зависимости от класса накопителя, но 8-канальные четырёхъядерные чипы «едут» вполне в духе времени, способны распознавать «пустопорожние» (с большим количеством пустых блоков, иначе говоря, нулей) данных и работать с ними быстрее, а главное — не допускают деградации скорости накопителя и работают надёжно.
Блок-схема 4-ядерного контроллера Phison PS3110-S10 в новых накопителях Kingston
Такие качества нашей компании всегда импонировали, тем более, что все мы наблюдали за накопителем от известного производителя смартфонов, в котором из-за ленивой «сборки мусора» скорость работы проседала до анекдотичных величин. Впрочем, в нашей топ-модели HyperX Predator используется контроллер Marvell 88SS9293 — во флагманских накопителях возможность «слепить под себя» прошивку дорогого стоит.
Чем занят буфер памяти (кэш)
Без буфера памяти сегодня не обходятся даже скромные по объёму SSD
Верный подмастерье и помощник контроллера. Не увеличивает скорость работы накопителя сам по себе, но помогает в рутинных задачах. Например, как только операционная система даёт команду стереть/изменить файлы на накопителе, внутри SSD начинается следующее трюкачество:
1. Блок, который нужно изменить, отправляется в кэш-память и там видеоизменяется, как и просила «операционка»;
2. Исходные данные в микросхеме NAND отправляются на удаление, контроллер приглядывает данным из буфера новое местоположение исходя из износа ячеек;
3. Кэш переписывает модифицированные данные на новое место.
В этот же самый кэш время от времени кочуют таблицы со служебной информацией о состоянии NAND и ячейках, которые износились окончательно. В общем, задачи «подай-принеси» и «дай старшему на блок-схему взглянуть» этот компонент SSD выполняет исправно.
Ехал IOPS через TBW, видит — DWPD
Когда новый SSD только попадает на рынок, составить впечатление о его скорости и надёжности до выхода тематических обзоров получается не всегда. Раньше (а кто-то и до сих пор) компании боролись с дефицитом информации эпитетами «невероятный, потрясающий, беспрецедентно технологичный накопитель для взыскательных покупателей», но вешать лапшу на уши гикам сегодня чревато, поэтому на помощь приходят сухие цифры и конкретные термины.
IOPS (input/output operations per second) или «количество операций ввода/вывода в секунду» — количество блоков, которые успевают считаться или записаться за сами видите какой промежуток времени. Вычисляются IOPS элементарно: делим скорость считывания на размер блока. Если файл объёмом 10 Кбайт считывается со скоростью 1000 Кбайт/с, значит производительность накопителя в этом конкретном режиме работы равна 100 IOPS.
Iometer — уже немолодая, но проверенная временем утилита для замера IOPS
Во избежание разногласий такие показания сегодня принято снимать с помощью программы Iometer, а современные накопители Kingston, для справки, выжимают (чтение/запись файлов весом 4 Кбайт) порядка 95000/26000 IOPS в случае с недорогими моделями и 160000/130000 в случае с флагманским HyperX Predator.
Понятное дело, что крупными блоками данных SSD оперирует значительно быстрее, чем мелкими, поэтому производители указывают максимально возможное количество IOPS для случайных и последовательных операций. Относиться к таким данным следует так же, как к пометкам «до 100500 Мбит/с на вашем безлимитном тарифе!» у интернет-провайдеров, но за неимением точных результатов тестов и такая информация об SSD будет полезной.
TBW (Total Bytes Written) — объём данных, который можно записать на SSD, прежде чем он испустит дух. Чем больше цифра (а сегодня такой показатель указывают аж в петабайтах) — тем надёжнее накопитель и, как правило, выше гарантийный срок. Воодушевляющие цифры греют душу, но нужно помнить, что в реальности накопитель износится раньше — слишком многое зависит от количества незанятого места, на котором контроллер будет вести свою бурную деятельность и воевать с износом ячеек. Кстати, приглашаем всех взглянуть, как ведут себя наши накопители при работе «на убой».
DWPD (Drive Write Per Day) — забавный измеритель, который показывает, сколько раз в день можно полностью перезаписывать накопитель начиная с первого и заканчивая последним днём гарантии. Словом, вычисление подобно подсчёту образа жизни по горячо любимым нами социальным квотам, где выход за N-киловатт электричества означает «ты попал, парень, плати по двойному/тройному/ещё какому-нибудь тарифу». Вот и покупатель комплектующих волен прикинуть, сколько гигабайт он гоняет по накопителю в день, а затем оценить, выработает ли его SSD свой ресурс до окончания гарантийного обслуживания.
Главное — не размер, а умение пользоваться
Мы намеренно не останавливались на провоцирующих зевоту частностях. Потому что цифры чуть выше средних по рынку/неуспехи многих накопителей носили локальный характер и по прошествии лет уже не впечатляют. И «пришивать к делу» результаты тестирования отдельных моделей мы также не станем — смаковать нюансы обработки команд и сборки мусора отдельными контроллерами нам ещё доведётся в топиках, посвященных тестированию. Словом, после того, как мы сегодня разобрались с типичной конструкцией современных SSD, самое время вникнуть в уникальные новшества таких накопителей. Об этом и поговорим в ближайшем будущем.
Спасибо за внимание и оставайтесь с Kingston на Гиктаймс!
Для получения дополнительной информации о продукции Kingston и HyperX обращайтесь на официальный сайт компании. В выборе своего комплекта HyperX поможет страничка с наглядным пособием.
реклама
Появившись намного ранее флэш-памяти, Solid State Drive стал накопителем информации, не содержащим каких-либо механических компонентов. Пионером в создании стала корпорация Dataram, представив для промышленных целей SSD Bulk Core в 1976 году. Он содержал в себе 8 планок энергозависимой RAM-памяти, каждая из которых имела объем 256 килобайт. Стоимость составляла 9700 долларов США. Работал, был востребован, но из-за уязвимости данных высокого авторитета в соответствующих кругах не заслужил.
Потребительский класс стали завоевывать в 1982 году, оснастив компьютер Apple II внешним накопителем RAM Disk, который стоил дороже самого компьютера, поэтому пользователями был принят с большой осторожностью, несмотря на агрессивную рекламу.
Далее, в силу собственного характера и темперамента, я пропущу историю создания и распространения флеш-памяти, пропущу и пересказ того, как был создан первый SSD на ее основе. Всю эту информацию с легкостью можно почерпнуть в сети, готовясь к какому-нибудь докладу или создавая презентацию по теме. А вот на видах и классификациях современных SSD мы с вами задержимся:
Память
реклама
Флеш-память различается методом соединения ячеек в массив. И имеет 2 конструкции: NOR и NAND.
NAND-тип флеш-памяти нам максимально интересен и он был анонсирован Toshiba в 1989 году на International Solid-State Circuits Conference.
1. Планарный тип или 2D.
реклама
реклама
Важной особенностью линии развития памяти в цепочке SLC-MLC-TLC является увеличение уровней ячеек. Но. резко падает выносливость, грубо говоря до серьезных цифр (на порядки) падает число циклов полной перезаписи. Да и скорость падает. Прямо регресс какой-то. Успокаивает то, что цена тоже падает и, как это ни странно, падает ощутимо. Плюс растет качество контроллеров, да всегда уменьшается техпроцесс. Впрочем, чтобы глубоко не погружаться в технические джунгли самому и не замучить вас, мои читатели, скажу, что эти страшные цифры снижения выносливости с переходом применения памяти от одной к другой вряд ли будут опасны для простого пользователя. Этих цифр хватит, чтобы мы с вами пользовались своим новым SSD много лет. Другое дело сервера и рабочие станции. Тут уж не грех и про эту самую «выносливость» подумать. Но и производители не дремлют. Линейка PRO некоторых производителей, например, говорит нам о том, что диск на основе MLC прослужит долго при максимальных нагрузках, но и стоить будет значительно дороже аналога на TLC. Подведя промежуточный итог на этапе рассказа о типах памяти скажем так: SLC получила распространение в корпоративном сегменте, TLC стала безусловным монополистом в рознице, а продукция на основе MLC ориентирована, в первую очередь, на тех, кто ценит надежность и при этом хочет выжать все возможное из своей машины.
Все бы так и оставить, но потенциал двумерной NAND оказался ограничен. С этого я начал свой рассказ о памяти. Когда возможности 15-нанометрового технологического процесса были практически исчерпаны, а дальнейшее совершенствование программной части перестало обеспечивать сколь-либо заметного прироста важнейших показателей, на смену планарным микросхемам пришла флэш-память 3D NAND.
2. 3D NAND
После того, как мы поговорим чуточку о другом, к видам памяти мы еще вернемся, да и у вас, мои дорогие читатели, появится повод дочитать мои размышления до конца.
А поговорим мы о физическом интерфейсе подключения и форм-факторе, что иногда одно и тоже, в свете разговора о пропускной способности. И здесь мы начнем с маленькой, но важной закономерности. Неважно сколько лет мы подключаем свои HDD к шине для накопителей, важно, что сможет позволить этот интерфейс нашей памяти. С какой скоростью он позволяет обмениваться информацией? Вспомним азбучные вещи:
1. IDE / SATA/
Кому-то интересно будет узнать, что IDE SSD тоже были как в форм-факторе 2,5 дюйма, так и 3,5, а вот список привычных интерфейсов пользовательского уровня для внутренних носителей: SATA 2 интерфейс обратно совместим и поддерживается на SATA 1 портах. SATA 3 интерфейс обратно совместим и поддерживается на SATA 1 и SATA 2 портах. Однако максимальная скорость диска будет медленнее из-за скоростных ограничений порта.
Как эти азбучные данные применить к размышлениям о SSD? А вот как:
Например, SanDisk Extreme SSD поддерживает интерфейс SATA 6 Гбит/с и при подключении к портам SATA 6 Гбит/с может доходить до 550/520MБ/s последовательного чтения и последовательной записи соответственно. Однако, когда диск подключен к порту SATA 3 Гбит/с, она может доходить до 285/275MБ/s последовательного чтения и последовательной записи соответственно. В любом случае, это будет много быстрее, чем использование даже самого скоростного HDD.
Дальше возник совершенно простой вопрос. Поскольку память для SSD способна работать и на гораздо больших скоростях, а развитие и физические возможности интерфейса SАТА и всех его итераций исчерпали себя, то надо дать что-то другое данным носителям информацми. Дать новое или уже имеющееся и применяемое. Кстати, несмотря на то, что SАТА для HDD вполне достаточный интерфейс, задумывались о новом, как раз для HDD дисков. А применять стали для SSD. Что же нашли? А вот что:
Далее я просто приведу пример других известных форм-факторов без комментариев. Потом вернемся к обсуждению новейших видов памяти с привязкой ее к этим форм-факторам и их интерфейсам. Мне кажется, что так нам будет легче внести ясность в предмет обсуждения:
Экзотику лишь упомянем. Это, например, накопитель, который вставляют прямо в слот оперативной памяти
Еще один, который сейчас редко встретишь. SATA-Express, с интерфейсом, использующим 2 линии PCI-Express, что позволяет достигать максимальной пропускной способности в 2 ГБ. Реализации не нашел. Сейчас SSD-диски M.2 (забегая немного вперед) могут использовать 4 линии PCI-Express с пиковой пропускной способностью 4 ГБ/с. Для подключения используется специальный кабель.
2. mSATA
3. PCI-E AIC (add-in-card)
4. U.2
двигаемся дальше и поговорим о
это новый стандарт SSD-накопителей. Обычные SSD различных форм-факторов работают по интерфейсу SATA, который передает информацию медленнее, чем на это способен сам накопитель. NVMe работает по интерфейсу PCI Express, производительности которого нам за глаза хватает. Диск NVMe выдает бо́льшую скорость чтения-записи данных.
Плывя по течению простых рассуждений о твердотельных накопителях, мы приближаемся к финалу повествования и вновь вспоминаем мою короткую историю в самом начале. OPTANE+QLC. Надо разобраться. Для этого мы мысленно возвращаемся в раздел Память. Начнем с несколько противоречивого лично для меня этапа развития памяти:
3D NAND QLC.
OPTANE. Intel Optane. Optane Memory.
Что сказать? Младшая версия обойдется нам от 25000 рублей, старшая в 2 раза дороже. Еще раз подчеркну, что здесь мы имеем бескомпромиссную скорость, заявленную надежность, хорошую гарантию и тот объем, который мы захотим себе позволить (из имеющихся).
Я, начиная свой рассказ c прочтенной когда-то рекламы, и поверхностно погрузив вас в тонкости информации о SSD, принял для себя решение о том, какой SSD я бы хотел иметь в своем компьютере. И я приобрел его. Это «всего лишь»:
Безусловно пора заканчивать. В самом финале скажу следующее:
2. Мною не тестировался приобретенный накопитель. Такие тесты уже есть. Плюс, я даже не сказал, какой накопитель у меня был до этого. Не было такой цели.
3. Попытался рассказать попроще о довольно сложном. Возможно, данный материал здесь, учитывая высокий уровень теоретической и практической подготовки наших читателей, поможет кому-то ответить на еще не возникшие вопросы.
Как устроен SSD — разбираемся в деталях
Содержание
Содержание
SSD-накопители стали логичным продолжением эволюции устройств для хранения информации. Новые требования к производительности не могли не сказаться на техническом устройстве SSD-накопителей. Их внутреннее наполнение кардинально изменилось по сравнению с привычным жестким диском.
Корпус
Корпус устройства — неотъемлемая часть накопителя, которая призвана защитить хрупкие внутренние детали. В зависимости от используемого форм-фактора накопителя его внешняя оболочка может кардинально различаться. Так устройства форм-фактора M.2 могут иметь в своем арсенале лишь бумажную или металлизированную наклейку, нанесенную поверх компонентов, или же цельный металлический радиатор как и модели с физическим интерфейсом PCI-E. Основной упор в этом случае возлагается на снижение температуры SSD, а его физическая защита уходит на второй план.
Что касается накопителей форм-фактора 2.5, ситуация диаметрально противоположная. В основном, они поставляются в стандартных пластиковых кейсах, которые защищают внутренности накопителя при неаккуратном обращении. И даже падение устройства не станет для него фатальным в отличие от тех же жестких дисков. Устройствам с интерфейсом SATA свойственен невысокий нагрев, поэтому производители зачастую пренебрегают добавлением каких-либо термопрокладок. Единственным теплоотводом служит непосредственно корпус.
У пользователя, впервые увидевшего разобранный SSD 2.5, может возникнуть резонный вопрос: для чего такой большой корпус, если SSD такой мальенький? Виной тому унификация устройства. Этот формат позволяет устанавливать SSD-накопители в старые ноутбуки или системные блоки, в посадочные места, предназначенные для жестких дисков форм-фактора 2.5. Это позволяет пользователю модернизировать свой ПК минимальными средствами. Также производители получают некоторый «карт-бланш» для размещения внутренних компонентов SSD, так как остается запас пространства для увеличения печатной платы. Различие между разными моделями SSD кроме внутренних компонентов сводится к наклейке, нанесенной на корпус. Она содержит в себе техническую информацию и служит гарантийной пломбой.
Снятие наклейки лишает возможности гарантийного обслуживания.
Интерфейс подключения
HOST Interface — часть накопителя, отвечающая за подключение устройства к системе. SSD-накопители форм-фактора 2.5 имеют стандартные разъемы, свойственные жестким дискам. Для подключения используются два привычных SATA-разъема. Это семиконтактный разъем для подключения шины данных и пятнадцатиконтактный — для подключения питания. Передача данных осуществляется от контроллера к системе и обратно путем использования двух каналов передачи данных. Этот тип подключения имеет ограничение пропускной способности в 6 Гбит/с. Преимущество разъемов SATA — обратная совместимость SATA III и SATA II. Это позволяет подключить современный накопитель к плате, которой уже немало лет.
Для подключения SSD-накопителей форм-фактора M.2 используется современный интерфейс, разработанный как компактная альтернатива SATA-разъему. Все необходимое питание для работы устройства обеспечивается материнской платой. Данный интерфейс имеет в своем распоряжении 75 позиций контактов. В зависимости от конкретной модели часть этих позиций удалена слева, справа или с обеих сторон, образуя соответствующие разрезы. Эти разрезы обозначают ключ, используемый в накопителе: B, M или B&M. Накопители форм-фактора M.2 могут подключаться посредством интерфейса SATA или PCI-Express.
Печатная плата
Печатная плата — базовая основа, на которой располагаются элементы внутренней начинки накопителя. Она представляет собой пластину из диэлектрика с электропроводящими цепями электронной схемы. Компоненты на плате соединены посредством проводящего рисунка и пайки. Размер печатной платы может варьироваться в зависимости от конкретной модели и исполнения. В свою очередь размещение микросхем может быть произведено как лишь на одной стороне платы, так и с обеих сторон.
Контроллер памяти
NAND-controller — «сердце» SSD-накопителя, от которого напрямую зависит производительность устройства. Этот чип — связующее звено между флэш-памятью и непосредственно системой. С помощью него осуществляется обмен данными, операции чтения и записи, шифрование файлов, исправление ошибок и многое другое. Для работы контроллера с завода в него вшита микропрограмма, для которой периодически выпускаются обновления. Служат они для более стабильной и оптимизированной работы устройства. Зачастую производители намеренно не указывают модель установленного контроллера в устройстве, так как он может меняться в зависимости от ревизии. Пользователю остаются лишь программные методы идентификации используемой начинки или снятие наклейки на свой страх и риск.
Флэш-память
Микросхемы флэш-памяти, как правило, занимают подавляющую часть печатной платы и могут иметь разнообразнейшую компоновку. И это неудивительно, ведь они хранят в себе всю информацию, которую пользователь записывает на SSD-накопитель. Самой массовой вариацией флэш-памяти, используемой в накопителях, является 3D NAND с многослойной структурой ячеек памяти. А от типа памяти NAND напрямую зависит долговечность накопителя и его характеристики. Существуют четыре типа NAND памяти: SLC, MLC, TLC и QLC. Различаются они количеством бит информации, хранящихся в одной ячейке, — соответственно от одного до четырех. И правило «чем больше, тем лучше» здесь не работает. Более высокая плотность информации в ячейке ведет к ухудшенным характеристикам памяти и снижению ресурса накопителя.
DRAM кэш и конденсаторы
DRAM кэш представляет собой отдельную микросхему, которая по функционалу напоминает оперативную память компьютера. Она ускоряет работу накопителя, используя некоторый объем памяти для временного хранения данных. Такой подход позволяет ускорить доступ к файлам и стабилизировать износ памяти. Этот чип отсутствует в большинстве бюджетных решений.
Намного реже встречающийся компонент в бытовых SSD-накопителях — конденсаторы. Они призваны помочь в решении проблемы потери электропитания. Неожиданные отключения питания пагубно влияют на информацию, с которой работает SSD-накопитель, а конденсаторы позволяют уменьшить вероятность повреждения и утери данных. Из-за специфичности данной функции используются они в серверных решениях.