взаимодействие что такое в физике

Взаимодействие (в физике)

После появления квантовой теории поля представление о В. существенно изменилось. Согласно этой теории, любое поле состоит из частиц ‒ квантов этого поля. Каждому полю соответствуют свои частицы. Например, квантами электромагнитного поля являются фотоны. Заряженные частицы непрерывно испускают и поглощают фотоны, которые и образуют окружающее их электромагнитное поле. Электромагнитное В. в квантовой теории поля является результатом обмена частиц фотонами, т. е. фотоны являются переносчиками этого В. Аналогично, другие виды В. возникают в результате обмена частиц квантами соответствующих полей (см. Квантовая теория поля ).

Современная квантовая теория электромагнитных В. превосходно описывает все известные электромагнитные явления. Количественная теория сильных и слабых В. пока не построена. В обычных гравитационных В. тел квантовые эффекты считаются несущественными.

Лит.: Григорьев В. И., Мякишев Г. Я., Силы в природе, 3 изд., М., 1969.

Полезное

Смотреть что такое «Взаимодействие (в физике)» в других словарях:

Взаимодействие (философ.) — Взаимодействие, одна из основных философских категорий, отражающая процессы воздействия различных объектов друг на друга, их взаимную обусловленность и изменение состояния или взаимопереход, а также порождение одним объектом другого. В.… … Большая советская энциклопедия

ВЗАИМОДЕЙСТВИЕ — в физике, воздействие тел или ч ц друг на друга, приводящее к изменению состояния их движения. В механике Ньютона взаимное действие тел друг на друга количественно характеризуется силой. Более общей хар кой В. явл. потенц. энергия. Первоначально… … Физическая энциклопедия

Взаимодействие — I Взаимодействие одна из основных философских категорий, отражающая процессы воздействия различных объектов друг на друга, их взаимную обусловленность и изменение состояния или взаимопереход, а также порождение одним объектом другого. В.… … Большая советская энциклопедия

взаимодействие — ВЗАИМОДЕЙСТВИЕ философская категория, отражающая процессы воздействия объектов друг на друга, их взаимную обусловленность и порождение одним объектом другого. В. универсальная форма движения и развития, оно определяет существование и… … Энциклопедия эпистемологии и философии науки

Взаимодействие Юкавы — В физике элементарных частиц взаимодействие Юкавы, названное в честь Хидэки Юкавы, это взаимодействие между скалярным полем и дираковским полем : (скаляр) или (псевдоскаляр). Взаимодействие Юкавы можно использовать для описания сильных ядерных… … Википедия

Взаимодействие многих тел — Комплекс задач о взаимодействии многих тел достаточно обширный, и является одним из базовых, далеко не полностью разрешённых, разделов механики. В рамках ньютоновской концепции проблема ветвится на: комплекс задач столкновения двух и более… … Википедия

Электрон-фононное взаимодействие — в физике взаимодействие электронов с фононами (квантами колебаний кристаллической решётки). Причиной электрон фононного взаимодействия является изменение электрического поля из за деформации решётки, называемое деформационным потенциалом.… … Википедия

Квадрупольное взаимодействие — взаимодействие систем заряженных частиц на большом расстоянии друг от друга при условии, что полный электрический заряд каждой системы и её электрический Дипольный момент равны нулю. Если электрический заряд или дипольный момент системы… … Большая советская энциклопедия

Гравитационное взаимодействие — Гравитация (всемирное тяготение, тяготение) (от лат. gravitas «тяжесть») дальнодействующее фундаментальное взаимодействие в природе, которому подвержены все материальные тела. По современным данным, является универсальным взаимодействием в том… … Википедия

Источник

Фундаментальные физические взаимодействия: просто о сложном

взаимодействие что такое в физике. Смотреть фото взаимодействие что такое в физике. Смотреть картинку взаимодействие что такое в физике. Картинка про взаимодействие что такое в физике. Фото взаимодействие что такое в физике

Фундаментальной рубрике – фундаментальная тема. Постараемся рассказать о ней простым языком и кратко. Что такое физические взаимодействия, почему они важны, какие есть типы фундаментальных физических взаимодействий и их характеристики.

За студенческими новостями на злобу дня добро пожаловать на наш телеграм-канал.

Элементарные частицы: что это такое и какие они бывают

Начнем с самого начала. Все вокруг состоит из частиц. Грубо говоря, тем, что Земля – круглая, а небо – голубое, мы обязаны тому, как разные частицы с различными свойствами взаимодействуют между собой.

Элементарная частица – микрообъект субъядерного масштаба, который невозможно расщепить на более мелкие составные части.

Какие бывают элементарные частицы? По значению спина их делят на бозоны и фермионы. Но, конечно же, это далеко не все. Чтобы понять все многообразие частиц, вот небольшая схема с их классификацией.

взаимодействие что такое в физике. Смотреть фото взаимодействие что такое в физике. Смотреть картинку взаимодействие что такое в физике. Картинка про взаимодействие что такое в физике. Фото взаимодействие что такое в физике

Элементарных частиц насчитывается очень много. Так, стандартная модель насчитывает 61 частицу. А всего вместе с античастицами известно более 350 элементарных частиц. К тому же, ученые полагают, что существуют и неизвестные до сих пор частицы.

Понятие фундаментального физического взаимодействия

Чтобы понять и объяснить, как же все это работает, специально была разработана «теория всего». Точнее, сначала придумали стандартную модель, но из-за проблем с теорией квантовой гравитации она не включала в себя гравитационного взаимодействия. На данный момент теория всего насчитывает четыре фундаментальных физических взаимодействия:

Здесь они выстроены в порядке интенсивности. Вполне возможно, есть еще какое-то фундаментальное взаимодействие, о котором мы пока просто не знаем.

Пятым фундаментальным взаимодействием иногда называют Поле Хиггса. Подробнее об открытии знаменитого бозона Хиггса читайте в отдельной статье.

Рассмотрим каждое взаимодействие в хронологическом порядке.

Гравитационное взаимодействие

Его начали изучать одним из первых, а теория гравитации Ньютона на долгие годы легла в основу классической механики. Гравитация – уникальное и внезапно самое слабое из всех взаимодействий. Чем больше масса объекта, тем сильнее проявляется гравитация. Движение небесных тел и свободное падение происходят за счет гравитации, а гравитационное взаимодействие проявляется на огромных расстояниях. В масштабах микромира оно практически ничтожно.

Электромагнитное взаимодействие

Это основной вид взаимодействия между атомами, который начали активно изучать в 19 веке. Именно электромагнитная природа лежит в основе многих сил: упругости, трения и т.д. Исключение – сила тяжести, она является следствием гравитационного взаимодействия. Суть проявления электромагнитного взаимодействия описывается законом Кулона: между электрическими зарядами действуют силы притяжения и отталкивания.

Слабое взаимодействие

Уже с открытием радиоактивности и ядерных реакций ученые задумались: почему и благодаря какой силе ядро или составная частица распадаются? Логично было предположить, что за эти процессы ответственно еще одно взаимодействие, которое назвали слабым. Оно проявляется на расстояниях меньше атомного ядра.

Электромагнитное и слабое взаимодействие объединены теорией электрослабого взаимодействия.

Сильное взаимодействие

Ну ладно, с распадом разобрались. Но почему стабильные ядра атомов сами по себе не распадаются на протоны и нейтроны? Тем более, что положительные протоны в ядре должны отталкиваться друг от друга из-за электромагнитного взаимодействия. Очевидно, здесь действует штука посильнее, и это – сильное взаимодействие, которое проявляется на совсем уж маленьких расстояниях внутри атомного ядра между нуклонами.

Конечно, здесь мы рассказали обо всем очень кратко и без единой формулы. Хотите разобраться глубже? Попробуйте почитать учебники по квантовой физике. Но будьте осторожны, учеными доказано, что они являются сильнодействующим снотворным. А если на каком-то этапе возникнут сложности, обращайтесь в профессиональный сервис помощи учащимся.

Источник

Взаимодействие в физике.

Взаимодействие в физике – это воздействие тел или частиц друг на друга, приводящее к изменению их движения.

Как известно, при неравномерном движении скорость тела меняется с течением времени. Изменение скорости тела происходит под действием другого тела.

взаимодействие что такое в физике. Смотреть фото взаимодействие что такое в физике. Смотреть картинку взаимодействие что такое в физике. Картинка про взаимодействие что такое в физике. Фото взаимодействие что такое в физике

Проведем опыт. Прикрепим к тележке упругую пластину, изогнем и свяжем ниткой. Тележка относительно стола находится в покое. Перережем нить. Пластинка выпрямится, но тележка останется на своем месте.

Теперь вплотную к согнутой пластинке поставим такую же тележку и снова перережем нитку. Пластинка выпрямится, в результате чего обе тележки придут в движение относительно стола – они разъедутся в разные стороны.

Из опыта стало ясно, что скорость тела меняется только в результате воздействия на него другого тела (в нашем опыте – второй тележки). Тележки действуют друг на друга – взаимодействуют. Следовательно, действие одного тела на другое не одностороннее, оба тела действуют друг на друга, т. е. взаимодействуют.

Рассмотрим пример взаимодействия двух лодок. Если человек, сидящий в лодке, отталкивает от себя вторую лодку, происходит взаимодействие и обе лодки приходят в движение.

взаимодействие что такое в физике. Смотреть фото взаимодействие что такое в физике. Смотреть картинку взаимодействие что такое в физике. Картинка про взаимодействие что такое в физике. Фото взаимодействие что такое в физике

В случае, когда человек прыгает с лодки на берег, то лодка отходит в противоположную от берега сторону (противоположно прыжку). В этом случае человек подействовал на лодку, но и лодка подействовала на человека. Он приобрел скорость, направленную к берегу.

взаимодействие что такое в физике. Смотреть фото взаимодействие что такое в физике. Смотреть картинку взаимодействие что такое в физике. Картинка про взаимодействие что такое в физике. Фото взаимодействие что такое в физике

Следовательно, в результате взаимодействия оба тела могут изменить свою скорость.

Источник

Сила известных физических взаимодействий

В этой статье я хочу обсудить основные свойства известных нам взаимодействий – четырёх наблюдаемых и пятого – нового – о чьём существовании мы делаем вывод из открытия частицы Хиггса.

Конкретно я хочу обсудить, что имеют в виду специалисты по физике частиц, описывая взаимодействия, как слабые или сильные. Такую терминологию вы можете встречать часто, но если её никто вам не объяснял, невозможно догадаться, что она означает. Так что вот вам объяснение – хоть и длинное, но, надеюсь, оно откроет вам глаза на то, как работает природа, а также поднимет много новых вопросов, на которые я надеюсь ответить позже.

«Слабые» против «сильных»

Что означают эти термины? В обычной жизни мы представляли бы, что сильное взаимодействие может поднять нас в воздух, а со слабым мы можем справиться, немного напрягши мускулы. Но специалисты по физике частиц имеют в виду вовсе не это.

Говоря о сильных и слабых, физики не имеют в виду абсолютную силу или слабость взаимодействия. Речь не идёт о том, сможет ли взаимодействие разбить окно или удержать золотой слиток. В этом контексте термины «сильный» и «слабый» не совсем абсолютные, в том смысле, в котором мы используем их в повседневной жизни или даже в начальных классах по физике. Эта терминология появилась благодаря глубокому пониманию квантовой теории поля, современного математического языка, используемого для описания известных элементарных частиц и сил. Но он фундаментален для современного обсуждения этих проблем физиками. Так что я начну с обоснования причин появления таких терминов.

Возьмём пару объектов определённого типа, допустим, элементарных частиц, и поместим их на расстоянии r друг от друга. Допустим, каждая оказывает воздействие F на другую. Тогда мы скажем, что воздействие слабое, если

взаимодействие что такое в физике. Смотреть фото взаимодействие что такое в физике. Смотреть картинку взаимодействие что такое в физике. Картинка про взаимодействие что такое в физике. Фото взаимодействие что такое в физике

Где h – постоянная Планка, c – скорость света. Часто в физике удобно использовать не h, а

взаимодействие что такое в физике. Смотреть фото взаимодействие что такое в физике. Смотреть картинку взаимодействие что такое в физике. Картинка про взаимодействие что такое в физике. Фото взаимодействие что такое в физике

Короче говоря, в физике частиц:

• Для слабого взаимодействия взаимодействие что такое в физике. Смотреть фото взаимодействие что такое в физике. Смотреть картинку взаимодействие что такое в физике. Картинка про взаимодействие что такое в физике. Фото взаимодействие что такое в физике
• Для сильного взаимодействия взаимодействие что такое в физике. Смотреть фото взаимодействие что такое в физике. Смотреть картинку взаимодействие что такое в физике. Картинка про взаимодействие что такое в физике. Фото взаимодействие что такое в физике

Обычно, даже в теоретических изысканиях, нам не встречаются взаимодействия гораздо сильнее взаимодействие что такое в физике. Смотреть фото взаимодействие что такое в физике. Смотреть картинку взаимодействие что такое в физике. Картинка про взаимодействие что такое в физике. Фото взаимодействие что такое в физике. Такая сила делает их столь сложными, что мы работаем с ними иным способом. Но это долгая история.

Получается, что подобная характеристика говорит не об абсолютной силе или слабости взаимодействия, но о том, является ли оно сильным или слабым по сравнению с типичными взаимодействиями, работающими на расстоянии r. Учитывается не само взаимодействие; учитывается взаимодействие, помноженное на квадрат расстояния, и эта величина сравнивается с ℏ c.

Чтобы объяснить полезность этого понятия, я дам иллюстрацию для случая электромагнитных взаимодействий, воздействующих на простые заряженные частицы – электроны, позитроны и протоны. Электрический заряд электронов равен –e; у протонов и позитронов заряд равен +e.

Во-первых, представьте два неподвижных протона, каждый массой m и электрическим зарядом +e, находящихся на расстоянии r друг от друга. Электрическая сила расталкивает их в стороны, и её величина задаётся формулой

взаимодействие что такое в физике. Смотреть фото взаимодействие что такое в физике. Смотреть картинку взаимодействие что такое в физике. Картинка про взаимодействие что такое в физике. Фото взаимодействие что такое в физике

Та же формула применима и для двух электронов с зарядом –e. Для электрона и позитрона взаимодействие будет таким же, только оно будет притягивать их, а не расталкивать.

взаимодействие что такое в физике. Смотреть фото взаимодействие что такое в физике. Смотреть картинку взаимодействие что такое в физике. Картинка про взаимодействие что такое в физике. Фото взаимодействие что такое в физике

Поскольку 0,007 гораздо меньше 1, электромагнетизм – слабое взаимодействие, и остаётся таким на всех расстояниях, измеренных нами.

Кстати, для этой величины 0,007 есть историческое название; её называют постоянной тонкой структуры (поскольку она задаёт размер небольших отличий в энергиях различных конфигураций атомов), и обычно обозначают α:

взаимодействие что такое в физике. Смотреть фото взаимодействие что такое в физике. Смотреть картинку взаимодействие что такое в физике. Картинка про взаимодействие что такое в физике. Фото взаимодействие что такое в физике

Это одна из наиболее точно измеренных величин природы. Часто люди записывают её примерно равной 1/137 (и многие годы некоторые учёные думали, что число 137 какое-то особенное), но если делать это совсем точно, тогда придётся записать 1/137,0359990…

Так почему же тот факт, что α гораздо меньше 1, говорит о том, что это взаимодействие надо записать в слабые, а не в сильные?

Почему то, что α 2 × α 2 /8;
энергия взаимодействия (потенциальная) двух частиц равна –mc 2 × α 2 /2;
• связывающая энергия B позитрониума (сумма энергии движения и энергии взаимодействия) равна mc 2 × α 2 /4;
• энергия массы позитрониума 2 mc 2 – B; и поскольку второе гораздо меньше первого, то масса атома оказывается всего лишь немногим меньшей, чем сумма масс электрона и позитрона.

Короче говоря, из-за того, что α гораздо меньше 1, существуют три важнейших, связанных между собой факта:

Все эти утверждения верны вне зависимости от того, насколько велика или мала масса электрона; они зависят только от малой величины α.

Всё это вместе значит, что для описания этого похожего на атом состояния Эйнштейновская специальная теория относительности не важна. Законы движения Ньютона достаточно хорошо подходят для предсказаний, вплоть до деталей, не больших, чем α – то есть, с точностью в 1% или лучше. И, как мы увидим далее, это значит, что система относительно проста. Её можно описать, используя квантовую механику с достаточно простой математикой, без участия квантовой теории поля, которая была бы необходима, если бы была важна СТО. Математика атома водорода такая же, как у позитрониума, и она настолько простая, что физики знакомятся с ней в институте, на первых уроках по квантовой механике.

Об этом можно думать ещё одним полезным, хотя и менее известным способом. Нужно помнить, что электроны, как и все элементарные частицы, в реальности являются квантами – крохотными возмущениями квантовых полей. Они больше похожи на волны, чем на мелкие шарики. Соответственно, они вибрируют, как и все волны: у них есть частота вибраций. Время, проходящее от одной вибрации до другой – которое я люблю поэтически называть «сердцебиением» – равно hc/m. Если α мало, тогда время, требуемое свету на то, чтобы пересечь атомоподобное состояние, гораздо больше, в 1/α раз, чем сердцебиение частиц, которое оно содержит. В этом смысле позитроний довольно большой. И поскольку сами частицы перемещаются гораздо медленнее света, у частиц на пересечение этого атомоподобного состояния уходит ещё больше времени – что-то в районе 1/α 2 сердцебиений.

Что было бы, если бы α была бы примерно равной 1?

Теперь представим, что α постепенно растёт и приближается к 1. Что случится с позитрониумом?

взаимодействие что такое в физике. Смотреть фото взаимодействие что такое в физике. Смотреть картинку взаимодействие что такое в физике. Картинка про взаимодействие что такое в физике. Фото взаимодействие что такое в физике
Рис. 1

С увеличением α взаимодействие (на любом расстоянии) между электроном и позитроном становится сильнее, и поскольку они притягиваются сильнее, то частицы в атомоподобном состоянии сдвигаются ближе. Частицы движутся быстрее, приближаясь к скорости света. Энергия движения частиц растёт, величина энергии взаимодействия растёт, как растёт и энергия связи – и приближается к 2m. Соответственно, масса атомоподобного состояния уже не равна примерно 2m. Размер атомоподобного состояния становится меньше; время, требуемое на пересечение его светом, время, требуемое на пересечение его частицами, и время, проходящее между двумя сердцебиениями частиц, начинают сравниваться между собой.

Усиление взаимодействия электрона и позитрона приводит к более частому появлению виртуальных фотонов; присутствие большего количества энергии в атоме облегчает превращение виртуального фотона в виртуальные электрон и позитрон. Когда это происходит, становится трудно сказать, какой электрон реален, а какой виртуален, поскольку между двумя электронами тоже действуют мощные силы, как и между электроном и любым из позитронов. Это может привести к тому, что частица, бывшая реальной, станет виртуальной, и сделает виртуальную частицу реальной – и обратно. А в это время виртуальные электроны и позитроны также могут испускать или поглощать фотоны, которые могут быть и виртуальными, и реальными.

Само разделение между реальными и виртуальными частицами становится сложнее провести. Реальные частицы должны быть правильно ведущими себя возмущениями квантовых полей. Но атомоподобное состояние настолько мало, что у электрона и позитрона на его пересечение уходит всего одно сердцебиение, а в этот момент мощные взаимодействия уже принудят их изменить направление. Как мы можем казать, что такая частица похожа на хорошо себя ведущее возмущение? Хорошо себя ведущая волна должна волноваться некоторое время – несколько сердцебиений – перед тем, как на неё начнут оказывать влияние внешние силы. А тут наш электрон, хотя он и больше похож на реальную частицу, чем на виртуальную, всё же сильно искажается, и уже не подходит под определение «реальной частицы». И этот электрон вообще может существовать недолго. За появлением виртуальной электрон-позитронной пары может последовать аннигиляция бывшего реального электрона с новообразованным позитроном, после чего останется возможно реальный/возможно виртуальный электрон.

Так что, вместо того, что у нас есть малое α – простая система с массой чуть меньше 2m, состоящая из электрона и позитрона, движущихся со скоростями гораздо меньше световой – при приближении α к 1 мы обнаруживаем чрезвычайно сложную систему, в которой множество частиц движется с околосветовыми скоростями, с массой, сильно отличающейся от 2m (см. рис. 1). Невозможно сказать, сколько частиц находится внутри – будем ли мы считать только реальные? Если да, каким образом точно отличить почти реальные от почти виртуальных? Количество реальных частиц может постоянно меняться.

Кстати, электрическое взаимодействие между двумя электронами слабое из-за того, что α мало. То же самое верно для взаимодействий между двумя элементарными частицами, поскольку заряды всех известных частиц находятся в промежутке от –e до e – к примеру, заряд верхних кварков равен 2/3 e. Вы можете заинтересоваться взаимодействием между электроном и ядром урана, поскольку заряд ядра урана равен 92 e. Да, в этом случае взаимодействие оказывается весьма сильным! Но в этом случае проявляется лишь часть эффектов, описанных мною для сильных взаимодействий, поскольку изменение заряда только одного из взаимодействующих объектов (в частности, тяжёлого) не увеличивает вероятность обнаружения виртуальных электрон-позитронных пар. Это изменится, только если заряд самого электрона станет гораздо больше, чем e! Так что даже атом урана остаётся значительно проще протона.

Насколько сильны другие известные взаимодействия природы? Мы увидели, что у электрических взаимодействий сила равна α – по крайней мере, на микроскопическом, атомном и субатомном уровне. И на таких расстояниях, вплоть до миллионной миллионных долей метра, α постоянна. Она не зависит от r, и в частности поэтому является такой удобной мерой. Но на самом деле сила взаимодействия может меняться с расстоянием, что всё усложняет. Для электромагнетизма это не так важно, этот эффект очень мал. Но для других сил это важно.

взаимодействие что такое в физике. Смотреть фото взаимодействие что такое в физике. Смотреть картинку взаимодействие что такое в физике. Картинка про взаимодействие что такое в физике. Фото взаимодействие что такое в физике

Но и для ещё меньших расстояний

взаимодействие что такое в физике. Смотреть фото взаимодействие что такое в физике. Смотреть картинку взаимодействие что такое в физике. Картинка про взаимодействие что такое в физике. Фото взаимодействие что такое в физике

Обратите внимание, что оно в несколько раз больше, чем электромагнитная сила! Слабое взаимодействие по своей сути вовсе не слабое – см. рис. 2. Предупреждение: я не включаю сюда тонкости, связанные со взаимодействием слабого и электромагнитного взаимодействий на таких малых расстояниях, а также с очень медленным изменением силы, которое становится заметным на куда как меньших дистанциях.

Слабое взаимодействие выглядит таким слабым, при наблюдении его на примере физики ядер, атомов и повседневной жизни, огромная масса частицы W. Если бы частица W не имела массы, то воздействие «слабого» ядерного взаимодействия было бы сильнее, чем у электрического! Это ещё один контекст, в котором поле Хиггса, придающее частице W её массу, играют важную роль в наших жизнях!

взаимодействие что такое в физике. Смотреть фото взаимодействие что такое в физике. Смотреть картинку взаимодействие что такое в физике. Картинка про взаимодействие что такое в физике. Фото взаимодействие что такое в физике

взаимодействие что такое в физике. Смотреть фото взаимодействие что такое в физике. Смотреть картинку взаимодействие что такое в физике. Картинка про взаимодействие что такое в физике. Фото взаимодействие что такое в физике

Учитывая силу сильного ядерного взаимодействия, почему же мы не сталкиваемся с ним в повседневной жизни? Это связано с тонкостями того, каким образом оно так плотно упаковывает кварки, глюоны и антикварки в протоны и нейтроны, что мы никогда не наблюдаем их отдельно. Всё это сильно отличается от того, как слабое электромагнитное взаимодействие позволяет электронам легко убегать из атомов, допуская такие явления, как статическое электричество (куда входят и молнии) и электрический ток (в том числе и по проводам).

Сила гравитации

Что насчёт гравитации? Для известных нам частиц гравитация удивительно слаба. Для двух неподвижных частиц массы m гравитация будет иметь величину

взаимодействие что такое в физике. Смотреть фото взаимодействие что такое в физике. Смотреть картинку взаимодействие что такое в физике. Картинка про взаимодействие что такое в физике. Фото взаимодействие что такое в физике

Где GN — гравитационная константа Ньютона. Сравните это с электрической силой, у которой α = ke 2 / ℏ c. Роли k и e электрических сил здесь играют GN и m. Отмечу, что я использую формулу Ньютона для гравитации, но пока αгравитация мало по сравнению с 1, эйнштейновская формула притяжения двух объектов будет по сути той же.

взаимодействие что такое в физике. Смотреть фото взаимодействие что такое в физике. Смотреть картинку взаимодействие что такое в физике. Картинка про взаимодействие что такое в физике. Фото взаимодействие что такое в физике

взаимодействие что такое в физике. Смотреть фото взаимодействие что такое в физике. Смотреть картинку взаимодействие что такое в физике. Картинка про взаимодействие что такое в физике. Фото взаимодействие что такое в физике

Это единица, перед которой стоит 37 нулей и десятичный разделитель! А для двух электронов

взаимодействие что такое в физике. Смотреть фото взаимодействие что такое в физике. Смотреть картинку взаимодействие что такое в физике. Картинка про взаимодействие что такое в физике. Фото взаимодействие что такое в физике

Что, поскольку масса электрона примерно в 2000 раз меньше массы протона, в 4 миллиона раз слабее. Даже для пары верхних кварков, которые почти в 200 раз тяжелее протона, и масса которых наибольшая среди масс всех известных частиц, сила гравитации будет равной

взаимодействие что такое в физике. Смотреть фото взаимодействие что такое в физике. Смотреть картинку взаимодействие что такое в физике. Картинка про взаимодействие что такое в физике. Фото взаимодействие что такое в физике

Это примерно в 100 000 000 000 000 000 000 000 000 000 000 раз меньше электрического взаимодействия двух верхних кварков. Поэтому на рис. 2 гравитация не отображена.

Если подумать, эта удивительная слабость гравитации объясняет, почему вы (используя электрические силы, питающие ваши мускулы и удерживающие ваше тело) можете так свободно двигаться, несмотря на то, что вас притягивает целая огромная Земля. Это даже объясняет, как Земля может во столько раз превышать по размерам атом; гравитация хочет сжать Землю, но целостность атомов, чьи электрические силы сопротивляются сжатию, этому мешает. Если бы гравитационные силы были гораздо сильнее, или электрические – слабее, гравитация сжала бы Землю до гораздо меньшего размера и гораздо большей плотности.

Гравитация настолько слаба, что удивительно, что мы её вообще открыли. Почему же она стала первой известной людям силой? Потому, что это единственная сила, выживающая на очень дальних расстояниях в обычной материи.

Взаимодействие Хиггса?

Поле Хиггса порождает взаимодействие сходное со слабым ядерным взаимодействием в том, что у него очень малая дистанция воздействия, и что оно становится неэффективным на расстояниях, больших по сравнению с ℏ c / Mh

взаимодействие что такое в физике. Смотреть фото взаимодействие что такое в физике. Смотреть картинку взаимодействие что такое в физике. Картинка про взаимодействие что такое в физике. Фото взаимодействие что такое в физике> 2 \times 10^ <-18>м) \\ α_ <Хиггс>= (mc^2 /4 \pi v)^2 \; (для \; r

Где v = 246 ГэВ, это постоянное значение поля Хиггса, существующее во всей Вселенной. (На самом деле, строго говоря в формуле есть ещё один квадратный корень из 2, но давайте упростим для улучшения понимания).

Но будьте осторожны! Схожесть с гравитацией может сбить с толку. Эта формула точно работает для известных элементарных частиц – объектов, получающих свою массу от поля Хиггса. Она работает для электронов, мюонов и кварков. Она не работает для протонов, нейтронов, атомов или вас! Оттого, что масса протона (и нейтрона, а следовательно, и атома, а следовательно, и ваша) не полностью порождается полем Хиггса. Это отличается от формулы для гравитации, которая верна для всех медленных объектов! Вместо этого в случае обычной атомной материи нам нужно было бы заменить формулу похожей, но имеющей спереди другой множитель, свой для каждого атома. Но качественно зависимость от расстояния осталась бы схожей.

Кроме того, написанная мною формула предполагает существование только одного поля Хиггса и одной частицы Хиггса (что пока ещё не доказано, но является простейшей возможностью, соответствующей полученным данным). Если это не так, формула усложнится, хотя и сохранит схожую форму.

взаимодействие что такое в физике. Смотреть фото взаимодействие что такое в физике. Смотреть картинку взаимодействие что такое в физике. Картинка про взаимодействие что такое в физике. Фото взаимодействие что такое в физике
Рис. 2

Так что, хотя каждый атом Земли взаимодействует через Хиггса с каждым другим атомом Земли, эта сила настолько крохотна, даже для соседних атомов, а особенно – для далеко отстоящих, что её эффекта обнаружить невозможно. Поэтому нам пришлось напрямую найти частицу Хиггса, чтобы подтвердить существование поля Хиггса; мы не могли искать создаваемую им силу так, как мы можем наблюдать электрические или магнитные силы и подтверждать таким способом существование электрических и магнитных полей.

Когда же мы сможем наблюдать действие этой силы? Её воздействие будет впервые обнаружено либо при рассеянии частиц W и Z друг с другом (что рано или поздно будет проделано, не напрямую, в столкновениях протонов в Большом адронном коллайдере) или во взаимодействиях верхнего кварка и верхнего антикварка (что можно наблюдать на электрон-позитронном коллайдере – кстати, свою первую работу по физике частиц я написал именно об этом явлении).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *