бублик в машине что это
/// Что такое бублик «ГДР-гидродинамический трансформатор» и с чем его едят?///
Проехал я 333 км и тут опять началась пинаться коробка! Моему удивлению не было придела! Коробка после каталки… в чем же проблема, я толком непонимал, так как это мой первый автомат на котором я ездию, а может даже и последний, я себе сказал что больше не куплю машину на автомате. Ну да ладно отошли от темы! Создав тему на форуме www.audiv8.ru началось обсуждение проблемы моей и тут я не думал что проблема может быть в нем! Оказывается на автомате тоже есть диск сцепы который работает примерно так же как и механическое, только разница в том что она работает от нагнетания масла…
И тут понеслось изучение, что это такое и с чем его едят этот бублик:
Гидротрансформатор (турботрансформатор) или конвертер крутящего момента (англ. torque converter) — устройство, служащее для передачи и преобразования крутящего момента от двигателя внутреннего сгорания к коробке передач, и позволяющее бесступенчато изменять крутящий момент и частоту вращения, передаваемые на ведомые валы. Чаще всего используется с АКПП или вариаторами.
Гидротрансформатор состоит из насосного колеса, статора (реактора), турбинного колеса и механизма блокировки. Все детали собраны в общем корпусе, расположенном, как правило, на маховике двигателя машины. Хотя, бывают и исключения. Например, в трансмиссиях автобуса ЛиАЗ-677 и трактора ДТ-175С передача крутящего момента от двигателя к гидротрансформатору происходит через карданный вал. Гидротрансформатор наполнен маслом, которое активно перемешивается при его работе.
Принципиальная схема гидротрансформатора
Насосное колесо жёстко связано с корпусом гидротрансформатора, при вращении вала двигателя оно создает внутри гидротрансформатора поток масла, который вращает колесо статора (реактора) и турбину.
Конструктивным отличием гидротрансформатора от гидромуфты является наличие реактора.
Статор (реактор) связан с насосным колесом через обгонную муфту. При значительной разнице оборотов насоса и турбины, статор (реактор) автоматически блокируется и передает на насосное колесо больший объём жидкости. Благодаря статору (реактору) происходит увеличение крутящего момента до трёх раз[1] при старте с места.
Турбина жёстко связана с валом АКПП.
Благодаря тому, что передача крутящего момента внутри гидротрансформатора происходит без жесткой кинематической связи, исключаются ударные нагрузки на трансмиссию и автомобиль приобретает большую плавность хода. Негативным эффектом гидротрансформатора является «проскальзывание» турбинного колеса по отношению к насосному — это приводит к повышенному выделению тепла (в некоторых режимах гидротрансформатор может выделять больше тепла, чем сам двигатель) и увеличению расхода топлива.
Моменты вращения на насосном и турбинном колёсах в подавляющем большинстве режимов не равны друг другу, в отличие от гидромуфты, у которой моменты вращения всегда можно считать равными.
Для повышения топливной экономичности, в конструкцию современных гидротрансформаторов вводится механизм блокировки, позволяющий жёстко связать насос и турбину. При заблокированном гидротрансформаторе АКПП работает в режиме жесткой кинематической связи двигателя и трансмиссии, аналогично МКПП. В электронно-управляемых АКПП момент включения блокировки определяет компьютер, поэтому она может быть включена практически в любой момент, согласно управляющей программе.
АКПП, произведенные в XX веке включали блокировку гидротрансформатора только при достижении достаточно большой скорости (более 70 км/ч). Современные АКПП включают блокировку гидротрансформатора с достаточно низких скоростей (от 20 км/ч), что позволяет экономить топливо не только при движении по шоссе, но и при городской эксплуатации автомобиля. Также блокировка гидротрансформатора применяется, подобно МКПП, для торможения двигателем. В этом случае подача топлива в двигатель прекращается на время блокировки, двигатель вращается за счет движения автомобиля. На тракторах блокировка гидротрансформатора используется для запуска двигателя трактора «с толкача», либо когда трактор работает в стационарном режиме.
Необходимо отметить, что хотя блокировка гидротрансформатора приносит ощутимую экономию топлива, она имеет некоторые недостатки:
—прямая кинематическая связь способствует передаче ударных нагрузок между двигателем и трансмиссией
—частое включение блокировки приводит к износу фрикционов АКПП
—загрязнение масла АКПП продуктами износа фрикционов
—ухудшение плавности хода при переключении передач АКПП
Ну вот знания были пополнены! А далее понеслось опять разбор и снятие коробки с движком, технология снятия уже была отработана до мелочей + был весь инструмент которого у меня так не хватала при первой разборке, и в итоге первый раз вытаскивал и снимал все примерно месяц, а сейчас 24 часа и воля все снял и разобрал…
И вот он самый БУБЛИК из-за которого была проблема с АКПП:
Нести на ремонт не знал куда, начал спрашивать и на форуме СHEK подсказал контору которая занимается ремонтом этих гидротрансформаторов! Спасибо большое ему! Контора называется TransFIX вот их сайт:
Что могу сказать про данную контору, оборудование на высоте, и мастера нормальные все сделали качественно, одним словом молодцы так держать! Даже не возражали, что я присутствовал при ремонте бублика, т.к. мне было очень интересно в живую посмотреть на него из чего он состоит!
И воля когда вскрыли бублик мои мастера были удивлены, а где накладка?
Ну а дальше пошел ремонт бублика)) Проточка всех колдобин которые нарезал диск и многое другое:
Гидротрансформатор АКПП, он же «Бублик», он же «Дыня»))
Недавно на работе привезли из ремонта «бублик» разрезанный, не подлежащий ремонту.
И я решил поделиться с вами фотографиями внутренностей, ну и собственно разобраться как он работает. На эту тему есть много информации в сети, но я как обычно постараюсь собрать её всю здесь в максимально понятном и доступном виде.
Сразу оговорюсь, все материалы взяты из различных источников в интернете и на их авторство я не претендую.
Итак начнем.
Что же вообще такое гидротрансформатор (далее ГДТ) и для чего он нужен?
Гидродинамический трансформатор («Гидротрансформатор» или «ГДТ») это герметично заваренный узел, передающий вращательный момент от Двигателя — к Автоматической трансмиссии при помощи двух вращающихся в масле турбин.
Еще одно свойство ГДТ (которое как раз таки и отличает гидротрансформатор от гидромуфты) это автоматическое изменение крутящего момента в зависимости от нагрузки и частоты вращения колес автомобиля.
Для полноты понимания данного процесса представьте себе два домашних вентилятора направленных друг на друга, если включить один из них, то он создаваемым потоком воздуха, приведет в движение и тот вентилятор, который выключен. Примерно тот же процесс происходит внутри ГДТ, только роль воздуха там выполняет масло.
Вот так обычно ГДТ выглядит снаружи:
А вот те самые турбинные колеса с лопастями
То есть по сути, этот узел заменяет собой сцепление, но тогда почему же не установить для связи двигателя и АКПП обычное сцепление? Если поставить обычное сцепление, то тогда нам неизбежно придется выключать его при остановке автомобиля (нажимать на педаль сцепления), дабы двигатель не заглох, тогда сводиться на нет все удобство от использования АКПП.
ГДТ же в свою очередь, на холостом ходу при включеной передачи и нажатой педали тормоза, ввиду отсутствия прямой механической связи, не дает двигателю заглохнуть.
То есть ведущее (насосное) колесо будет вращаться, а ведомое (турбинное, то которое соединено с выходным валом коробки) будет оставаться на месте.
С общим принципом работы разобрались, теперь давайте разберемся из каких частей состоит ГДТ, для чего они служат и как все это взаимодействует
Гидротрансформатор состоит из двух лопастных машин — центробежного насоса, центростремительной турбины и расположенного между ними направляющего аппарата-реактора. Насос и турбина предельно сближены, а их колесам придана форма, обеспечивающая непрерывный круг циркуляции рабочей жидкости. В результате гидротрансформатор получил минимальные габаритные размеры и одновременно снижены потери энергии на перетекание жидкости от насоса к турбине. Насосное колесо связано с коленчатым валом двигателя, а турбина — с валом коробки передач. Тем самым в гидротрансформаторе отсутствует жесткая связь между ведущими и ведомыми элементами, а передача энергии от двигателя к трансмиссии осуществляется потоками рабочей жидкости, которая отбрасывается с лопаток насоса на лопасти турбины. Собственно, по такой схеме работает гидромуфта, которая просто передает крутящий момент, не трансформируя его величину. Чтобы изменять момент, в конструкцию гидротрансформатора введен реактор. Это также колесо с лопатками, однако оно жестко прикреплено к корпусу и не вращается (заметим: до определенного времени). Реактор расположен на пути, по которому масло возвращается из турбины в насос. Лопатки реактора имеют особый профиль, а межлопаточные каналы постепенно сужаются. По этой причине скорость, с которой рабочая жидкость течет по каналам направляющего аппарата, постепенно увеличивается, а сама жидкость выбрасывается из реактора в сторону вращения насосного колеса, как бы подталкивая и подгоняя его.
Отсюда сразу два следствия. Первое — благодаря увеличению скорости циркуляции масла внутри гидротрансформатора при неизменном режиме работы насоса (читай: двигателя, поскольку насосное колесо, как говорилось выше, жестко связано с коленвалом) крутящий момент на выходном валу гидротрансформатора увеличивается. Второе — при неизменном режиме работы насоса режим работы турбины изменяется автоматически и бесступенчато в зависимости от приложенного к валу турбины (читай: колесам автомобиля) сопротивления.
Поясним эти аксиомы на конкретных примерах. Допустим, автомобилю, который двигался по равнинному участку дороги, предстоит подъем в гору. Забудем на время про педаль акселератора и посмотрим, как отреагирует на изменение условий движения гидротрансформатор. Нагрузка на ведущие колеса увеличивается, а автомобиль начинает терять скорость. Это приводит к уменьшению частоты вращения турбины. В свою очередь уменьшается противодействие движению рабочей жидкости по кругу циркуляции внутри гидротрансформатора. В результате скорость циркуляции возрастает, что автоматически приводит к увеличению крутящего момента на валу турбинного колеса (аналогично переходу на низшую передачу в механических КПП) до тех пор, пока не наступит равновесие между ним и моментом сопротивления движению.
По аналогичной схеме работает автоматическая трансмиссия и при старте с места. Только теперь самое время вспомнить про педаль газа, нажатие на которую увеличивает обороты коленчатого вала, а значит, и насосного колеса, и про то, что сначала автомобиль, а следовательно, и турбина находились в неподвижном состоянии, но внутреннее проскальзывание в гидротрансформаторе не мешало двигателю работать на холостом ходу (эффект выжатой педали сцепления). В этом случае крутящий момент трансформируется в максимально возможное число раз.
Когда скорость автомобиля достигает определенной отметки, то в дело вступает блокировка ГТД, при помощи фрикционных пластин, она прижимает турбинное колесо к корпусу ГДТ и тогда двигатель с АКПП становиться соединен жесткой механической связью и передает 100% крутящего момента АКПП.
Прочитав все вышесказаное закономерно возникает вопрос: зачем же к гидротрансформатору присоединяют КПП, если он сам способен изменять величину крутящего момента в зависимости от нагрузки на ведущие колеса?
Увы, гидротрансформатор может изменять крутящий момент с коэффициентом, не превышающим 2-3,5. Как ни крути, а такого диапазона изменения передаточного числа недостаточно для эффективной работы трансмиссии. К тому же нет-нет да и возникает надобность во включении заднего хода или полном разъединении двигателя от ведущих колес.
Ну и в заключение видео, которое даст полное понимание работы ГДТ
«Бублик», убийца АКПП: что ломается в гидротрансформаторах и как их чинят
Гидротрансформатор, он же «бублик» (прозвище пошло от его формы), является непременным атрибутом любого «настоящего автомата». Не обходятся без него и мощные вариаторы, и даже в преселективную АКПП его поставили на некоторых моделях Honda (например на Acura TLX), чтобы обеспечить мягкость движения на малой скорости. И иногда он выходит из строя.
Казалось бы, это чисто гидравлический узел и ломаться там нечему, разве что протечь может… Но нет, современный гидротрансформатор много сложнее в устройстве, чем картинка в старом учебнике и скорее является узлом с ограниченным сроком службы, после чего должен пройти процедуру восстановления. Что же с ним происходит, что у него внутри и как это починить?
Как устроен «бублик»?
Основной задачей гидротрансформатора всегда было преобразование крутящего момента и оборотов: он работает как гидравлический редуктор, который умеет снижать обороты и повышать крутящий момент с коэффициентом трансформации до 2.4. Основана его работа на передаче энергии через поток жидкости — в данном случае трансмиссионного масла, которое мы все знаем как ATF (automatic transmission fluid).
Коленчатый вал мотора связан с насосным колесом, которое разгоняет жидкость и отправляет ее на турбинное колесо. Турбинное колесо в свою очередь связано с коробкой передач. Жидкость раскручивает турбинное колесо и отправляется обратно на насосное. Но перед этим она попадает на лопатки направляющего аппарата, выполненного в виде колеса-реактора, которые ускоряют поток жидкости и направляют его в сторону вращения.
Таким образом поток жидкости ускоряется до тех пор, пока скорости вращения насосного и турбинного колес не выравниваются, и тогда гидротрансформатор переходит в режим гидромуфты, при котором преобразования крутящего момента не происходит, а направляющий аппарат начинает свободно вращаться, не мешая току жидкости.
Чем больше разница скоростей вращения турбинного и насосного колес, тем больше ускоряется ток жидкости, но при этом она начинается нагреваться, а КПД гидротрансформатора падает — больше энергии уходит в нагрев. Когда же скорости вращения колес выравниваются, то в передаче момента через жидкость с большими потерями смысла нет.
Поэтому со временем в гидротрансформаторы стали внедрять элементы обычного фрикционного сцепления, основанного на трении. Называется это блокировкой гидротрансформатора. Суть блокировки — в соединении входного и выходного валов, чтобы передавать момент напрямую. Без нее старые машины с АКПП, как говорится, «не ехали».
На самых старых конструкциях блокировка срабатывала автоматически, за счет давления рабочей жидкости, но с появлением АКПП с электронным управлением функция стала управляться отдельным клапаном. Говорить же о способах реализации блокировки нужно в отдельной статье, потому что их великое множество. Но смысл один — соединять валы и временно исключать из цепочки передачи крутящего момента трансмиссионное масло.
А вскоре на фрикционы блокировки возложили задачи, сходные с задачами обычного сцепления механической КПП — при разгоне они немного смыкались, пробуксовывая и помогая передавать крутящий момент, а сама блокировка стала срабатывать очень рано, чтобы уменьшить потери в гидротрансформаторе. Собственно, современные гидромеханические «автоматы» уже нельзя назвать классическими — это уже некий гибрид.
И чем мощнее становились двигатели, тем сильнее нагревалась жидкость в ГТД, тем сложнее было обеспечить его охлаждение, и тем больше работы по передаче крутящего момента старались переложить на сцепление блокировки.
Что ломается в гидротрансформаторе?
Раз есть сцепление внутри «бублика», значит, оно изнашивается — вечных фрикционных пар не бывает. К тому же продукты их износа загрязняют внутренности ГТД, поток горячей жидкости с абразивом «выедает» металл лопаток и других внутренних частей. Также потихоньку стареют, выходят из строя от перегрева или просто разрушаются уплотнения-сальники, а иногда выходят из строя подшипники или даже ломаются лопасти турбинных колес.
Продукты износа фрикционной накладки попадают и в саму АКПП, ведь охлаждение ГТД идет прокачкой масла через насос коробки и общий теплообменник. А в гидроблоке АКПП (о нем нужно рассказывать отдельно) есть еще много разных мест, где грязь может что-то забить или жидкость может проточить лишние отверстия, повредить соленоидные клапаны, замкнуть проводники…
В общем, со временем ГТД становится основным источником «грязи» в АКПП, которая обязательно выведет ее из строя. У некоторых АКПП проблема осложняется тем, что материал накладок «приклеен» к основе, и по мере износа в жидкость начинают попадать клеющие вещества, ускоряя процессы загрязнения в разы.
Таким образом, поживший «бублик» нужно менять или ремонтировать, пока он не сломал всю коробку передач. К слову, старые АКПП, у которых блокировка срабатывала редко, только на высших передачах или ее не имелось вовсе, имеют заметно большие интервал замены масла и ресурс.
Наиболее печальный случай
К чему это приводит, можно увидеть на примере широко распространенной 5-ступенчатой АКПП Mercedes 722.6. Она ставилась на несколько десятков моделей Mercedes-Benz, Jaguar, Chrysler, Dodge, Jeep и SsangYong c 1996 года и ставится по сей день.
В этой коробке передач гидротрансформатор блокируется на всех передачах, и специальный клапан регулирует его прижатие. Даже при плавном разгоне включается частичная блокировка, а при резком блокировка включается почти сразу. Машина получается экономичной и динамичной.
Коробка-автомат: «бублик» АКПП, назначение, поломки и ремонт
Начнем с того, что АКПП является сложным механизмом, основной задачей которого является максимально плавное и своевременное переключение передач в автоматическом режиме (без участия водителя).
Хотя сегодня существует несколько типов коробок автомат, гидромеханический автомат и вариатор продолжают оставаться самыми распространенными и востребованными версиями автоматических трансмиссий.
При этом устройство таких АКПП сильно отличается от привычной «механики» и роботизированных коробок передач. Более того, сцепление также реализовано при помощи отдельного механизма, который зачастую принято считать единым целым с АКПП.
Речь идет от так называемом «бублике» коробки автомат. Далее мы рассмотрим «бублик» в коробке автомат, что это такое, какие функции выполняет данный элемент, а также какие поломки возникают и как выполняется ремонт.
«Бублик» в коробке автомат: что это такое
Итак, «бубликом» в обиходе принято называть гидротрансформатор. Такое название устройство получило благодаря своей форме. Как правило, ГДТ устанавливается в паре с «клаccическими» гидромеханическими АКПП и вариаторами CVT. Также изредка данный элемент ставится в паре с преселективными коробками.
Чтобы было понятно, гидротрансформатор фактически является сцеплением коробки-автомат. Основной его задачей является преобразование и передача крутящего момента от двигателя на коробку. При этом в устройстве нет дисков сцепления (по аналогии с МКПП), которые взаимодействуют между собой путем замыкания и прямого контакта.
В двух словах, коленвал двигателя связан с насосным колесом. Это колесо внутри ГДТ разгоняет трансмиссионное масло, после чего происходит его перенаправление на турбинное колесо. Турбинное колесо связано с АКПП. Масло раскручивает турбинное колесо, после чего перенаправляется обратно на насосное колесо.
Также жидкость попадает на лопатки направляющего колеса-реактора. Это колесо ускоряет поток жидкости и перенаправляет его в сторону вращения. В результате поток жидкости ускоряется до момента выравнивания скорости вращения насосного и турбинного колес.
В этот момент гидротрансформатор начинает работать в режиме гидромуфты, когда крутящий момент уже не преобразуется, колесо-реактор крутится свободно, не влияя на поток жидкости.
По этой причине ГДТ получили элементы фрикционного сцепления, то есть передача момента основана на трении. Такой режим называется блокировка гидротрансформатора, когда происходит соединение входного и выходного валов, то есть передача момента идет напрямую.
На начальном этапе блокировка срабатывала в автоматическом режиме (к срабатыванию приводило давление рабочей жидкости). В дальнейшем АКПП получили электронное управление, а за блокировку ГДТ стал отвечать отдельный клапан.
В любом случае, основной задачей стало решение соединять валы напрямую, исключая передачу момента через масло. Также несколько изменились и функции фрикционных накладок блокировки. Подобно сцеплению механической коробки, при разгоне автомобиля с АКПП фрикционы блокировки ГДТ немного смыкаются, слегка пробуксовывают, при этом момент передается на коробку более эффективно, без сильных потерь.
Как может показаться на первый взгляд, решение оптимальное. Однако вполне очевидно, что высокий нагрев жидкости ATF никуда не делся (особенно в паре с мощными ДВС), а наличие фрикционных (трущихся) элементов блокировки в конструкции говорит о том, что они подвержены износу.
Именно по этой причине гидравлический узел, который кажется очень надежным, на самом деле испытывает значительные нагрузки, быстро изнашивается и вполне может выйти из строя при определенных условиях.
Другими словами, в гидротрансформаторе вполне могут возникать преждевременные и неожиданные поломки. Специалисты также не без оснований считают «бублик» слабым звеном в устройстве АКПП.
Признаки проблем с гидротрансформатором АКПП
Как правило, на проблемы с ГДТ указывает состояние масла в коробке автомат. Проверять состояние смазки рекомендуется, как минимум, один раз в месяц. Зачастую это позволяет своевременно выявить неполадки АКПП или гидротрансформатора и сразу заняться их устранением.
Таки или иначе, указанные выше признаки и симптомы являются основанием для того, чтобы проверить «бублик». Зачастую вовремя принятые меры позволяют избежать серьезного повреждения как ГДТ, так и самой АКПП.
Частые поломки гидротрансформатора и ремонт
Прежде всего, частой проблемой ГДТ является загрязнение его «внутренностей» и масла АТФ продуктами износа уже известных фрикционных накладок.
К этому нужно добавить, что горячая жидкость (нагрев вполне может быть выше 100 градусов по Цельсию), смешанная с абразивными частицами, циркулирует по системе, буквально «выедая» металл на лопатках колес и других элементах внутри «бублика».
Также мелкая абразивная пыль от фрикционной накладки из ГДТ попадает вместе с маслом и в саму АКПП, повреждая каналы гидроблока, загрязняя клапана (соленоиды), ухудшая охлаждение масла ATF и т.д.
Получается, именно гидротрансформатор сильно загрязняет трансмиссионное масло, ухудшая работу и повреждая детали АКПП. Если учесть, что часто фрикционные накладки приклеены к поверхностям, по мере износа в масло попадает не только абразив, но и клей, что еще сильнее ускоряет процесс загрязнения трансмиссионного масла в коробке автомат.
Не трудно догадаться, что если гидротрансформатор отработал около 150-200 тыс. км., его нужно полностью менять или выполнять ремонт гидротрансформатора. С учетом того, что цена на новый ГДТ достаточно высокая (иногда сопоставима со стоимостью самой АКПП), ремонт бублика АКПП по понятным причинам намного более предпочтителен.
Если рассматривать проблемы и поломки гидротрансформатора на обычном примере, с одной стороны, производители стараются сделать машину динамичной и экономичной. Для этого гидротрансформатор блокируется на всех передачах, причем срабатывает блокировка всегда (степень блокировки, полная или частичная, зависит от интенсивности разгона и нагрузок, этим управляет электроника).
Однако изнашиваются накладки блокировки очень быстро. В результате масло сильно загрязняется, постепенно повреждая АКПП. Часто в случае с современным автоматами на пробегах чуть более 100 тыс. км. плавная блокировка пропадает, вместо этого машина с автоматом дергается при разгоне, появляются рывки АКПП, пробуксовки и т.д.
Единственным способом увеличения ресурса коробки автомат является своевременная замена масла и фильтров АКПП, а также щадящая эксплуатация с минимальными нагрузками (без резких стартов, пробуксовок в грязи, на льду или в снегу, буксировки прицепа и т.д.).
Не удивительно, что автоматическая коробка с таким ГДТ будет пинаться, толкаться, переключаться с ударами и сильно изнашиваться. Проблему можно решить только своевременным ремонтом или заменой ГДТ до появления первых признаков неполадок уже самой АКПП.
Замена или ремонт гидротрансформаторов
Что касается замены, новый «бублик» для современных версий АКПП стоит дорого. Если к этому добавить стоимость снятия коробки и другие услуги, получается внушительная сумма. Если говорить о контрактных запчастях, в этом случае не следует спешить покупать гидротрансформатор б/у. Причина — возможен сильный износ такого ГДТ, то есть замена может не решить проблему.
Прежде всего, «бублик» нужно разрезать, отмыть, провести дефектовку, поменять все уплотнения и сальники, заменить фрикционные накладки, гидроцилиндры и другие сломанные или изношенные элементы. Затем ГДТ нужно собрать и снова заварить, причем так, чтобы устройство стало максимально герметичным.
При этом важно доверять такие работы исключительно профессионалам, та как гидротрансформатор является высокоточным гидравлическим и одновременно механическим устройством, работает в тяжелых условиях (обороты, нагрев, нагрузки).
Любые нарушения и ошибки (дисбаланс, соосность валов), повреждения могут стать причиной немедленного выхода из строя как самого ГДТ, так и АКПП и даже ДВС автомобиля.
Что в итоге
Как видно, «бублик» АКПП является сцеплением коробки-автомат, при этом данное устройство в современном исполнении объединяет в себе элементы механического сцепления и гидравлики.
Именно благодаря ГДТ удается обеспечить плавность движения и мягкость при переключении передач на малой скорости, а также снизить потери и повысить КПД автоматических коробок.
Также важно регулярно менять масло в коробке автомат, постоянно следить за уровнем и состоянием жидкости ATF, регулярно менять масло и фильтры АКПП, а также не допускать перегревов автоматической коробки передач.
Гидротрансформатор в устройстве АКПП: принцип работы и основные неисправности. Признаки проблем с гидротрансформатором автоматической коробки, ремонт ГДТ.
Как промыть гидроблок коробки автомат самому: снятие, разборка, чистка гидроблока АКПП. Что нужно учитывать при промывке, полезные советы и рекомендации.
Для чего необходимо промывать АКПП, как выполняется промывка автоматической коробки передач. Чем промыть коробку-автомат от загрязнений, полезные советы.
Гидротрансформатор АКПП (конвертер крутящего момента, ГДТ). Назначение, устройство гидротрансформатора, принцип работы и особенности.
Устройство блока клапанов (клапанной плиты, гидроблока) АКПП. Принцип работы гидроблока, неисправности блока клапанов, чистка и промывка гидроблока, ремонт.
Как поменять масло в коробке DSG: замена масла в КПП ДСГ. Что нужно учитывать при замене, подбор масла для DSG, советы и рекомендации.