высокопоточная оксигенация при covid что это такое
Высокопоточная оксигенация при covid что это такое
Высокопоточная назальная канюля (HFNC) обычно используется при лечении гипоксической дыхательной недостаточности и связано с бóльшим количеством дней без подключения к аппарату ИВЛ и более низкой смертностью по сравнению со стандартной оксигенотерапией или неинвазивной вентиляцией.
Тем не менее, использование высокопоточной назальной канюли для терапии пациентов с коронавирусным заболеванием- 2019 (COVID-19) затруднительно в связи с повышенным риском распространения микрочастиц (особенно во время приступов кашля), возможным истощением запаса кислорода и обеспокоенностью по поводу того, что она вряд ли изменит естественный ход развития вирусной пневмонии.
Эти факторы привели к призывам отказаться от использования HFNC в пользу ранней интубации. Хотя эти сомнения и являются обоснованными, они могут иметь определенные последствия при нынешней пандемии, что связано с ростом пациентов, которым требуется интенсивная терапия и возможным развитием ситуации, когда аппаратов для проведения ИВЛ не будет хватать для всех. Выполнение больничных правил, предписывающих проведение ранней интубации пациентов с COVID-19, ускорит истощение и других ресурсов в отделениях реанимации и интенсивной терапии (ОРИТ), включая седативные препараты и человеческие ресурсы. И, наконец, снижение порога возможности проведения интубации и приема в ОРИТ скрывает истинную степень тяжести заболевания и искажает модель пандемии.
Появляющиеся данные свидетельствуют, что у пациентов с COVID-19 развивается атипичный острый респираторный дистресс-синдром (ОРДС) с относительно хорошо сохраненной механикой и комплайнсом легких, несмотря на тяжелую гипоксемию по причине фракции шунта. Также дополнительно известно, что пронпозиция может улучшить насыщение кислородом и уменьшить фракцию шунта. Поэтому рядом авторов сейчас предполагается, что в случае лечения пациентов без усиленной работы дыхания использование канюли HFNC сможет обеспечить потребность в кислороде, при этом позволяя пациентам без посторонней помощи изменять положение своего тела, самостоятельно переходя в пронпозицию (положение на животе). Проблема дополнительной генерации аэрозоля, спровоцированной HFNC, может быть частично решена за счет принятия следующих мер: надетая на пациента хирургическая маска для ограничения диапазона распространения частиц, усиленный комплект средств индивидуальной защиты для персонала, группирование пациентов, а также использование помещений с отрицательным давлением.
В недавно полученном отчете из Италии описаны два фенотипических проявления пневмонии, вызванной COVID-19. Изначально у многих пациентов проявляется тяжелая гипоксемия при отсутствии одышки и сохранении комплаенса легких, с малой массой легких, низким соотношением вентиляции / перфузии (V/Q) и низкой рекрутируемостью легких (определяемая как L-фенотип). Со временем у некоторых из этих пациентов развивается более классический фенотип ОРДС, характеризующийся низким комплаенсом легких, высокой массой легких, значительным шунтом справа налево и высокой рекрутируемостью легких (определяемый как H-фенотип). Предполагаемая причина появления гипоксемии в случае L-фенотипа заключается в дисрегуляции легочной перфузии и утрате гипоксической вазоконстрикции. Как известно, дорсальные отделы легких характеризуются большим количеством легочной ткани и более развитой сосудистой сетью, что приводит к более низкому местному легочному сопротивлению и более слабой гипоксической легочной вазоконстрикции ввиду повышенной эндотелиальной экспрессии оксида азота. Пронпозиция позволяет достичь более равномерного распределения легочной ткани между дорсальной и вентральной осями, что приводит к более однородной альвеолярной архитектуре. Более того, она также способствует более равномерному распределению легочной перфузии.
Улучшение насыщения кислородом также может восстановить гипоксическую легочную вазоконстрикцию, которая нарушается при более низких уровнях насыщения кислородом, далее улучшая соотношение V/Q. И, наконец, улучшенное насыщение кислородом, возможно, предотвратит ухудшение одышки, а перераспределение легочной ткани при самостоятельном принятии пронпозиции изменит взаимоотношение между напряжением и деформацией в легком и интраторакальными силами, замедляя формирование отека легких и прогрессирования заболевания от L к H-фенотипу.
Помимо сохранения мощностей ИВЛ в условиях загруженности ресурсов, описываемый метод респираторной терапии может найти важное применение в странах с ограниченными ресурсами, где более сложные технологии ОРИТ могут быть недоступны.
Высокопоточная оксигенация при covid что это такое
Проблема поражения легких при вирусной инфекции, вызванной COVID-19 является вызовом для всего медицинского сообщества, и особенно для врачей анестезиологов-реаниматологов. Связано это с тем, что больные, нуждающиеся в реанимационной помощи, по поводу развивающейся дыхательной недостаточности обладают целым рядом специфических особенностей. Больные, поступающие в ОРИТ с тяжелой дыхательной недостаточностью, как правило, старше 65 лет, страдают сопутствующей соматической патологией (диабет, ишемическая болезнь сердца, цереброваскулярная болезнь, неврологическая патология, гипертоническая болезнь, онкологические заболевания, гематологические заболевания, хронические вирусные заболевания, нарушения в системе свертывания крови). Все эти факторы говорят о том, что больные поступающие в отделение реанимации по показаниям относятся к категории тяжелых или крайне тяжелых пациентов. Фактически такие пациенты имеют ОРДС от легкой степени тяжести до тяжелой.
В терапии классического ОРДС принято использовать ступенчатый подход к выбору респираторной терапии. Простая схема выглядит следующим образом: низкопоточная кислородотерапия – высокопоточная кислородотерапия или НИМВЛ – инвазивная ИВЛ. Выбор того или иного метода респираторной терапии основан на степени тяжести ОРДС. Существует много утвержденных шкал для оценки тяжести ОРДС. На наш взгляд в клинической практике можно считать удобной и применимой «Берлинскую дефиницую ОРДС».
Общемировая практика свидетельствует о крайне большом проценте летальных исходов связанных с вирусной инфекцией вызванной COVID-19 при использовании инвазивной ИВЛ (до 85-90%). На наш взгляд данный факт связан не с самим методом искусственной вентиляции легких, а с крайне тяжелым состоянием пациентов и особенностями течения заболевания COVID-19.
Тяжесть пациентов, которым проводится инвазивная ИВЛ обусловлена большим объемом поражения легочной ткани (как правило более 75%), а также возникающей суперинфекцией при проведении длительной искусственной вентиляции.
Собственный опыт показывает, что процесс репарации легочной ткани при COVID происходит к 10-14 дню заболевания. С этим связана необходимость длительной искусственной вентиляции легких. В анестезиологии-реаниматологии одним из критериев перевода на спонтанное дыхание и экстубации служит стойкое сохранение индекса оксигенации более 200 мм рт. ст. при условии, что используются невысокие значения ПДКВ (не более 5-6 см. вод. ст.), низкие значения поддерживающего инспираторного давления (не более 15 см. вод. ст.), сохраняются стабильные показатели податливости легочной ткани (статический комплайнс более 50 мл/мбар), имеется достаточное инспираторное усилие пациента ( p 0.1 более 2.)
Достижение адекватных параметров газообмена, легочной механики и адекватного спонтанного дыхания является сложной задачей, при условии ограниченной дыхательной поверхности легких.
При этом задача поддержания адекватных параметров вентиляции усугубляется присоединением вторичной бактериальной инфекции легких, что увеличивает объем поражения легочной ткани. Известно, что при проведении инвазинвой ИВЛ более 2 суток возникает крайне высокий риск возникновения нозокомиальной пневмонии. Кроме того, у больных с COVID и «цитокиновым штормом» применяются ингибиторы интерлейкина, которые являются выраженными иммунодепрессантами, что в несколько раз увеличивает риск возникновения вторичной бактериальной пневмонии.
В условиях субтотального или тотального поражения дыхательной поверхности легких процент успеха терапии дыхательной недостаточности является крайне низким.
Собственный опыт показывает, что выживаемость пациентов на инвазивной ИВЛ составляет 15.3 % на текущий момент времени.
Алгоритм безопасности и успешности ИВЛ включает:
В связи с тем, что процент выживаемости пациентов при использовании инвазивной ИВЛ остается крайне низким возрастает интерес к использованию неинвазивной искусственной вентиляции легких. Неинвазивную ИВЛ по современным представлениям целесообразно использовать при ОРДС легкой степени тяжести. В условиях пандемии и дефицита реанимационных коек процент пациентов с тяжелой формой ОРДС преобладает над легкой формой.
Тем не менее, в нашей клинической практике у 23% пациентов ОРИТ в качестве стартовой терапии ДН и ОРДС применялась неинвазивная масочная вентиляция (НИМВЛ). К применению НИМВЛ есть ряд ограничений: больной должен быть в ясном сознании, должен сотрудничать с персоналом. Допустимо использовать легкую седацию с целью обеспечения максимального комфорта пациента.
Критериями неэффективности НИМВЛ являются сохранение индекса оксигенации ниже 100 мм рт.ст., отсутствие герметичности дыхательного контура, возбуждение и дезориентация пациента, невозможность синхронизации пациента с респиратором, травмы головы и шеи, отсутствие сознания, отсутствие собственного дыхания. ЧДД более 35/мин.
В нашей практике успешность НИМВЛ составила 11.1 %. Зав. ОАИР: к.м.н. Груздев К.А.
Интенсивная терапия. Высокопоточная назальная оксигенотерапия — практическое руководство
Сокращения: COVID-19 (coronavirus disease) — заболевание, вызванное SARS-CoV-2, CPAP (continuous positive airway pressure) — постоянное положительное давление в дыхательных путях, FiO 2 (fraction of inspired oxygen) — концентрация кислорода в дыхательной смеси, HFNOT (high-flow nasal oxygen therapy) — высокопоточная назальная оксигенотерапия, PaO 2 — парциальное давление кислорода, SpO 2 — насыщение кислородом гемоглобина артериальной крови, измеренное с помощью пульсоксиметра, ББР — бригада быстрого реагирования
Введение
Высокопоточная назальная оксигенотерапия (HFNOT) — это относительно новый метод кислородного восполнения, используемый в течение 10 лет у пациентов с дыхательной недостаточностью. Он предлагает несколько существенных преимуществ, которых не дает классическая пассивная оксигенотерапия с использованием назальных канюль (так называемых кислородных усов), простых масок, масок с насадками Вентури или масок с резервуарным мешком.
Физиологические преимущества
Аппарат HFNOT (рис. 1) позволяет получать большие (до 60 л/мин) потоки в назальных канюлях и точно устанавливать высокую концентрацию кислорода в смеси вдыхаемых газов (концентрация кислорода в дыхательной смеси [FiO 2 ] может достигать 100 %). Такой высокий поток связан с еще одним важным преимуществом этого метода — генерированием постоянного положительного давления в дыхательных путях ( CPAP ), которое дополняет лечение дыхательной недостаточности путем поддержания проходимости дыхательных путей, альвеолярного рекрутмента и снижения работы дыхания. Дыхательная смесь, вводимая пациенту, увлажняется и нагревается до температуры, выбранной врачом, что значительно повышает комфорт пациента, улучшает очищение дыхательных путей от задерживающегося секрета и уменьшает высыхание слизистой оболочки и связанный с этим риск раздражения, возникновения эрозий, изъязвлений и кровотечений. HFNOT также приводит к уменьшению анатомического мертвого пространства и удалению углекислого газа из верхних дыхательных путей, что снижает работу дыхания и повышает эффективность вентиляции.
Оборудование
Для использования HFNOT требуется специальное оборудование, состоящее из смесителя кислорода, генератора потока газов и системы их подогрева и увлажнения. Оборудование также включает одноразовые системы труб, двухканальные назальные канюли (доступны в нескольких размерах; при необходимости вместе со специально разработанными адаптерами, позволяющими использовать HFNOT у пациентов с трахеостомией) и резервуар для жидкости для увлажнения дыхательной смеси. Поэтому HFNOT является гораздо более дорогим методом, чем классическая пассивная оксигенотерапия, что ограничивает возможности его использования в центрах с меньшим финансированием.
Показания
Показания к применению HFNOT постепенно меняются. Этот метод наиболее широко используется у пациентов с гипоксемической дыхательной недостаточностью. В клинической практике применение HFNOT показано при парциальном давлении кислорода в газометрии артериальной крови (PaO 2 ) 2 ], увеличение гиперкапнии, постоянное или увеличивающееся ускорение дыхания, ухудшение состояния сознания), может потребоваться вызвать бригаду быстрого реагирования (ББР, если имеется в больнице) или будет необходима консультация анестезиолога для оценки показаний к эндотрахеальной интубации. Стоит подчеркнуть, что недостаточная емкость стандартных кислородных баллонов не позволяет транспортировать пациента при использовании HFNOT.
Как использовать HFNOT
(нажмите на рисунок, чтобы увеличить)
Роль врача состоит в том, чтобы правильно подобрать три параметра:
1) размер канюль — для минимизации утечек и, следовательно, повышения эффективности лечения и повышения комфорта пациента
2) температуру дыхательной смеси — обычно есть возможность выбирать между 31–37°С; этот параметр не оказывает существенного влияния на эффективность терапии, но он важен с точки зрения комфорта пациента (следует определить вместе с пациентом, не является ли установленная температура слишком высокой)
3) поток дыхательной смеси и FiO 2 — обычно можно установить поток от 10 до 60 л/мин, при этом рекомендуется начинать с больших значений (например, 40 или 50 л/мин).
Мониторинг эффективности HFNOT
Мониторинг эффективности HFNOT, помимо оценки комфорта, связанного с заданной температурой дыхательной смеси, в принципе не отличается от мониторинга эффективности обычной пассивной оксигенотерапии. Следует регулярно оценивать:
1) частоту дыхания — замедление дыхания свидетельствует об эффективности лечения, а ускорение обычно является признаком ухудшения состояния пациента
2) SpO 2 — у пациентов без гиперкапнии или признаков метаболической компенсации гиперкапнии (pCO 2 3 – ) в конечном итоге должно составлять 92–96 %, а у пациентов с гиперкапнией (pCO 2 ≥45 мм рт. ст.) или с признаками ее компенсации (HCO 3 – >27 ммоль/л) — 88–92 %. Последняя группа требует контроля за возможным ростом гиперкапнии с помощью трансдермальной капнографии или контрольной газометрии артериальной крови, которые позволяют оценить показания для осуществления неинвазивной или инвазивной искусственной вентиляции легких.
3) состояние сознания пациента — ухудшение состояния сознания пациента, оцененное по шкале Глазго, может указывать на увеличение гипоксемии или гиперкапнии. В случае увеличения частоты дыхания, гиперкапнии, сохраняющейся гипоксемии, несмотря на введение кислорода в максимальной концентрации и с максимальным потоком дыхательной смеси, а также когда состояние сознания пациента ухудшается, следует вызвать ББР или консультанта-анестезиолога для оценки показаний к неинвазивной или инвазивной искусственной вентиляции легких и перевода больного в отделение интенсивной терапии.
Применение HFNOT у пациентов с COVID-19
Методика высоко-поточной оксигенотерапии
Принцип действия основан на том, что аппарат создает воздушный поток с помощью встроенного компрессора, который увлажняется до 100% относительной влажности и в комбинации с кислородом подается в дыхательные пути пациента при температуре 37 %С. В результате, при использовании прибора уменьшается активность воспаления в дыхательных путях, улучшается мукоцилиарный клиренс, улучшается экспекторация мокроты, уменьшается интенсивность кашля, регрессируют явления дыхательной недостаточности. Повышается уровень вентиляции в слабо вентилируемых участках легких и поддерживается слабо-положительное давление в дыхательных путях.
Более стабильный поток кислорода, эффект вымывания углекислого газа, генерация положительного давления в дыхательных путях и эффективная гидратация введенного газа являются основными механизмами, обеспечивающими больший комфорт и переносимость данной методикик пациентом, а также более эффективные оксигенация и улучшение дыхания с меньшим количеством одышки. Все эти факторы значительно улучшают усвоение кислорода организмом.
Пациент может использовать аппарат с помощью носового интерфейса Optiflow™, сохраняя способность разговаривать, принимать пищу, дышать ртом и др. непосредственно во время терапии.
В ряде случаев, применение данной методики позволяет избежать перевода пациента на ИВЛ. Аппарат так же может использоваться для перевода пациентов со сложных режимов вентиляции на обычную кислородную терапию, в т. ч. с наложенной трахеостомой.
Данная методика позволяет оптимизировать лечебный процесс пациентов с дыхательной недостаточностью и соответствовать современным научным тенденциям в плане повышения безопасности лечебного процесса.
Оксигенотерапия при сердечно-сосудистых заболеваниях и инфекции COVID-19
*Пятилетний импакт фактор РИНЦ за 2020 г.
Читайте в новом номере
В статье рассматриваются вопросы патофизиологии гипоксии, механизмы ее устранения с помощью оксигенотерапии, токсические эффекты кислорода. Освещены современные рекомендации и алгоритмы применения при сердечно-сосудистых заболеваниях, в т. ч. при сочетании с бронхолегочной патологией. С учетом данных доказательной медицины обсуждаются спорные и неясные аспекты кислородотерапии, возможность негативных последствий при неправильном использовании. Обсуждается мировой опыт применения оксигенотерапии при новой коронавирусной инфекции COVID-19, в т. ч. дополнительные методы улучшения оксигенации (прон-позиция), также автор делится личным опытом лечения коморбидных пациентов с COVID-19. Изложены современные методы ингаляционной оксигенотерапии и показания к их применению, включая неинвазивную вентиляцию легких, высокопоточную назальную оксигенацию (перспективную, но малораспространенную в нашей стране методику), различные виды масочной оксигенотерапии, устройства для домашнего применения кислорода.
Ключевые слова: оксигенотерапия, кислородотерапия, гипоксемия, кислород, насыщение крови кислородом, сатурация, острый респираторный дистресс-синдром, новая коронавирусная инфекция, COVID-19, ингаляции, кислородные маски.
Для цитирования: Ухолкина Г.Б. Оксигенотерапия при сердечно-сосудистых заболеваниях и инфекции COVID-19. РМЖ. 2020;11:14-18.
Oxygen therapy for cardiovascular diseases and COVID-19 infection
1 City Clinical Hospital named after S.S. Yudin of the Moscow Health Department, Moscow
2 Multidisciplinary Medical Center of the Central Bank of the Russian Federation, Moscow
The article discusses the pathophysiology of hypoxia, the mechanisms of its elimination with oxygen therapy, and the toxic effects of oxygen. It also highlights modern recommendations and algorithms for application in cardiovascular diseases, including in combination with bronchopulmonary pathology. Given the data of evidence-based medicine, controversial and unclear aspects of oxygen therapy and the possibility of negative consequences if used incorrectly are discussed. The world experience of using oxygen therapy for the new COVID-19, including additional methods for improving the oxygenation (prone position), is discussed, and the author also shares his personal experience in treating comorbid patients with COVID-19. The modern methods of inhalation oxygen therapy and indications for their use, including non-invasive ventilation, high-flow nasal oxygenation (a promising, but no t widely used technique in our country), various types of oxygen therapy with masks, devices for home oxygen therapy are described.
Keywords: oxygen therapy, hypoxemia, oxygen, blood oxygen saturation, saturation, acute respiratory distress syndrome, new coronavirus infection, COVID-19, inhalations, oxygen masks.
For citation: Ukholkina G.B. Oxygen therapy for cardiovascular diseases and COVID-19 infection. RMJ. 2020;11:14–18.
Введение
Оксигенотерапия — применение кислорода с лечебно-профилактическими целями. Получение кислорода (вероятно, из селитры) для обогащения им воздуха впервые применил в XV в. К. ван Дреббель, изобретатель подводной лодки. Идея лечебного применения кислорода была высказана английским естествоиспытателем J. Pristley в 1775 г. В это же время французский врач F. Chaussier применил кислород для реанимации новорожденных, родившихся с асфиксией. В дальнейшем разработкой лечебного применения кислорода активно занимался Пневматический институт, основанный в Англии Т. Beddoes. С начала XIX в. кислородная терапия стала использоваться во врачебной практике, но наиболее широкое распространение она получила с начала XX в. с появлением баллонов со сжатым кислородом. По мере появления промышленного производства приборов и устройств для ингаляционного введения кислорода, разработки новых методик оксигенотерапия прочно вошла в арсенал каждого стационара [1].
Оксигенотерапия широко используется для восстановления доставки кислорода к тканям и устранения гипоксии, которая является существенным звеном патофизиологии многих сердечно-сосудистых и бронхолегочных заболеваний, в т. ч. новой коронавирусной инфекции COVID-19. Однако при кажущейся очевидности и широте применения оксигенотерапии ее эффективность во многих случаях остается недоказанной, нередко она нецелесообразна, а в ряде случаев может увеличить риск смерти. Рассмотрению этих вопросов и посвящен данный обзор.
Физиология оксигенации тканей и патофизиология гипоксии
Поступление кислорода в кровь осуществляется путем простой диффузии через альвеоло-капиллярную мембрану, по градиенту парциального давления. При содержании кислорода около 21% в атмосферном воздухе парциальное давление кислорода в атмосфере составляет около 150 мм рт. ст., при этом в крови его содержание достигает 100 мм рт. ст. Транспорт кислорода кровью осуществляется в двух формах: растворенной в плазме и связанной с гемоглобином. В 100 мл крови растворяется 0,31 мл O2, что недостаточно для оксигенации тканей. Преимущественно кислород переносится в соединении с гемоглобином в эритроцитах: 100 мл крови переносят до 200 мл кислорода. Наиболее важный параметр, по которому можно судить о количестве кислорода, связанного с гемоглобином, — это насыщение гемоглобина кислородом — SаO2, или сатурация. При парциальном давлении кислорода в 100 мм рт. ст. насыщение гемоглобина кислородом в артериальной крови составляет около 97% [2].
Простым способом оценки SаО2 и выявления гипоксемии стала пульсоксиметрия, основанная на различиях в поглощении гемоглобином света в зависимости от насыщения гемоглобина кислородом.
При снижении содержания кислорода в крови в первую очередь (в течение миллисекунд) реагируют клетки каротидного тельца сонных артерий, благодаря чему усиливается вентиляция легких и сердечный выброс. Далее включается множество компенсаторных механизмов для адаптации к условиям гипоксии: изменение вентиляции легких, сердечного выброса, ударного объема, концентрации гемоглобина, дилатации системного микрососудистого русла при одновременном спазме легочного русла, увеличение объема альвеол, спазм артериол в зоне гиповентиляции с целью перераспределения крови в зоны легкого с лучшей вентиляцией.
Молекулярная биология и биохимия клеточного ответа
Прогресс молекулярной биологии позволяет понять связь между патофизиологией заболеваний и клеточным ответом на гипоксию. Разные ткани имеют различную потребность в кислороде, наиболее чувствительна нервная ткань. Механизмы, ведущие к гипоксии, различны: ишемия (снижение доставки крови к ткани), отравление углекислым газом, асфиксия, апноэ сна, тяжелая анемия, высотная болезнь, нарушения соотношения вентиляции и перфузии. В то же время последствия гипоксии для тканей одинаковы.
На уровне клетки 80% кислорода используется митохондриями, 20% — другими органеллами. При этом его парциальное давление в митохондриях чрезвычайно мало — 1–3 мм рт. ст. Кислород используется как донатор электронов в конце электронной транспортной цепочки, в комплексе IV, цитохром-C-оксидазы, с целью синтеза аденозинтрифосфата. В случае дефицита кислорода и его электронов электронная цепь претерпевает компенсаторные модификации. В то же время показано, что в условиях гипоксии клетки происходит прямой перенос электронов в электронную цепь из-за уменьшения потока переносчиков, и таким образом увеличивается количество активных форм кислорода и азота, чьи свободные радикалы чрезвычайно токсичны и приводят к гибели клетки.
Клеточный ответ на гипоксию реализуется через фермент, воспринимающий снижение напряжения кислорода в клетке — пролилгидроксилазу, который запускает реакцию другого фермента — индуцируемого гипоксией фактора (hypoxia-inducible factor — HIF). HIF регулирует транскрипцию генов, ответственных за изменение метаболизма с аэробного на анаэробный. Ферменты, участвующие в окислительном фосфорилировании, блокируются HIF, таким образом, пируват вместо гликолиза используется для образования лактата, способствуя ацидозу. Также HIF способствует увеличению выработки эритропоэтина и фактора роста эндотелия, активирует местный ангиогенез, ускоряя пролиферацию клеток, увеличивая выработку эндотелиального сосудистого фактора роста, дифференциацию и инвазию. HIF стимулирует выработку оксида азота, способствуя вазодилатации. Помимо активации генов, стимулирующих ангиогенез, HIF увеличивает выработку ангиопоэтина, тромбоцитарного фактора роста, фактора роста фибробластов, регулирует метаболизм железа.
Кроме того, было показано, что гипоксия индуцирует воспалительный ответ, в частности, отмечено увеличение содержания в крови провоспалительных цитокинов, интерлейкина 6 (ИЛ-6) и рецепторов к ним, фактора некроза опухоли альфа, С-реактивного белка. В свою очередь, воспаление ведет к уменьшению доставки кислорода к тканям. Таким образом, гипоксия и воспаление оказываются взаимно индуцирующими процессами.
HIF влияет и на имунный ответ: увеличивает содержание аденозинтрифосфата в миелоидных клетках, усиливает фагоцитарную активность нейтрофилов, предотвращает апоптоз нейтрофилов, увеличивая продолжительность жизни нейтрофилов в тканях, испытывающих гипоксию [3].
Оксигенотерапия при сердечно-сосудистых заболеваниях
Оксигенотерапия улучшает кровоток в альвеолах, уменьшает шунтирование крови и снижает давление в легочном артериальном русле, повышая ударный объем и сердечный выброс. При хронических бронхолегочных заболеваниях при длительном применении ингаляции кислорода способствуют обратному ремоделированию в легочных артериолах (уменьшению пролиферации гладкомышечных клеток, фибробластов и синтеза протеинов матрикса). Среди дополнительных эффектов оксигенотерапии было показано усиление бактерицидной активности нейтрофилов, снижение уровня дофамина в каротидных тельцах и, как следствие, уменьшение стимуляции хемотактических триггерных зон в головном мозге.
Следует учитывать, что оксигенотерапия направлена на лечение гипоксемии, но не одышки, таким образом, эффекта при лечении одышки в случае нормального содержания кислорода в крови ожидать не стоит. Кроме того, оксигенотерапия не устраняет причину гипоксемии. У всех пациентов с одышкой или в тяжелом состоянии следует проводить пульсоксиметрию с целью контроля сатурации и своевременного выявления гипоксемии.
Согласно различным рекомендациям по оксигенотерапии пороговым значением для начала оксигенотерапии в большинстве случаев является SaO2 менее 90%, однозначно оксигенотерапия не показана при SaO2 более 92% [4]. Среди пациентов, нередко получающих оксигенотерапию при отсутствии показаний, оказываются пациенты с инсультом без гипоксемии, большинство пациентов с инфарктом миокарда, сердечной недостаточностью. В то же время никогда не нужно прекращать оксигенотерапию у пациента, определенно в ней нуждающегося, с целью уточнения выраженности у него гипоксемии [5].
В зависимости от состояния пациента и ожидаемой потребности в кислороде выбирают средство доставки кислорода. В случае острого заболевания с ожидаемой очень высокой потребностью в кислороде (реанимационные мероприятия, остановка сердца, шок, сепсис, легочное кровотечение, эпилептический статус) выбирают нереверсивную маску, начиная с потока 15 л/мин и достигая целевых значений SaO2. Затем скорость потока постепенно уменьшают, обеспечивая сохранение целевых значений SaO2.
В случае ожидаемой меньшей потребности в кислороде (бронхиальная астма, пневмония, другие заболевания легких, пневмоторакс, тромбоэмболия легочной артерии, сердечная недостаточность) выбор также осуществляется с учетом заболевания и исходной сатурации: это могут быть назальные канюли с потоком 2–6 л/мин или простая лицевая маска с потоком 5–10 л/мин. Если предполагается гиперкапния и исходная сатурация менее 85%, то начинать оксигенотерапию следует также с нереверсивной маски с потоком 15 л/мин.
В большинстве случаев целевые значения SaO2 составляют 94–96%. Некоторые рекомендации указывают на целевые значения 94–98%. Однако результаты исследований свидетельствуют, что среди пациентов, находящихся на оксигенотерапии с достижением сатурации более 96%, отмечается небольшое, но определенное увеличение смертности — на 1% [5].
Для пациентов с риском развития гиперкапнии (например, пациенты с хронической обструктивной болезнью легких — ХОБЛ) целевым значением является сатурация 92% (88–92%). В случае чрезмерной оксигенации риск гиперкапнии возрастает. Риск гиперкапнии имеют также пациенты с тяжелым ожирением (синдром Пиквика), выраженными деформирующими заболеваниями грудной клетки и позвоночника: кифосколиозом, болезнью Бехтерева, нервно-мышечными заболеваниями, бронхоэктатической болезнью, муковисцидозом. В некоторых случаях необходима дополнительная респираторная поддержка при наличии гипоксемии и/или гиперкапнии с респираторным ацидозом.
Оксигенотерапию следует прекратить, если сатурация при дыхании воздухом сохраняется на уровне равном или превышающем целевые значения. В случае риска повторного ухудшения состояния оксигенотерапия может быть продолжена [5].
До недавнего времени считалось, что оксигенотерапия практически безвредна, однако систематический обзор свидетельствует о том, что излишняя оксигенация у пациентов с нормальной сатурацией увеличивает смертность. Обзор включал 25 рандомизированных контролируемых исследований, где пациенты получали свободную или контролируемую оксигенотерапию, смертность пациентов в группе свободной оксигенотерапии оказалась выше [6].
Имеются данные, что у пациентов с инфарктом миокарда и инсультом при SaO2 более 92% проведение оксигенотерапии может оказывать негативное воздействие: среди пациентов с инсультом отмечается увеличение смертности с 69 до 87 на 1000 человек, среди пациентов с инфарктом миокарда достоверного увеличения смертности не наблюдается, однако отмечено увеличение частоты повторной реваскуляризации в течение 6 мес. с 72 до 106 на 1000 человек, развитие повторного инфаркта миокарда в течение 1 года с 51 до 62 на 1000 человек [4].
Оксигенотерапия при коронавирусной инфекции COVID-19
Приблизительно у 14% пациентов с новой коронавирусной инфекцией заболевание протекает в тяжелой форме, основным критерием тяжести при этом является снижение насыщения кислородом крови, что требует госпитализации и оксигенотерапии. Около 5% всех пациентов (и около 25% госпитализированных) нуждаются в пребывании в отделении реанимации, чаще всего в связи с развитием картины острого респираторного дистресс-синдрома [7]. Механизмы развития гипоксемии при COVID-19 продолжают изучаться, одним из основных является тромбообразование в микроциркуляторном русле, связанное с повреждением эндотелия, что приводит к шунтированию крови, развитию ателектазов альвеол. В случае стабильного течения заболевания целевые значения SaO2 — более 90%. В случае тяжелого течения заболевания, картины дыхательной недостаточности, шока — целевые значения SaO2 более 94% [8]. В этом случае оксигенотерапия через носовые канюли или маску чаще всего оказывается недостаточно эффективной, предпочтительна высокопоточная назальная терапия или неинвазивная масочная вентиляция с положительным давлением. Своевременно начатые, эти методы позволяют снизить необходимость интубации и искусственной вентиляции легких (ИВЛ), по данным исследований и метаанализа, проведенных до пандемии COVID-19, причем высокопоточная вентиляция через носовые канюли имеет преимущество по сравнению с обычной оксигенотерапией через носовые канюли и вентиляцией с повышенным давлением [9, 10]. Учитывая нехватку аппаратов ИВЛ и мест в отделении реанимации в период эпидемии, трудно переоценить значение данных методов.
В случае недоступности оксигенотерапии через высокопоточные носовые канюли и неинвазивной вентиляции, а также при развивающейся полиорганной недостаточности или серьезных сопутствующих хронических заболеваниях показана ранняя интубация и инвазивная вентиляция легких. Специальных исследований по изучению оксигенотерапии при COVID-19 не проводилось. Но с учетом опыта, полученного при лечении других критических состояний, оптимальный уровень SaO2 находится между 92 и 96%. Метаанализ 25 рандомизированных исследований показал, что оксигенотерапия без контроля сатурации (с достижением сатурации, близкой к 100%) приводит к росту смертности. В то же время в небольшом исследовании выявлено, что поддержание SaO2 на относительно невысоких значениях (88–92%) также сопровождалось ростом смертности [11].
Вспомогательная методика, используемая в дополнение к оксигенотерапии, — прон-позиция (положение лежа на животе). Этот метод улучшает оксигенацию и исходы у пациентов со среднетяжелым и тяжелым течением респираторного дистресс-синдрома. Предположительно механизм связан с улучшением вентиляционно-перфузионного соотношения и раскрытием спавшихся альвеол в нижнебазальных отделах легких. Как в исследованиях до эпидемии среди пациентов с гипоксемией на спонтанном дыхании, так и в нескольких исследованиях среди пациентов с новой коронавирусной инфекцией, находящихся на оксигенотерапии, было показано улучшение оксигенации и уменьшение потребности в интубации при использовании прон-позиции. Прон-позиция хорошо совмещается с оксигенотерапией через канюли и удовлетворительно — через маску. Используется у пациентов, которые могут длительное время находиться в положении лежа на животе и самостоятельно изменять положение тела. Не применяется у гемодинамически нестабильных пациентов, перенесших в недавние сроки хирургическое вмешательство на органах брюшной полости, имеющих нестабильность позвоночника. Убедительных данных о влиянии прон-позиции на отдаленный исход при COVID-19 в настоящее время нет [12, 13].
В числе практических рекомендаций при лечении пациентов с новой коронавирусной инфекцией и одышкой следует помнить о возможности декомпенсации сопутствующих хронических заболеваний и своевременно проводить дифференциальную диагностику одышки. При COVID-19 одышка не изменяется при перемене положения тела, и практически всегда одышка в покое и при минимальной нагрузке сопровождается снижением SaO2. Иногда можно наблюдать катастрофически низкие показатели пульсоксиметра (до 35–45%), однако без перевода на ИВЛ такие пациенты быстро погибают. Если у пациента одышка в покое, усиливающаяся в горизонтальном положении, но SaO2 в норме, следует думать о декомпенсации сердечной недостаточности, особенно при наличии влажных хрипов в нижних отделах легких. Введение фуросемида в этом случае будет намного эффективнее оксигенотерапии. При новой коронавирусной инфекции преимущественно наблюдается различной степени ослабленное везикулярное дыхание, больше в нижних отделах. Степень ослабления дыхания обычно коррелирует с данными компьютерной томографии; иногда выслушивается крепитация в нижних отделах.
У пациентов с ХОБЛ, наоборот, на фоне сниженной сатурации (82–90%) одышка не отмечается, и оксигенотерапия должна проводиться с осторожностью, с контролем содержания СО2 в крови (исследование кислотно-щелочного состояния) с целью избежать гиперкапнии. Появление свистящих хрипов позволяет заподозрить бронхообструкцию, в этом случае введение бронходилататоров через небулайзер заметно облегчит состояние пациента, малопоточная оксигенотерапия может выступать дополнительным методом лечения. Несмотря на кажущуюся простоту такой дифференциальной диагностики, на практике в связи с перегруженностью врачей и ориентацией на «типовое» лечение COVID-19 данные состояния нередко распознаются с задержкой.
Технические аспекты оксигенотерапии
Основным методом получения медицинского кислорода является низкотемпературная (криогенная) ректификация: производят сжатие воздуха и разделение на составные газы из-за разности температур кипения кислорода (-183 °C), азота (-195,8 °C) и аргона (-185,8 °C).
С учетом токсичности кислорода в концентрации более 60% для длительной оксигенотерапии используют воздушную смесь с 40–60% кислорода. Чистый кислород при ингаляции более 30 мин оказывает повреждающее действие на слизистую оболочку дыхательных путей (трахеит), кроме того, из-за нарушения образования и стойкости сурфактанта в альвеолах возникают адсорбционные ателектазы с последующим шунтированием крови, что не позволяет адекватно устранить гипокcемию. Таким образом, высокие концентрации кислорода применяют кратковременно при терминальных состояниях: апноэ, гипоксической коме, остановке сердца, отравлениях окисью углерода.
Основным методом оксигенотерапии является ингаляционный, который включает в себя различные способы введения кислорода и кислородных смесей в легкие через дыхательные пути, проводится с использованием различной кислородно-дыхательной аппаратуры.
Оксигенотерапия хорошо переносится, изредка отмечается сухость и раздражение слизистой носа и глотки, дискомфорт может доставлять ограничение двигательной активности, трудности при принятии пищи. Чтобы уменьшить высушивающее действие кислородно-воздушной смеси на слизистую оболочку дыхательных путей, кислородную смесь увлажняют, пропуская через воду, затем подают под давлением 2–3 атмосферы.
В клинических условиях в зависимости от показаний используются:
Носовые катетеры. Необходимая концентрация кислорода достигается путем регуляции потока кислородно-воздушной смеси: скорость потока от 1 до 6 л/мин создает во вдыхаемом воздухе его концентрацию, равную 24–44%. При выраженной одышке (что приводит к высокой минутной вентиляции легких, превышающей поток кислорода) концентрация вдыхаемого кислорода снижается из-за избыточной потери при выдохе. Назальные канюли (носовые катетеры) обычно хорошо переносятся. В связи с вышеуказанными причинами их не следует применять при гипер- и гиповентиляции.
Лицевые маски. Достоинством масок является их способность лучше справляться с утечкой потока кислорода через рот. С помощью клапанов выдыхаемый воздух выводится наружу, позволяя поддерживать необходимую концентрацию кислорода. При применении стандартной лицевой маски поток кислорода может составлять до 15 л/мин, что обеспечивает более высокую его концентрацию (50–60%) по сравнению с канюлями. При высокой минутной вентиляции легких применение масок, как и катетеров, может быть неэффективно. Маска является самым распространенным способом доставки кислорода. Существуют различные типы масок:
простая (маска Хадсона);
маска с клапаном Вентури — обеспечивает стабильную концентрацию кислорода независимо от типа дыхания пациента путем использования различных клапанов. Достигаемая концентрация кислорода составляет 24–60% в зависимости от типа (цвета) используемого клапана-насадки, для чего скорость потока устанавливается также в зависимости от типа клапана-насадки. Часто используется при ХОБЛ,
т. к. позволяет давать кислород строго в необходимой концентрации, избегая гиперкапнии;
нереверсивная маска (маска с ребризером). Позволяет достичь максимальной концентрации кислорода во вдыхаемой смеси, при этом используется резервуар-мешок, который постоянно наполняется дыхательной смесью с кислородом и благодаря наличию клапана работает только на вдох. Клапаны маски позволяют осуществлять выдох, но препятствуют попаданию воздуха под маску снаружи. Позволяет достичь концентрации кислорода 85–90% при потоке 15 л/мин, не используется для длительной оксигенотерапии.
При проведении оксигенотерапии необходим периодический контроль SaО2. Частота контроля зависит от заболевания, тяжести состояния пациента, выраженности гипоксемии. Контролируя насыщение крови кислородом, подбирают, поддерживают и при необходимости корректируют способ подачи кислорода. Если перечисленные методы оказываются неэффективны и гипоксемия нарастает, может быть показан перевод пациента на инвазивную вентиляцию легких с интубацией трахеи. Однако до этого рассматривают возможность неинвазивной вентиляции легких с созданием положительного давления в дыхательных путях пациента во время выдоха или постоянно. Возможно проведение вентиляции легких через лицевую, носовую маску, шлем или носовые канюли.
Неинвазивная вентиляция легких снижает потребность в инвазивной вентиляции. Позволяет избежать интубации трахеи, тем самым минимизируя риск повреждений верхних дыхательных путей, избежать введения седативных препаратов, обеспечивает: большие безопасность и комфорт для больного; сохранение спонтанного дыхания; снижение риска развития ИВЛ-ассоциированной пневмонии; оставляет возможность контакта с больным; экономически выгодна. Однако методика более сложна и трудоемка для врача, т. к. необходимо непрерывно адаптировать различные параметры под постоянные изменения функции дыхания больного. Имеются и ограничения: невозможность применения при низком уровне сознания, анатомических особенностях больного; возможно повреждение кожи лица при длительном использовании масочной вентиляции; при неадекватном увлажнении и согревании газовой смеси могут наблюдаться повреждение слизистой верхних дыхательных путей, аэрофагия, тошнота, изжога, индивидуальная непереносимость (клаустрофобия) [2].
Высокопоточная оксигенотерапия является разновидностью неинвазивной вентиляции легких, имеет несомненные преимущества перед традиционной оксигенотерапией, более комфортна, лишена многих недостатков масочной вентиляции легких и может быть эффективной альтернативой при острой дыхательной недостаточности различного генеза. При высокопоточной назальной оксигенотерапии увлажненная и нагретая газовая смесь доставляется в дыхательные пути через носовые канюли со скоростью потока 15–60 л/мин с возможностью варьирования доли вдыхаемого кислорода от 0,21 до 1 [14].
При неэффективности неинвазивной вентиляции легких необходима своевременная интубация трахеи и проведение инвазивной (искусственной) вентиляции легких. Рассмотрение данного метода выходит за рамки настоящего обзора.
В домашних условиях при стабильном течении хронических заболеваний бронхолегочной системы или в стационаре при отсутствии возможности доступа к центральному источнику медицинского кислорода (качество которого выше) для продолжительной оксигенотерапии может использоваться медицинский концентратор кислорода. Также применяются кислородные баллоны — обычно для транспортировки пациента с гипоксемией бригадой скорой помощи или внутри стационара, продолжительность ингаляции при требуемой концентрации кислорода около 40% ограничена приблизительно 20 мин.
Можно встретить также кислородные баллончики, например баллончик «Основной элемент» (состав смеси: 90% кислорода, 10% азота, объем кислорода до 17 л, рассчитанных на 110–150 вдохов, без регулятора потока кислорода), однако для продолжительной коррекции гипоксемии объем кислорода в нем недостаточен. Данное устройство позиционируется как средство, позволяющее устранить негативные последствия пребывания в душном помещении, чрезмерных физических и умственных нагрузок.
Заключение
Таким образом, оксигенотерапия, несмотря на более чем вековую историю применения, продолжает активно развиваться, занимая значимое место в лечении основных сердечно-сосудистых и бронхолегочных заболеваний. Значение ее трудно переоценить — нередко она позволяет спасти жизнь пациента, являясь одним из основных методов лечения пациентов с новой коронавирусной инфекцией. Различные аспекты применения кислорода подробно освещены в современных рекомендациях, разработаны показания и алгоритмы применения. В то же время остается ряд спорных вопросов, продолжаются исследования, подтверждающие эффективность оксигенотерапии в одних случаях, демонстрирующие бесполезность и даже негативные эффекты — в других. Дальнейшее изучение применения кислорода, в т. ч. с использованием достижений молекулярно-клеточной биологии, а также прогресс технологий, благодаря которому продолжается разработка новых устройств для оксигенотерапии, закрепят за оксигенотерапией прочное место в повседневной лечебной практике.
Только для зарегистрированных пользователей