высокий ферритин в крови что значит при коронавирусе

Высокий ферритин в крови что значит при коронавирусе

Врачи из разных стран отмечают, что у пациентов с COVID-ассоциированной пневмонией диагностируется высокий уровень ферритина, который может достигать значения 600 мкг/л и выше. При этом отмечается тенденция к слабому снижению показателей на протяжении периода лечения. «Медвестник» обратился к заведующей кафедрой клинической гематологии и трансфузиологии БелМАПО профессору Людмиле Смирновой с вопросом — что врачу-клиницисту нужно знать о ферритине как о маркере острой фазы воспаления.

Людмила Смирнова, профессор, заведующая кафедрой клинической гематологии и трансфузиологии БелМАПО Что это за белок?

Ферритин синтезируется клетками различных органов и тканей, в первую очередь печени, селезенки, костного мозга, сердечной мышцы, легких, почек, щитовидной железы, плаценты, тонкого кишечника, поджелудочной железы, а также лейкоцитами. Молекулярная масса 440 кДа. Ферритин накапливает и хранит в организме железо в нетоксичной и биологически доступной форме.

Локализован преимущественно внутриклеточно, однако небольшое (строго определенное) его количество имеется в плазме крови, оно и определяется в лаборатории как показатель «ферритин». Норма для женщин 20–150 мкг/л (нг/мл), для мужчин 40–300 мкг/л (нг/мл). На мембранах нормальных и патологических клеток присутствуют ферритиновые рецепторы. Секретируемый ферритин выполняет следующие функции: регуляция миелопоэза, миграции лимфоцитов, иммуносупрессивная функция.

Маркер анемии и гиперферритинемии

Показатель «ферритин сыворотки крови» традиционно используется в качестве маркера дефицита либо избытка железа в организме, а также при контроле лечения железодефицитных состояний. Уровень ферритина в сыворотке крови менее 40 мкг/л расценивается как дефицит железа и указывает на наличие железодефицитной анемии. Уровень ферритина в сыворотке крови более 300 мкг/л (для мужчин и для женщин) расценивается как гиперферритинемия, которая может быть обусловлена перегрузкой организма железом (при длительных частых трансфузиях эритроцитов, гемохроматозе), а также как признак воспаления или опухоли.

Соответствие уровня сывороточного ферритина (СФ) и запасов железа в организме теряется при воспалительных процессах, заболеваниях печени, опухолях. В этих случаях содержание ферритина в сыворотке возрастает независимо от запасов железа. Повышение уровня ферритина отмечается при COVID-ассоциированных пневмониях.

Связь с онкологическими процессами

Ферритин может расцениваться как неспецифический онкологический маркер. При быстро пролиферирующих опухолях отмечается рост данного показателя. Эта гиперферритинемия не отражает процессов метаболизма железа и его количества в организме.

Ферритин также связан с усиленным апоптозом на фоне противоопухолевой терапии. В эксперименте показано, что двухвалентные металлы, прежде всего железо, могут быть модификаторами апоптоза. Такой механизм гиперферритинемии возможен также при инфекционном процессе перед или в период реконвалесценции.

Установлено, что злокачественные опухоли и хроническое воспаление ведут к сокращению транспортного (трансферринового) фонда железа. При наличии воспаления (опухоли) характерны низкие уровни железа в сыворотке (падает показатель «сывороточное железо»), снижена концентрация трансферрина при высоком уровне ферритина. Трансферрин является «отрицательным» белком острой фазы воспаления, его уровень в плазме снижается.

Показатель острой фазы воспаления

Подъем уровня ферритина отмечается при остром воспалении, так как ферритин работает как острофазный белок. При остром воспалении показатель С-реактивного белка (СРБ) растет значительно, но потом обычно уровень его снижается раньше уровня ферритина, давая так называемые ножницы: показатель ферритина растет, а показатель СРБ уменьшается.

На фоне лечения с положительной динамикой показатель СРБ снижается, показатель ферритина может оставаться на прежних высоких значениях или даже увеличиться. Это связано, вероятнее всего, с тем, что СРБ синтезируется преимущественно в печени, а ферритин, кроме печени, синтезируется в легких и миокарде. Вследствие этого при пневмонии, повреждении миокарда ферритин будет оставаться высоким.

Ферритин связан с фактором некроза опухолей альфа (ФНО-α), который выделяется определенными клетками в результате воздействия разнообразных стимулов: вирусов, ультрафиолетового облучения, интерлейкинов (ИЛ-6 в том числе), окислительного стресса. Приведенные факты позволяют предположить, что в силу своих уникальных биохимических свойств ферритин находится в центре нескольких регуляторных механизмов, вовлеченных в широкий спектр метаболических процессов при воспалении.

Например, уровень ферритина растет в период инфицирования вирусом иммунодефицита человека, именно этому периоду соответствует максимальная лимфоидная активация (увеличивается количество Т-хелперов), характерна лимфоаденопатия.

На фоне острого инфекционного процесса может развиться так называемая анемия хронического заболевания (D-63 по МКБ-10), в том числе в эту категорию входит анемия воспаления. Для этого вида анемий характерно снижение показателя сывороточного железа на фоне повышенного ферритина. В общем анализе крови такая анемия характеризуется низкими значениями MCV и MCH, то есть является микроцитарной и гипохромной. Напоминает железодефицитную анемию. Препараты железа не следует назначать, поскольку это анемия хронического заболевания, характеризующаяся нормальными и даже повышенными запасами железа в макрофагах, на фоне высокого уровня провоспалительных цитокинов (ИЛ-6, ФНО-α и др.) После купирования пневмонии анемия средней степени тяжести (более 70 г/л) может персистировать некоторое время, это свидетельствует о том, что процесс воспаления не завершен (ферритин высокий, СРБ повышен незначительно). Уровень гемоглобина нормализуется при полном купировании воспаления.

Трансфузии эритроцитсодержащих сред показаны при уровне гемоглобина менее 70 г/л. Однако необходимо учитывать не только уровень гемоглобина, но и общее состояние пациента, гемодинамические сдвиги, обусловленные индивидуальной реакцией на анемическую гипоксию.

Рост при полиорганной недостаточности

Причину возрастания сывороточного ферритина при разных видах патологии печени (тяжелый гепатит, рак, цирроз) связывают с процессом освобождения ферритина из гепатоцитов при их деструкции. При патологии печени показатель ферритина также повышается на фоне параллельного повышения уровня АСТ, АЛТ. При полиорганной недостаточности следует ожидать очень высоких показателей ферритина за счет освобождения его из гепатоцитов, ткани миокарда, легких.

Резюме

Таким образом, при воспалительном процессе, в том числе COVID-ассоциированной пневмонии, показатель ферритина растет более 300 мкг/л, достигая порой уровня более 1 000 мкг/л; трансферрин снижается (менее 2 г/л), сывороточное железо ниже нормы (менее 11 мкмоль/л). Показатель СРБ значительно растет, параллельно или опережая уровень ферритина на несколько суток.

Уровень фибриногена увеличивается более 4 г/л, достигая значений более 10 г/л.

На фоне лечения с положительной динамикой: показатель СРБ снижается, показатель ферритина может оставаться на прежних высоких значениях или даже немного увеличиться. При пневмонии, повреждении миокарда ферритин будет оставаться высоким, а при патологии печени увеличение ферритина сочетается с повышенными уровнями АСТ, АЛТ.

При выздоровлении все маркеры острой фазы воспаления приходят к нормальным значениям.

Использование нескольких маркеров воспаления позволяет более адекватно и полно осуществлять мониторинг патологического процесса.

Источник

Высокий ферритин в крови что значит при коронавирусе

Общий и биохимический анализы крови пациентов с СОVID-19 относятся к неспецифическим методам диагностики, но при этом играют большую роль в оценке тяжести заболевания, позволяют прогнозировать его развитие и исход, корректировать схемы лечения. Данная тема подробно обсуждалась в ходе одной из онлайн-сессий в рамках республиканского научно-практического вебинара «Актуальные вопросы биобезопасности и лабораторной диагностики COVID-19».

высокий ферритин в крови что значит при коронавирусе. Смотреть фото высокий ферритин в крови что значит при коронавирусе. Смотреть картинку высокий ферритин в крови что значит при коронавирусе. Картинка про высокий ферритин в крови что значит при коронавирусе. Фото высокий ферритин в крови что значит при коронавирусеЛюдмила Анисько, заведующая клинико-диагностической лабораторией Городской клинической инфекционной больницы Минска, главный внештатный специалист по лабораторной диагностике комитета по здравоохранению Мингорисполкома, кандидат мед. наук Заведующая клинико-диагностической лабораторией Городской клинической инфекционной больницы Минска, главный внештатный специалист по лабораторной диагностике комитета по здравоохранению Мингорисполкома, кандидат мед. наук Людмила Анисько в своем докладе обобщила накопленный за время пандемии опыт, акцентировала внимание на оценке наиболее важных лабораторных показателей.

Людмила Анисько отметила, что изменения лабораторных показателей крови зависят от стадии инфекции. Этих стадий три:

Лимфоцитопения

Людмила Анисько:

Снижение уровня лимфоцитов, главных клеток иммунной системы, — один из основных признаков при COVID-19. Лимфоцитопения встречается у 80 % пациентов.

В ряде ретроспективных исследований показана прямая связь между выраженностью лимфоцитопении и вероятностью развития острого респираторного дистресс-синдрома.

Факторами, способствующими снижению уровня лимфоцитов при COVID-19, являются: лизис (непосредственное влияние вируса SARS-CoV-2 на лимфоциты); апоптоз (этому способствует повышенный уровень интерлейкина); снижение лимфопоэза в костном мозге (при гиперактивации иммунной системы и продукции противовоспалительных цитокинов).

Соотношение нейтрофилы/лимфоциты

Основная составляющая популяции лейкоцитов, участвующая в уничтожении патогенных микроорганизмов, — нейтрофилы, которые продуцируют сосудистый эндотелиальный фактор роста, противовоспалительные цитокины (ИЛ-1, ФНО, у-IFN).

Людмила Анисько:

В ряде исследований было показано, что повышенный показатель соотношения нейтрофилы/лимфоциты может рассматриваться как прогрессирование COVID-19. Соотношение более 3,13 расценивается как неблагоприятный признак с высоким риском летального исхода.

Тромбоцитопения

Снижение уровня тромбоцитов связано, во-первых, с прямой инфекцией гематопоэтических клеток костного мозга SARS-CoV-2, что приводит к угнетению кроветворения. Во-вторых, с увеличением их потребления, поскольку повреждение легочной ткани сопровождается активацией, агрегацией и удержанием тромбоцитов в местах повреждения, образованием тромбов.

Людмила Анисько:

В большинстве исследований за пороговое значение количества тромбоцитов принималось 150×109/л, — сообщила Людмила Анисько. — Так, по результатам крупного китайского исследования количество тромбоцитов менее 150×109/л наблюдалось в 31,6 % случаев, при этом у тяжелых пациентов — в 57,7 % случаев. Тромбоцитопения статистически значимо ассоциирована с увеличением риска тяжелого течения COVID-19 более чем в 5 раз. Динамика снижения уровня тромбоцитов ассоциирована с летальным исходом.

Повышение активности клеточных ферментов крови

Причинами повышения активности клеточных ферментов являются нарушение проницаемости мембраны клеток (при воспалительных процессах); нарушение целостности клеток (при некрозе); повышенная пролиферация клеток с ускорением клеточного цикла и др.

Аспартатаминотрансфераза (АСТ)

Обратимо катализирует трансаминирование, в частности, межмолекулярный перенос аминогруппы с 1-аспарагиновой кислоты на альфа-кетоглутаровую кислоту. Содержится во всех органах и тканях, больше всего в сердечной мышце.

Аланинаминотрансфераза (АЛТ)

Обратимо катализирует трансаминирование, в частности, межмолекулярный перенос аминогруппы с аланина на альфа-кетоглутаровую кислоту. Содержится во всех органах и тканях, больше всего в клетках печени.

Людмила Анисько:

Ретроспективное когортное исследование в США (n=130) выявило повышение уровня трансаминаз в 56 % случаев у пациентов с COVID-19. Повышенные уровни АСТ и АЛТ были связаны с тяжелым течением и худшим прогнозом, риск летального исхода у таких пациентов повышался в 2,9 раза.

Креатинфосфокиназа (КФК)

Катализирует обратимую реакцию креатинина с участием АТФ, в результате чего образуются креатинфосфат и АДФ. Повышается при травмах, операциях, инфаркте миокарда, миопатиях, мышечных дистрофиях, отравлениях, сопровождающихся комой, инфекционных болезнях.

Людмила Анисько:

Большинство исследователей отмечают повышенные уровни КФК почти у всех госпитализированных пациентов с COVID-19. Одна из причин повышения КФК — развитие воспалительной реакции в мышечной ткани. Метаанализ клинических проявлений (1995 пациентов) показал проявление миалгий в 35,8 % случаев.

Также сообщается о развитии миокардита у пациентов с COVID-19. При аутопсии умерших пациентов описаны некроз миоцитов и инфильтраты мононуклеарных клеток в миокарде. Кроме того, высказываются предположения о том, что вирус может дестабилизировать имеющиеся атеросклеротические бляшки и обусловить развитие острых коронарных синдромов.

Лактатдегидрогеназа (ЛДГ)

Катализирует обратимое восстановление пирувата до лактата. Повышается при остром повреждении сердца, эритроцитов, почек, скелетных мышц, печени, легких, кожи (в норме в перечисленных органах и тканях уровень ЛДГ более чем в 500 раз выше, чем в сыворотке крови).

Изменение уровней электролитов — Na, K, Ca

Людмила Анисько:

У большинства пациентов, находящихся на стационарном лечении, отмечается снижение уровня натрия, калия, кальция в крови. Так, в пяти исследованиях с общей выборкой 1 415 пациентов (17,8 % с тяжелой формой COVID-19) выявлено значительное снижение натрия (ДИ 1,33–0,5 ммоль/л), калия (ДИ 0,18–0,07 ммоль/л), кальция (ДИ 0,25–0,20 ммоль/л).

У 20 % пациентов с тяжелой инфекцией COVID-19 отмечается гипокалиемия. Ее вероятные причины: увеличение экскреции калия почками, потери калия с диареей и рвотными массами, повышенное потоотделение при лихорадке, ведущее к потере электролитов, в т. ч. калия.

Белки острой фазы

Самый распространенный белок острой фазы, определение которого используется в клиниках, это С-реактивный белок. Его основные функции — ограничение поврежденных тканей, нейтрализация воспалительного агента, запуск механизмов репарации для восстановления повреждений. При остром воспалении концентрация С-реактивного белка в течение 12 часов повышается в десятки и сотни раз.

Людмила Анисько:

У 60 % пациентов с COVID-19 С-реактивный белок повышен с первых дней заболевания! Для того чтобы как можно раньше диагностировать присоединение вторичной бактериальной инфекции в условиях стационара, необходимо использовать определение прокальцитонина (ПКТ). Повышенный уровень ПКТ — предиктор неблагоприятного исхода заболевания, он говорит о том, что к коронавирусной инфекции присоединилась бактериальная флора и пациенту требуется назначение антибактериальных препаратов.

Дополнительно уровень С-реактивного белка может использоваться как косвенный маркер активности интерлейкина-6.

Интерлейкин-6 (ИЛ-6)

ИЛ-6 является маркером цитокинового шторма, его избыточное образование ведет к повреждению тканей, усилению проницаемости сосудов, снижению сократимости миокарда и др. Определение ИЛ-6 применяется при оценке прогноза тяжести синдрома высвобождения цитокинов, а также при мониторинге эффективности терапии блокаторами рецепторов ИЛ-6.

Людмила Анисько:

Повышенный уровень ИЛ-6 наблюдается более чем в 50 % случаев при COVID-19. Исследования показали, что по мере прогрессирования тяжести заболевания уровни противовоспалительных цитокинов в сыворотке также увеличиваются и имеют корреляцию с летальностью.

Согласно метаанализу, средний сывороточный уровень ИЛ-6 у пациентов с тяжелым течением в 2,9 раза выше по сравнению с нетяжелым течением заболевания. Пороговые значения сывороточного ИЛ-6 для выявления пациентов с риском тяжелого течения инфекции — 55 нг/мл, риском летального исхода — 80 нг/мл.

Ферритин

Цитозольный белок (способен связывать до 4 500 атомов железа), состоящий из легкой L и тяжелой H субъединиц, соотношение которых варьируется и может изменяться при воспалительных и инфекционных заболеваниях. Уровень ферритина в плазме обычно отражает общие запасы железа в организме, при этом 1 нг ферритина на 1 мл указывает примерно на 10 мг общих запасов железа.

Людмила Анисько:

Ферритин является ключевым медиатором иммунной дисрегуляции при тяжелом прогрессирующем течении COVID-19. Метаанализ 6 320 пациентов показал повышение уровня ферритина у тяжелых пациентов. Ретроспективное многоцентровое исследование выявило повышенные уровни ферритина — в среднем 1297,6 нг/мл — у умерших пациентов против 614,0 нг/мл у выживших.

D-димеры

Продукты распада фибринового сгустка, образуются в результате расщепления плазмином стабильного фибрина. По их уровню можно оценить процессы тромбообразования и фибринолиза. Референтное значение до 500 нг/мл. Повышенный уровень D-димера наблюдается при тромбозах, тромбоэмболиях, массивных поражениях тканей, обширных гематомах, обширных хирургических вмешательствах, сепсисе, ИБС, сердечной недостаточности, онкологических и тяжелых инфекционных заболеваниях, осложнениях в послеродовом периоде, тяжелых заболеваниях печени.

Людмила Анисько:

У пациентов с COVID-19 часто повышен уровень D-димера, высокая концентрация которого является предиктором летального исхода. Эксперты Международного общества специалистов по тромбозу и гемостазу (ISTH) полагают, что повышение уровня D-димера в 3–4 раза у пациента с COVID-19 является самостоятельным показанием для госпитализации.

Источник

Преобладание защитных свойств фибриногена над протромботическими при COVID-19 и других воспалительных состояниях

Введение

COVID-19 продолжает быть причиной большого количество смертей по всему миру. Одной из основных патогенных особенностей при COVID-19 является интенсивное воспаление, вызванное тяжёлым острым респираторным синдромом, связанным с коронавирусом-2 (SARS-CoV-2), с развитием цитокинового шторма в наиболее тяжёлых случаях. С точки зрения процесса коагуляции, врачи из различных стран отметили увеличение уровня фибриногена (в несколько раз) у множества пациентов, особенно у тех, кто нуждался в интенсивной терапии. Возникает вопрос, почему уровень фибриногена повышается так сильно?

Защитные свойства реактантов острой фазы

Защитная функция фибриногена как белка острой фазы

Защитная функция фибриногена и тромбоз

Гиперфибриногенемия и риск тромбоза

Тромбоциты и циркулирующий фибриноген

Если фибриноген проявляет защитную функцию как реактант острой фазы в одном случае и как протромботическая молекула в другом случае, возможно ли, что он появляется из двух разных источников для выполнения двух отличающихся функций? Модель двухуровневого тромбоза, продемонстрированная в исследовании Stalker с соавторами [4], может дать подсказки относительно этого дуализма фибриногена. Их эксперименты демонстрируют иерархическую модель организации тромбообразования, в которой внутренним ядром является плотный тромб из активированных тромбоцитов, а снаружи него находится неплотная, проницаемая для плазмы оболочка, которая менее зависит от наличия активированных тромбоцитов. Любопытно, что во внутреннем ядре активированные тромбоциты связаны между собой посредством интегрина αIIbβ3, который является тромбоцитарным рецептором фибриногена. Фибриноген для внутреннего ядра тромба появляется из альфа-гранул тромбоцитов, в которых также содержатся другие коагуляционные белки (факторы V, XI и XIII), вовлечённые в процесс вторичного гемостаза. В то же время циркулирующий фибриноген, вероятно, выполняет свою роль как белок острой фазы. Несмотря на то, что двойственная роль фибриногена не была изучена в деталях, тромбоциты и циркулирующий фактор фон Виллебранда, другой реактант острой фазы, были изучены. Тромбоцитарные альфа-гранулы содержат 20% всего белка фактора фон Виллебранда и являются мультимерными формами с высокой молекулярной массой. С использованием трансплантационной модели костного мозга свиньи было показано, что тромбоцитарный фактор фон Виллебранда значительно снижает интенсивность кровотечений в тяжёлых случаях болезни Виллебранда, а также то, что в его присутствии требуется значительно меньшая концентрация плазменного фактора фон Виллебранда для обеспечения гемостаза. Это позволяет предположить, что тромбоцитарный фактор фон Виллебранда является основной формой, вовлечённой в образование тромба, в то время как циркулирующий фактор фон Виллебранда, как и фибриноген, скорее всего может играть роль в защите организма во время воспаления.

Список использованных ресурсов:

Источник

Гематологические показатели COVID-19 и осложнения со стороны кровеносной системы

Краткое содержание

Введение

Тяжелый острый респираторный синдром Коронавируса 2 (SARS-CoV-2), вызывающий коронавирусную болезнь 2019 (COVID-19), из эпидемической вспышки в Ухане [1] быстро перерос в пандемию с более чем миллионом зараженных и миллиардами людей, вынужденных соблюдать меры социального дистанционирования. SARS-CoV-2 (SARS) примерно на 80% схож с вирусом атипичной пневмонии SARS-CoV, он также проникает в клетки хозяина, связываясь с рецептором ангиотензинпревращающего фермента 2 (АПФ2) [1]. Несмотря на то, что COVID-19 является, прежде всего, инфекцией дыхательных путей, свежие данные указывают на то, что его следует рассматривать как системное заболевание, затрагивающее сердечно-сосудистую, дыхательную, желудочно-кишечную, неврологическую, кроветворную и иммунную системы [2]–[4]. Смертность от COVID-19 ниже, чем от SARS и Ближневосточного респираторного синдрома (MERS) [5], но он куда опаснее обычного сезонного гриппа. В группе риска, прежде всего, пожилые или люди с хроническими заболеваниями, но и у молодых людей без хронических заболеваний также могут возникнуть потенциально летальные осложнения, такие как молниеносный миокардит и диссеминированная внутрисосудистая коагулопатия (ДВС-синдром) [6], [7]. В данном обзоре были собраны многочисленные гематологические данные, связанные с осложнениями COVID-19, а также приведено руководство по ранней их профилактике и лечению.

Общий анализ крови и результаты биохимии: прогноз протекания заболевания

В течение инкубационного периода, обычно в диапазоне с 1 по 14 день, и на ранней фазе заболевания, когда присутствуют неспецифические симптомы, количество лейкоцитов и лимфоцитов периферической крови соответствует норме или слегка снижено. При виремии SARS-CoV-2, в основном, поражает ткани, экспрессирующие высокие уровни АПФ2, такие как легкие, сердце и желудочно-кишечный тракт. Спустя приблизительно 7–14 дней после начальных симптомов обнаруживаются клинические проявления заболевания с выраженным системным повышением провоспалительных цитокинов, которое даже можно назвать «цитокиновым штормом» [8]. К этому моменту лимфопения становится совершенно очевидной. Несмотря на то, что этиология лимфопении в случае COVID-19 до конца не изучена, можно назвать некоторые факторы, приводящие к данному состоянию. Например, было показано, что лимфоциты тоже экспрессируют на своей поверхности АПФ2 [9], поэтому SARS-CoV-2 может непосредственно инфицировать эти клетки и, в конечном счете, приводить к их лизису. Далее, цитокиновый шторм характеризуется существенно возросшими уровнями интерлейкинов (в основном это IL-6; IL-2; IL-7; GM-CSF; CXCL10, MCP-1, MIP1-a) и TNFα, которые могут приводить к апоптозу лимфоцитов [10]–[12]. Активация цитокинов также может быть связана с атрофией лимфоидных органов, в т.ч. селезенки, что также снижает количество циркулирующих лимфоцитов [13]. Наконец, молочнокислый ацидоз, наиболее выраженный у пациентов с онкологией, также может ингибировать пролиферацию лимфоцитов [14], [15].

Лимфопения была также зарегистрирована примерно у 40% первых госпитализированных пациентов с COVID-19 в Сингапуре [21]. Позднее процент пациентов с лимфоцитопенией был подтвержден [22]. У 69% пациентов с низкими лимфоцитами выявлялась реактивная популяция лимфоцитов, включая подгруппу лимфоплазмоцитоидов, которая не присутствовала в периферической крови пациентов с SARS в 2003 году [22]–[24]. Проточная цитометрия не выявила никакой инверсии в соотношении CD4+/CD8+ лимфоцитов [22]. Однако функциональные исследования показали, что SARS-CoV-2 может нарушать функцию CD4+ Т-хелперов и регуляторных Т-клеток, вызывая раннюю гиперактивацию, за которой следует быстрое истощение цитотоксических CD8+ T-киллеров [25], [26]. В Сингапуре также было обнаружено, что у пациентов, нуждающихся в интенсивной терапии, уровень лимфоцитов был значительно ниже [22]. В другом ретроспективном исследовании лимфопения выявлялась у 85% критически больных пациентов Уханя [27].

Лимфопения также отмечена у критически больных пациентов с COVID-19 в Вашингтоне [28], [29]. Она оказалась более выраженной в случае летальных исходов [20]. Сообщалось также, что при тяжелом протекании заболевания и летальном исходе, уровень лимфоцитов/лейкоцитов, как при поступлении, так и в период госпитализации, был значительно ниже по сравнению с оным у выздоровевших пациентов [26], [30]. В отличие от умерших пациентов, у выживших минимум количества лимфоцитов наблюдался на 7-й день с момента появления симптомов и выздоровления [31]. Оценка динамики количества лимфоцитов может помочь прогнозировать исход заболевания. Tan и колл. предложили модель прогнозирования, основанную на подсчете лимфоцитов в двух временных точках: на 10-12 день с момента появления симптомов пациенты с менее чем 20% лимфоцитов и менее чем 5% на 17-19 день имеют неблагоприятный прогноз.

Согласно недавним исследованиям известно, что повреждения миокарда у госпитализированных с COVID-19 связаны с повышенным риском смертности [32], [33]. В одном проспективном исследовании, включающем 416 пациентов с подтвержденным COVID-19, у 82 (19,7%) были обнаружены повреждения миокарда. По сравнению с другими пациентами, у людей с повреждениями миокарда обнаружен более высокий уровень лейкоцитов, а также более низкие уровни лимфоцитов и тромбоцитов [32]. В другом ретроспективном исследовании с 187 пациентами из другой больницы Уханя было показало, что у пациентов с высокими уровнями тропонина Т наблюдались лейкоцитоз, увеличение нейтрофилов и снижение лимфоцитов [33].

Метаанализ девяти исследований показал, что тромбоцитопения тесно ассоциирована с тяжестью протекания COVID-19: более выраженное снижение количества тромбоцитов отмечено в случае летальных исходов [34].

Достойны упоминания результаты исследования Qu и колл.: пик числа тромбоцитов во время течения заболевания совпадал с более тяжелым протеканием заболевания [35]. Согласно многомерному анализу, отношение тромбоцитов к лимфоцитам во время пика тромбоцитов оказалось независимым прогностическим фактором для длительной госпитализации. Было высказано предположение, что высокое соотношение тромбоцитов к лимфоцитам свидетельствует о более интенсивном цитокиновом шторме, вызванном усиленной активацией тромбоцитов.

Использование прокальцитонина, ферритина и С-реактивного белка (СРБ) в качестве биомаркеров

В исследовании Guan и колл. [16], объединившем в себе данные из различных провинций Китая, были получены интересные биохимические результаты: С-реактивный белок (СРБ) был повышен у 60,7% пациентов, повышенный прокальцитонин, являющийся маркером вторичной бактериальной инфекции, осложняющей течение COVID-19, был обнаружен у 5,5%, а повышенная лактатдегидрогеназа (ЛДГ) у 41% пациентов. В случаях более тяжелого протекания заболевания по сравнению с умеренным/легким эти значения составили: 81,5% против 56,4% для СРБ; 13,7% против 3,7% для прокальцитонина; и 58,1% против 37,2% для ЛДГ) [16].

В ретроспективном когортном исследовании, включающем 191 пациента с COVID-19 из Ухани, у впоследствии умерших пациентов чаще наблюдались высокие уровни ЛДГ, прокальцитонина, ферритина и интерлейкина-6 (IL-6) в сыворотке крови [31]. Согласно исследованию, проведенному Wang и колл., повышенное содержание ЛДГ было связано также с более высоким риском развития ОРДС [17], необходимостью интенсивной терапии [22] и смертностью [17], [31]. В другом мета-анализе отмечено, что повышенные значения прокальцитонина связаны с почти 5-кратным увеличением риска тяжелого протекания заболевания [36]. Также было показано, что высокий уровень ферритина сопряжен с повышенным риском развития ОРДС. Однако, достоверной связи уровней прокальцитонина и ферритина с выживаемостью выявить не удалось [17], [31]. Повышенный уровень СРБ при COVID-19 также связан с развитием ОРДС [17], повреждениями миокарда [32] и летальным исходом [30].

Другим перспективным биомаркером протекания COVID-19 является интерлейкин-6. Высокие уровни IL-6 оказались связанными с повышенным риском летального исхода, при этом отмечалось, что у умерших пациентов в ходе госпитализации обнаруживалось постепенное увеличения уровня IL-6 [17], [19], [31].

Осложнения, связанные с нарушениями свертывания крови

Нарушения свертывания крови встречаются довольно часто среди пациентов при тяжелом протекании COVID-19 [30], [31]. В результате многоцентрового ретроспективного исследования в Китае в течение первых двух месяцев эпидемии у 260 из 560 пациентов (46,4%) обнаруживался повышенный уровень D-димера (≥0,5 мг/л), среди тяжелых случаев это повышение было выражено значительно сильнее (59,6% против 43,2% при умеренном течении заболевания) [16]. Динамика D-димера может отражать тяжесть заболевания, а повышенные уровни могут позволить прогнозировать неблагоприятные исходы [37]. Значения D-димера выше 1,5 мкг/л были зафиксированы у 36% пациентов в описательном исследовании с 99 случаями COVID-19 в Ухани [19]. В других исследованиях также подтверждалось, что при поступлении у пациентов, нуждавшихся в интенсивной терапии уровни D-димера и протромбинового времени (ПВ) были выше [18], [20].

У пациентов с повреждениями миокарда в результате COVID-19 чаще выявлялись нарушения свертывания крови [32]. Среди пациентов с высоким уровнем тропонина T чаще встречались случаи повышений ПВ, активированного частичного тромбопластинового времени (АЧТВ) и уровня D-димера [33]. Среди 201 пациента с пневмонией, вызванной COVID-19, увеличение ПТ было связано с высоким риском развития ОРДС, тогда как повышение уровня D-димера оказалось достоверно связанным с повышенными рисками развития ОРДС и летального исхода [17]. Различия между уровнями D-димера у выживших и погибших пациентов были больше, чем при сравнении групп с ОРДС и без него; это наблюдение может свидетельствовать о том, что связанные с ДВС-синдромом осложнения приводят к смерти множества пациентов вне зависимости от наличия ОРДС. На основании многофакторного анализа в многоцентровом ретроспективном когортном исследовании было установлено, что повышенные уровни D-димера (> 1 мкг/мл) достоверно связаны с летальным исходом [31]. В другом ретроспективном исследовании, проведенном Tang и колл. (183 пациента с COVID-19) отмечено, что у умерших пациентов наблюдались более высокие уровни D-димера, продуктов распада фибрина (ПРФ), а также увеличенные ПВ и АЧТВ по сравнению с выжившими. Примечательно, что симптомы во время течения заболевания у 71,4% из умерших пациентов и 0,6% выживших соответствовали клиническим критериям ДВС-синдрома. Среднее время от поступления до проявления ДВС-синдрома составляло 4 дня [6]. В проспективном исследовании, оценивающем профиль коагуляции у пациентов с COVID-19, уровни D-димера, ПРФ и фибриногена были значительно выше, чем у группы контроля (здоровых испытуемых). При тяжелом течении заболевания значения D-димера и ПРФ оказались выше, чем при легком [38].

Все приведенные сведения указывают на то, что повышение уровня D-димера и ДВС-синдром широко распространены у пациентов с тяжелой формой COVID-19 [39]. Судя по всему, нарушения регуляции иммунной системы и эндотелиальная дисфункция активно вовлечены в патофизиологию COVID-19, однако, детали этих процессов предстоит выяснить в будущих исследованиях.

Еще одним осложнением COVID-19 является венозная тромбоэмболия (ВТЭ). Частота развития ВТЭ у госпитализированных пациентов доходит до 10% [41]. Длительная иммобилизация в период болезни, обезвоживание, острый воспалительный процесс, риск-факторы сердечно-сосудистых заболеваний (гипертония, диабет, ожирение) или сердечно-сосудистые заболевания (заболевания коронарной или периферических артерий, перенесенный ишемический инсульт) и классическая генетическая тромбофилия (например, гетерозиготная мутация Фактора V Лейдена) – все перечисленные факторы являются частыми сопутствующими заболеваниями, потенциально увеличивающими риск ВТЭ, у госпитализированных пациентов с COVID-19. Активация/повреждение эндотелиальных клеток при связывании вируса с АПФ-2 также повышает риск ВТЭ. Выделение огромного количества медиаторов воспаления, гормоны и иммуноглобулины у тяжелых или критически больных пациентов могут привести к увеличению вязкости крови. Кроме того, искусственная вентиляция легких, катетеризация центральных вен и хирургическое вмешательство также приводят к повреждениям эндотелия сосудов. Сочетание всех вышеперечисленных факторов может привести к возникновению тромбоза глубоких вен (ТГВ) или даже к легочной эмболии (ЛЭ). Поэтому всем пациентам, госпитализированным с COVID-19 рекомендуется проводить оценку риска развития ВТЭ и, при высоком риске, назначать фармакологическую тромбопрофилактику [42].

Для этой задачи может быть полезной стандартизированная модель оценки риска, такая как IMPROVE-VTE. Модифицированная память IMPROVE-VTE, которая учитывает значения уровней Д-димера и других клинических биомаркеров ВТЭ, повышает точность идентификации пациентов с высоким риском ВТЭ, нуждающихся в адаптированной фармакологической тромбопрофилактике [43]. Кроме того, также важно обращать внимание на риск ВТЭ у бессимптомных или амбулаторных пациентов с легким протеканием COVID-19. Для улучшения клинических результатов также крайне важна ранняя диагностика ЛЭ при внезапном ухудшении оксигенации, дыхательной недостаточности или гипотонии. Несмотря на то, что существующие данные по этой проблеме пока ограничены, представляется разумным использование динамики уровней Д-димера в качестве одного из прогностических показателей ТГВ и/или ЛЭ, наряду со стандартными методами визуализации (Допплер-эхокардиография). В недавнем исследовании с участием 25 пациентов с подозрением на ЛЭ, обследованных с помощью КТ-ангиографии легких (КТАЛ), было показано, что у пациентов с подтвержденной ЛЭ (n = 10) уровни D-димера оказались выше, чем у пациентов без ЛЭ, и его значения превышали 7000 нг/мл [12].

Использование низкомолекулярных гепаринов (НМГ) или нефракционированного гепарина (НФГ) предпочтительнее прямых пероральных антикоагулянтов (ПППА) во избежание их возможного взаимодействия с противовирусными (особенно с ингибиторами протеазы против ВИЧ, такими как ритонавир) и антибактериальными (такими как азитромицин) препаратами [44]. Такое лечение, нарушающее сигнальные пути CYP3A4 и / или гликопротеина P, может увеличить риск кровотечения или уменьшить антитромботический эффект от ПППА. В китайском исследовании, включающем 449 пациентов с тяжелой формой COVID-19, введение НМГ пациентам с высокими уровнями D-димера или пациентам, отвечающих критериям индуцированного сепсисом ДВС-синдрома, достоверно ассоциировалось с улучшением общей выживаемости за 28 дней [45]. Кроме того, клиницистами рекомендуется регулярно оценивать всех пациентов с COVID-19, проходящих лечение гепарином, на предмет синдрома гепарин-индуцированной тромбоцитопении (ГИТ). Хотя риск развития ГИТ пока не определен, потенциально он существует из-за нарушений регуляции иммунного ответа, массивного воспалительного синдрома, вызванного вирусной инфекцией, нетоза и высвобождения тромбоцитарного фактора 4 (PF4).

Таким образом, существует четыре важных аспекта ведения пациентов с COVID-19: 1) ранняя диагностика и оценка рисков развития ДВС-синдрома (биомаркеры: количество тромбоцитов, ПВ, фибриноген, D-димер, антитромбин и белок С); 2) выявление пациентов с высоким риском вне зависимости от того, госпитализирован он или лечится амбулаторно; 3) определение индивидуального режима тромбопрофилактики, в котором прежде всего, рекомендуются НМГ; и 4) применение НМГ может быть дополнено другими антитромботическими препаратами, такими как антитромбин и рекомбинантный тромбомодулин, что может быть полезно при таких сложных состояниях как «иммунотромбоз».

Заключение

COVID-19 имеет выраженные проявления со стороны кроветворной системы и часто приводит к гиперкоагуляции. Отслеживание динамики биомаркеров крови в ходе заболевания помочь клиницистам осуществлять индивидуальный подход к лечению и предсказывать необходимость интенсивной терапии тем, кто в ней больше всего нуждается.

Список литературы

[1] N. Zhu et al., ‘A Novel Coronavirus from Patients with Pneumonia in China, 2019’, N. Engl. J. Med., vol. 382, no. 8, pp. 727–733, Feb. 2020, doi: 10.1056/NEJMoa2001017.

[2] E. Driggin et al., ‘Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic.’, J. Am. Coll. Cardiol., vol. 75, no. 18, pp. 2352–2371, 2020, doi: 10.1016/j.jacc.2020.03.031.

[3] M. N. Bangash, J. Patel, and D. Parekh, ‘COVID-19 and the liver: little cause for concern.’, lancet. Gastroenterol. Hepatol., vol. 5, no. 6, pp. 529–530, 2020, doi: 10.1016/S2468-1253(20)30084-4.

[4] P. Mehta et al., ‘COVID-19: consider cytokine storm syndromes and immunosuppression.’, Lancet (London, England), vol. 395, no. 10229, pp. 1033–1034, 2020, doi: 10.1016/S0140-6736(20)30628-0.

[5] Z. Wu and J. M. McGoogan, ‘Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention.’, JAMA, Feb. 2020, doi: 10.1001/jama.2020.2648.

[6] N. Tang, D. Li, X. Wang, and Z. Sun, ‘Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia’, J. Thromb. Haemost., vol. 18, no. 4, pp. 844–847, Apr. 2020, doi: 10.1111/jth.14768.

[7] M. Madjid, P. Safavi-Naeini, S. D. Solomon, and O. Vardeny, ‘Potential Effects of Coronaviruses on the Cardiovascular System’, JAMA Cardiol., Mar. 2020, doi: 10.1001/jamacardio.2020.1286.

[8] T. Li, H. Lu, and W. Zhang, ‘Clinical observation and management of COVID-19 patients.’, Emerg. Microbes Infect., vol. 9, no. 1, pp. 687–690, Dec. 2020, doi: 10.1080/22221751.2020.1741327.

[9] H. Xu et al., ‘High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa’, Int. J. Oral Sci., vol. 12, no. 1, p. 8, Dec. 2020, doi: 10.1038/s41368-020-0074-x.

[10] S. Aggarwal, S. Gollapudi, L. Yel, A. S. Gupta, and S. Gupta, ‘TNF-alpha-induced apoptosis in neonatal lymphocytes: TNFRp55 expression and downstream pathways of apoptosis.’, Genes Immun., vol. 1, no. 4, pp. 271–9, Apr. 2000, doi: 10.1038/sj.gene.6363674.

[11] Y.-C. Liao, W.-G. Liang, F.-W. Chen, J.-H. Hsu, J.-J. Yang, and M.-S. Chang, ‘IL-19 induces production of IL-6 and TNF-alpha and results in cell apoptosis through TNF-alpha.’, J. Immunol., vol. 169, no. 8, pp. 4288–97, Oct. 2002, doi: 10.4049/jimmunol.169.8.4288.

[12] E. Terpos et al., ‘Hematological findings and complications of COVID ‐19’, Am. J. Hematol., p. ajh.25829, May 2020, doi: 10.1002/ajh.25829.

[13] J. F.-W. Chan et al., ‘Simulation of the clinical and pathological manifestations of Coronavirus Disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility.’, Clin. Infect. Dis., Mar. 2020, doi: 10.1093/cid/ciaa325.

[14] K. Fischer et al., ‘Inhibitory effect of tumor cell-derived lactic acid on human T cells.’, Blood, vol. 109, no. 9, pp. 3812–9, May 2007, doi: 10.1182/blood-2006-07-035972.

[15] B. You et al., ‘The official French guidelines to protect patients with cancer against SARS-CoV-2 infection’, Lancet Oncol., vol. 21, no. 5, pp. 619–621, May 2020, doi: 10.1016/S1470-2045(20)30204-7.

[16] W. Guan et al., ‘Clinical Characteristics of Coronavirus Disease 2019 in China’, N. Engl. J. Med., vol. 382, no. 18, pp. 1708–1720, Apr. 2020, doi: 10.1056/NEJMoa2002032.

[17] C. Wu et al., ‘Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China’, JAMA Intern. Med., Mar. 2020, doi: 10.1001/jamainternmed.2020.0994.

[18] C. Huang et al., ‘Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.’, Lancet (London, England), vol. 395, no. 10223, pp. 497–506, 2020, doi: 10.1016/S0140-6736(20)30183-5.

[19] N. Chen et al., ‘Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study’, Lancet, vol. 395, no. 10223, pp. 507–513, Feb. 2020, doi: 10.1016/S0140-6736(20)30211-7.

[20] D. Wang et al., ‘Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China.’, JAMA, vol. 323, no. 11, p. 1061, Feb. 2020, doi: 10.1001/jama.2020.1585.

[21] B. E. Young et al., ‘Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore’, JAMA, vol. 323, no. 15, p. 1488, Apr. 2020, doi: 10.1001/jama.2020.3204.

[22] B. E. Fan et al., ‘Hematologic parameters in patients with COVID-19 infection.’, Am. J. Hematol., vol. 95, no. 6, pp. E131–E134, 2020, doi: 10.1002/ajh.25774.

[23] W. J. Chng, H. C. Lai, A. Earnest, and P. Kuperan, ‘Haematological parameters in severe acute respiratory syndrome.’, Clin. Lab. Haematol., vol. 27, no. 1, pp. 15–20, Feb. 2005, doi: 10.1111/j.1365-2257.2004.00652.x.

[24] N. Lee et al., ‘A major outbreak of severe acute respiratory syndrome in Hong Kong.’, N. Engl. J. Med., vol. 348, no. 20, pp. 1986–94, May 2003, doi: 10.1056/NEJMoa030685.

[25] H.-Y. Zheng et al., ‘Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients.’, Cell. Mol. Immunol., vol. 17, no. 5, pp. 541–543, 2020, doi: 10.1038/s41423-020-0401-3.

[26] C. Qin et al., ‘Dysregulation of immune response in patients with COVID-19 in Wuhan, China.’, Clin. Infect. Dis., Mar. 2020, doi: 10.1093/cid/ciaa248.

[27] X. Yang et al., ‘Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study.’, Lancet. Respir. Med., vol. 8, no. 5, pp. 475–481, 2020, doi: 10.1016/S2213-2600(20)30079-5.

[28] M. Arentz et al., ‘Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State.’, JAMA, vol. 323, no. 16, Mar. 2020, doi: 10.1001/jama.2020.4326.

[29] P. K. Bhatraju et al., ‘Covid-19 in Critically Ill Patients in the Seattle Region — Case Series’, N. Engl. J. Med., vol. 382, no. 21, pp. 2012–2022, May 2020, doi: 10.1056/NEJMoa2004500.

[30] Y. Deng et al., ‘Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 (COVID-19) in Wuhan, China: a retrospective study.’, Chin. Med. J. (Engl)., Mar. 2020, doi: 10.1097/CM9.0000000000000824.

[31] F. Zhou et al., ‘Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study.’, Lancet (London, England), vol. 395, no. 10229, pp. 1054–1062, Mar. 2020, doi: 10.1016/S0140-6736(20)30566-3.

[32] S. Shi et al., ‘Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China.’, JAMA Cardiol., Mar. 2020, doi: 10.1001/jamacardio.2020.0950.

[33] T. Guo et al., ‘Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19).’, JAMA Cardiol., Mar. 2020, doi: 10.1001/jamacardio.2020.1017.

[34] G. Lippi, M. Plebani, and B. M. Henry, ‘Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis.’, Clin. Chim. Acta., vol. 506, pp. 145–148, Jul. 2020, doi: 10.1016/j.cca.2020.03.022.

[35] R. Qu et al., ‘Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19.’, J. Med. Virol., Mar. 2020, doi: 10.1002/jmv.25767.

[36] G. Lippi and M. Plebani, ‘Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis.’, Clin. Chim. Acta., vol. 505, pp. 190–191, 2020, doi: 10.1016/j.cca.2020.03.004.

[37] D. Snijders, M. Schoorl, M. Schoorl, P. C. Bartels, T. S. van der Werf, and W. G. Boersma, ‘D-dimer levels in assessing severity and clinical outcome in patients with community-acquired pneumonia. A secondary analysis of a randomised clinical trial.’, Eur. J. Intern. Med., vol. 23, no. 5, pp. 436–41, Jul. 2012, doi: 10.1016/j.ejim.2011.10.019.

[38] H. Han et al., ‘Prominent changes in blood coagulation of patients with SARS-CoV-2 infection’, Clin. Chem. Lab. Med., vol. 0, no. 0, Mar. 2020, doi: 10.1515/cclm-2020-0188.

[39] G. Lippi and E. J. Favaloro, ‘D-dimer is Associated with Severity of Coronavirus Disease 2019: A Pooled Analysis.’, Thromb. Haemost., vol. 120, no. 5, pp. 876–878, May 2020, doi: 10.1055/s-0040-1709650.

[40] W. H et al., ‘Guidance for Diagnosis and Treatment of DIC From Harmonization of the Recommendations From Three Guidelines’, J. Thromb. Haemost., 2013, doi: 10.1111/JTH.12155.

[41] K. SR et al., ‘Prevention of VTE in Nonsurgical Patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th Ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines’, Chest, vol. 141, no. 2 Suppl, 2012, doi: 10.1378/CHEST.11-2296.

[42] W. DM et al., ‘American Society of Hematology 2018 Guidelines for Management of Venous Thromboembolism: Optimal Management of Anticoagulation Therapy’, Blood Adv., vol. 2, no. 22, 2018, doi: 10.1182/BLOODADVANCES.2018024893.

[43] S. AC et al., ‘Modified IMPROVE VTE Risk Score and Elevated D-Dimer Identify a High Venous Thromboembolism Risk in Acutely Ill Medical Population for Extended Thromboprophylaxis’, TH open companion J. to Thromb. Haemost., vol. 4, no. 1, 2020, doi: 10.1055/S-0040-1705137.

[44] J. Thachil et al., ‘ISTH interim guidance on recognition and management of coagulopathy in COVID‐19’, J. Thromb. Haemost., vol. 18, no. 5, pp. 1023–1026, May 2020, doi: 10.1111/jth.14810.

[45] N. Tang, H. Bai, X. Chen, J. Gong, D. Li, and Z. Sun, ‘Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy’, J. Thromb. Haemost., vol. 18, no. 5, pp. 1094–1099, May 2020, doi: 10.1111/jth.14817.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *