выход открытый коллектор что это
Электроника для всех
Блог о электронике
Основы на пальцах. Часть 4
Но диоды, резисторы, транзисторы и конденсаторы это так, лишь обвязка. Особо на них не развернешься (нет, маньяки, конечно могут, но габариты устройств там будут феерические). Самое вкусное нас поджидает в микросхемах 🙂
Делятся они на цифровые и аналоговые. Для начала кратко пробегусь по цифровым микросхемам.
Миром правит цифра!
Во избежания путаницы смыслов, в терминологии ключей и транзисторов принято следующее соглашение. Ключ считается открытым или закрытым для протекания тока, как кран на трубе. С точки зрения же механического исполнения он может быть замкнут или разомкнут. Так что открыт = замкнут, закрыт = разомкнут. И не следует путать с англоязычной нотацией, где Open = открыт если речь идет о транзисторе или электронном ключе и Open = разомкнут если речь идет о механическом рубильнике. Там Open-Close следует рассматривать в общем контексте текущего случая. Велик и могуч русский язык! =) |
О микросхемах дискретной логики И, ИЛИ, НЕ я рассказывать не буду, каждую описать, так это справочник не на одну сотню страниц будет. Да и постепенно они уходят в прошлое, вытесняемые контроллерами и программируемыми матрицами. Скажу лишь главное – работают они по жесткой таблице истинности, которую можно найти в соответствующем datasheet.
Испльзование операционных усилителей |
Если от операционного усилителя надо получить усиление, то нужно как то обуздать его бешеный коэффициент. Для этого ему добавляют отрицательную обратную связь. Т.е. берут и с выхода подают сигнал на отрицательный вход, подмешивая его к основному входному сигналу. В итоге, выходной сигнал вычитается из входного. А коэффициент усиления становится равным отношению резисторов на входе и выходе (смотри схему).
Но это далеко не все фишки которые умеет делать операционный усилитель. Если в обратную связь сунуть конденсатор, то получим интегратор, выдающий на выходе интеграл от функции входного сигнала. А если скомбинировать конденсатор с резистором, да индуктивность на вход… В общем, тут можно книгу писать, а занимается этими занятными процессами отдельная наука – автоматическое управление. Кстати, именно на операционных усилителях сделаны аналоговые компьютеры, считающие дифференциальные уравнения с такой скоростью, что все цифровые компы нервно курят в уголке.
Спасибо. Вы потрясающие! Всего за месяц мы собрали нужную сумму в 500000 на хоккейную коробку для детского дома Аистенок. Из которых 125000+ было от вас, читателей EasyElectronics. Были даже переводы на 25000+ и просто поток платежей на 251 рубль. Это невероятно круто. Сейчас идет заключение договора и подготовка к строительству!
А я встрял на три года, как минимум, ежемесячной пахоты над статьями :)))))))))))) Спасибо вам за такой мощный пинок.
Инсталляция, монтаж » Выход «сухие» контакты и выход открытый коллектор
2 года 4 месяца назад
– Докукин Игорь 2 года 4 месяца назад
– Иванов Андрей Львович 2 года 4 месяца назад
2 ответа
2 года 4 месяца назад
– Докукин Игорь 2 года 4 месяца назад
– Иванов Андрей Львович 2 года 4 месяца назад
– Докукин Игорь 2 года 4 месяца назад
– Леготин В В 2 года 4 месяца назад
– Докукин Игорь 2 года 4 месяца назад
– Андрей, Ростов на Дону 2 года 4 месяца назад
2 года 4 месяца назад
– Докукин Игорь 2 года 4 месяца назад
– Волков Андрей 2 года 4 месяца назад
– Андрей, Ростов на Дону 2 года 4 месяца назад
– Иванов Андрей Львович 2 года 4 месяца назад
Добавить ответ
После подтверждения номера мобильного телефона у вас появится возможность добавлять сообщения на форуме.
Мы надеемся, что данная «форма допуска» сведет к минимуму флуд, флейм и троллинг на форуме, а также повысит ответственность пользователей за их сообщения.
Ваш номер телефона будет доступен только администраторам сайта.
Спасибо за понимание.
ПОКАЗАН
ЗАДАН
2 года 4 месяца назад
ПРОДУКТЫ
По каждому вопросу/ответу можно добавлять комментарии. Комментарии предназначены для уточнения вопроса/ответа.
СОДЕРЖАНИЕ
Функция
На условных обозначениях компонентов схемы открытый выход обозначается этими символами:
Применение устройств с открытым коллектором
Связывая выход нескольких открытых коллекторов вместе, общая линия становится логическим элементом «соединенное И» (положительная-истинная логика) или «проводное ИЛИ» (отрицательная-истинная логика). «Проводное И» ведет себя как логическое И двух (или более) вентилей в том смысле, что это будет логическая 1, когда (все) находятся в состоянии высокого импеданса, и 0 в противном случае. «Проводное ИЛИ» ведет себя как логическое ИЛИ для логики «отрицательная-истина», где на выходе низкий уровень, если на каком-либо из его входов низкий уровень.
Одной из проблем устройств с открытым коллектором является энергопотребление, поскольку подтягивающий резистор рассеивает мощность всякий раз, когда выходной сигнал понижается, и чем выше желаемая рабочая скорость, тем меньшее значение резистора (т. Е. Более сильное подтягивание) должно быть, в результате повышенный расход. Даже в выключенном состоянии они часто имеют ток утечки в несколько наноампер (точное значение зависит от температуры).
МОП-транзистор
Аналогичное соединение, используемое с МОП-транзисторами, представляет собой соединение с открытым стоком. Выходы с открытым стоком могут быть полезны для аналогового взвешивания, суммирования и ограничения, а также для цифровой логики. Клемма открытого стока соединяется с землей, когда на затвор подается высокое напряжение (логическая 1), но имеет высокий импеданс, когда на затвор подается низкое напряжение (логический 0). Это состояние с высоким импедансом возникает из-за того, что клемма находится под неопределенным напряжением (плавающее), поэтому для такого устройства требуется внешний подтягивающий резистор, подключенный к шине положительного напряжения (логическая 1), чтобы обеспечить логическую 1 в качестве выхода.
Микроэлектронные устройства, использующие сигналы с открытым стоком (например, микроконтроллеры), могут обеспечивать слабый (высокоомный) внутренний подтягивающий резистор для подключения рассматриваемого терминала к положительному источнику питания устройства. Такие слабые подтяжки, часто порядка 100 кОм, снижают потребление энергии, удерживая входные сигналы от плавающих сигналов, и могут избежать необходимости во внешнем подтягивающем компоненте. Внешние подтяжки более сильные (меньшее сопротивление, возможно, 3 кОм), чтобы уменьшить время нарастания сигнала (как с I²C ) или минимизировать шум (как на входах системного сброса ). Внутренние подтягивания обычно можно отключить, если они не нужны.
Псевдо открытый сток (POD)
JEDEC стандартизировал POD15, POD125, POD135 и POD12 для напряжений питания интерфейса 1,5 В, 1,35 В и 1,2 В. Сравнение схем завершения DDR3 и DDR4 с точки зрения перекоса, апертуры глаза и энергопотребления было опубликовано в конце 2011 года.
Открытый сток, высокие диски
Обычно эти выходы подключают контакт к земле для представления низкого уровня и разъединяют для представления высокого уровня, но они также могут подключать контакт к напряжению питания для представления высокого уровня и разъединять для представления низкого уровня. Это по-прежнему «открытый коллектор» или «открытый сток», поскольку приводное устройство имеет противоположную полярность (PNP или P-канал). Контакты GPIO обычно можно настроить на любую полярность.
Выход с открытым коллектором
В зависимости от состояния переключения, OC либо имеет высокое сопротивление, либо заземлен с низким сопротивлением.
оглавление
Объяснение
Соединения с открытым коллектором также могут иметь свойства, которых нет у остальных транзисторов в ИС. Классическим примером являются драйверные транзисторы для цифровых дисплеев, у которых z. B. может питаться напряжением до 30 В, хотя микросхемы, входящие в серию цифровых стандартных микросхем 74, одобрены только для напряжения V + = 5 В. «Разрядное» соединение знаменитой микросхемы таймера NE555 представляет собой соединение с открытым коллектором с достаточно высокой допустимой нагрузкой по току.
Цифровые ИС и использование OC
Здесь лучше использовать вентили с открытым коллекторным выходом. У них есть биполярный транзистор на выходе, в котором эмиттер соединен с землей (англ. Ground), а выход коллектора не переключается на выход. Такие выходы теперь можно легко переключать параллельно и подключать к V + через общий коллекторный резистор.
При положительной логике выходное напряжение U a находится в ВЫСОКОМ состоянии только в том случае, если все подключенные выходы затвора также имеют высокий уровень, т.е. все выходные каскады заблокированы. С другой стороны, вы можете видеть, что выходное напряжение переходит в НИЗКОЕ состояние, если только один выход находится в НИЗКОМ состоянии. Это приводит к соединению выходов И для положительной логики.
С этой технологией схемы с открытым коллектором также может быть реализовано соединение ИЛИ путем соединения инвертированных выходов вентилей с их открытыми коллекторами, а затем их инвертирования. По словам де Моргана:
Соответствующая схема показывает:
Вы можете видеть, что связь И для инвертированных выходов логического элемента с последующим отрицанием обеспечивает связь ИЛИ. Структуры WIRED-AND и WIRED-OR используются, например, Б. используется при реализации «программируемых логических массивов» (ПЛА).
Символы в соответствии со стандартом IEC
Алмазы описывают выход высокого сопротивления и соединительную линию низкого сопротивления от уровня к выходу. Их расположение сверху и снизу показывает, какое состояние на каком уровне. Если ромб теперь находится над горизонтальной линией, уровень H имеет высокое сопротивление (напряжение не подается) или уровень L (земля) напрямую подключен к выходу.
Открытый коллектор
Выход с открытым коллектором
Элементы с открытым коллектором имеют выходную цепь, заканчивающуюся одиночным транзистором, коллектор которого не соединен с какими-либо цепями внутри микросхемы (Рис. 2.18,а). Транзистор управляется от предыдущей части схемы элемента так, что может находиться в насыщенном или запертом состоянии. Насыщенное состояние транзистора трактуется как отображение логического нуля, запертое, как логической единицы.
Поэтому для формирования высокого уровня напряжения на выходе элементов с открытым коллектором (типа ОК) требуется подключение внешних резисторов величиной порядка сотен (или другие нагрузки), соединенные с источником питания.
Выход с открытым коллектором ОК можно считать состоящим из одного выключателя, замкнутому состоянию которого соответствует сигнал логического нуля, а разомкнутому — отключенное, пассивное состояние (Рис.2.18.б.).
Несколько выходов типа ОК можно соединять параллельно, подключая их к общей для всех выходов цепочке Ucc – R (Рис.2.18.в). При этом можно получит режим поочередной работы на общую линию, как и для элементов с тремя состояниями, если активным будет лишь один элемент, а выводы всех остальных окажутся запертыми. Если же разрешить активную работу элементов, выходы которых соединены, то можно получить дополнительную логическую операцию, называемую операцией монтажной логики.
При реализации монтажной логики высокое напряжение на общем выходе возникает только при запирании всех транзисторов, т.к. насыщение хоты бы одного из них снижает выходное напряжение до уровня U0 = Uкэн. То есть для получения логической единицы на выходе требуется единичное состояние всех выходов: выполняется монтажная операция И. Поскольку каждый элемент выполняет операцию Шеффера над своими входными переменными, общий результат окажется следующим:
F = X1X2 X3X4 … Xm-1 Xm = X1X2+X3X4+ …+Xm-1 Xm
а) | б) | в) |
Рис.2.18. Выход с открытым коллектором |
При использовании элементов с ОК в магистрально-модульных структурах требуется разрешать или запрещать работу того или иного элемента. Для элементов типа ОК кВ качестве входа ОЕ может быть использован один из обычных входов элемента. Если речь идет об элемента И-НЕ, то, подавая ) на любой из входов, можно запретить работу элемента, поставив его выход в разомкнутое состояние независимо от состояния других входов. Уровень 1 на этом входе разрешит работу элемента.
Положительной чертой элементов с ОК при работе в магистально-модульных системах является их защищенность от повреждений из-за ошибок управления, приводящих к одновременной выдаче на шину нескольких слов, а также возможность реализации дополнительных операций монтажной логики.
Недостатком таких элементов является большая задержка переключения из 0 в 1. При этом переключении происходит заряд выходной емкости сравнительно малым током резистора R. Сопротивление резистора нельзя сделать слишком малым, т.к. это привлекло бы к большим токам выходной цепи в статике при насыщенном состоянии выходного транзистора. Поэтому положительный фронт выходного напряжения формируется относительно медленно с постоянной времени RC.
До порогового напряжения (до середины полного перепада напряжения) экспоненциально изменяющийся сигал изменится за время 0,7RC, что и составляет задержку tз01.
При работе с элементами типа ОК проектировщик должен задать сопротивление резистора R, которое не является стандартным, а определяется для конкретных условий. Анализ статических режимов задает ограничения величины сопротивления R снизу и сверху. Значение сопротивления резистора R выбирается в этом диапазоне с учетом быстродействия схемы и потребляемой ею мощности.
Ограничение снизу величины сопротивления резистора R связано с тем, что ее уменьшение может вызвать перегрузку насыщенного транзистора по току. На Рис.2.19.а показан режим, в котором нулевое состояние выхода схемы обеспечивается элементом 1 с ОК. Из этого рисунка видно, что через элемент 1 протекает суммарный ток, складывающийся из токов резистора, входных токов логических элементов (ЛЭ1…ЛЭn) и токов заперых транзисторов элементов с ОК 2 …m, т.е.
Iвых.0 = IR + nIвх.0+ (m-1)IZ≈ IR + nIвх.0, где
· Iвх.0 – входные токи элементов приемников сигнала при низком уровне выходных напряжений;
· IZ — токи запертых выходов ОК (обычно пренебрежимо малые);
Чтобы ток выхода элемента 1 не превысил допустимого значения следует соблюдать условие
R >= (Ucc – U0)/(IВых.0.max — nIВх.0.max).
Ограничение сверху величины сопротивления резистора R связано с необходимостью гарантировать достаточно низкий уровень напряжения U1 формируемого в схеме при запертом состоянии всех выходов элементов с ОК.
Из схемы Рис.2.19.б видно, что U1 = Ucc – IRR.
В то же время IR = mIZ + nIВх.1.max.
Из полученных выражений следует R Читайте также: Нормы и требования к освещенности рабочих мест и производственных помещений
Первый полевой МДП-транзистор, запатентованный ещё в 1920-е годы и ныне составляющий основу компьютерной индустрии, впервые был создан в 1960 году после работ американцев Канга и Аталлы, предложивших в качестве слоя затворного диэлектрика формировать на поверхности кремниевого кристалла с помощью окисления поверхности кремния тончайший слой диоксида кремния, изолирующий металлический затвор от проводящего канала, такая структура получила название МОП-структура (Металл-Окисел-Полупроводник).
В 90-х годах XX века МОП-технология стала доминировать над биполярной[10].
Биполярный транзистор
Бардин, Шокли и Браттейн в лаборатории Bell, 1948 год Копия первого в мире работающего транзистора
В отличие от полевого, первый биполярный транзистор создавался экспериментально, а его физический принцип действия был объяснён уже позднее.
В 1929—1933 гг., в ЛФТИ, Олег Лосев под руководством А. Ф. Иоффе провёл ряд экспериментов с полупроводниковым устройством, конструктивно повторяющим точечный транзистор на кристалле карборунда (SiC), однако достаточного коэффициента усиления получить тогда не удалось. Изучая явления электролюминесценции в полупроводниках, Лосев исследовал около 90 различных материалов, особенно выделяя кремний, и в 1939 году он вновь упоминает о работах над трёхэлектродными системами в своих записях, но начавшаяся война и гибель инженера в блокадном Ленинграде зимой 1942 года привели к тому, что некоторые его работы оказались утеряны и сейчас неизвестно, насколько далеко он продвинулся в создании транзистора. В начале 1930-х годов точечные трёхэлектродные усилители изготовили также радиолюбители Ларри Кайзер из Канады и Роберт Адамс из Новой Зеландии, однако их работы не были запатентованы и не подвергались научному анализу[5].
Успеха добилось опытно-конструкторское подразделение Bell Telephone Laboratories фирмы American Telephone and Telegraph, с 1936 года в нём, под руководством Джозефа Бекера, работала группа ученых специально нацеленная на создание твердотельных усилителей. До 1941 года изготовить полупроводниковый усилительный прибор не удалось (предпринимались попытки создания прототипа полевого транзистора). После войны, в 1945 году, исследования возобновились под руководством физика-теоретика Уильяма Шокли. После ещё 2 лет неудач, 16 декабря 1947 года, исследователь Уолтер Браттейн, пытаясь преодолеть поверхностный эффект в германиевом кристалле и экспериментируя с двумя игольчатыми электродами, перепутал полярность приложенного напряжения и неожиданно получил устойчивое усиление сигнала. Последующее изучение открытия им совместно с теоретиком Джоном Бардиным показало, что никакого эффекта поля нет, в кристалле идут ещё не изученные процессы. Это был не полевой, а неизвестный прежде биполярный транзистор. 23 декабря 1947 года состоялась презентация действующего макета изделия руководству фирмы, эта дата стала считаться датой рождения транзистора. Узнав об успехе, уже отошедший от дел Уильям Шокли вновь подключается к исследованиям и за короткое время создает теорию биполярного транзистора, в которой уже наметил замену точечной технологии изготовления более перспективной, плоскостной.
Первоначально новый прибор назывался «германиевый триод» или «полупроводниковый триод», по аналогии с вакуумным триодом — электронной лампой схожей структуры. В мае 1948 года в лаборатории прошел конкурс на оригинальное название изобретения, в котором победил Джон Пирс, предложивший слово «transistor», образованное путём соединения терминов «transconductance» (активная межэлектродная проводимость) и «variable resistor» или «varistor» (переменное сопротивление, варистор) или, по другим версиям, от слов «transfer» — передача и «resist» — сопротивление.
30 июня 1948 г. в штаб-квартире фирмы в Нью-Йорке состоялась официальная презентация нового прибора, на транзисторах был собран радиоприемник. И все же, мировой сенсации не состоялось, первоначально открытие не оценили по достоинству, ибо первые точечные транзисторы, в сравнении с электронными лампами, имели очень плохие и неустойчивые характеристики.
В 1956 году Уильям Шокли, Уолтер Браттейн и Джон Бардин были награждены Нобелевской премией по физике «за исследования полупроводников и открытие транзисторного эффекта»[11]. Интересно, что Джон Бардин вскоре был удостоен Нобелевской премии вторично за создание теории сверхпроводимости.
Создание биполярного транзистора в Европе
Параллельно с работами американских ученых в Европе биполярный транзистор был создан физиком-экспериментатором Гербертом Матаре[en] и теоретиком (Генрихом Велькером[en]). В 1944 году Герберт Матаре, работая в фирме Телефункен, разработал полупроводниковый «дуодиод» (двойной диод), который конструктивно был похож на будущий точечный биполярный транзистор. Прибор использовался в качестве смесителя в радиолокационной технике, как два близких по параметрам выпрямительных точечных диода, выполненных на одном кристалле германия. Тогда же Матаре впервые обнаружил влияние тока одного диода на параметры другого и начал исследования в этом направлении. После войны Герберт Матаре встретился в Париже с Иоганном Велкером, где оба физика, работая в филиале американской корпорации Westinghouse Electric, продолжили эксперименты над дуодиодом в инициативном порядке. В начале июня 1948 года, ещё не зная о результатах исследований группы Шокли в Bell Labs, они на основе дуодиода создали стабильно работающий биполярный транзистор, который был назван «транзитрон». Однако патентная заявка на изобретение, отправленная в августе 1948 года, рассматривалась французским бюро патентов очень долго, и только в 1952 году был получен патент на изобретение. Серийно выпускаемые фирмой Westinghouse транзитроны, несмотря на то, что по качеству они успешно конкурировали с транзисторами, также не смогли завоевать рынок и вскоре работы в этом направлении прекратились[5].
Развитие транзисторных технологий
Несмотря на миниатюрность и экономичность, первые транзисторы отличались высоким уровнем шумов, маленькой мощностью, нестабильностью характеристик во времени и сильной зависимостью параметров от температуры. Точечный транзистор, не являясь монолитной конструкцией, был чувствителен к ударам и вибрациям. Фирма-создатель Bell Telephone Laboratories
не оценила перспективы нового прибора, выгодных военных заказов не ожидалось, поэтому лицензия на изобретение вскоре начала продаваться всем желающим за 25 тыс. долларов. В 1951 году был создан плоскостной транзистор, конструктивно представляющий собой монолитный кристалл полупроводника, и примерно в это же время появились первые транзисторы на основе кремния. Характеристики транзисторов быстро улучшались, и вскоре они стали активно конкурировать с электронными радиолампами.
За 30 лет развития, транзисторы почти полностью вытеснили электронные лампы и стали основой полупроводниковых интегральных схем, благодаря этому, электронная техника стала значительно более экономичной, функциональной и миниатюрной. Транзисторы и интегральные схемы на их основе вызвали бурное развитие компьютерной техники. В начале 21-го века транзистор стал одним из самых массовых изделий, производимых человечеством. В 2013 году на каждого жителя Земли было выпущено около 15 миллиардов транзисторов (большинство из них — в составе интегральных схем)[12].
С появлением интегральных микросхем началась борьба за уменьшение размера элементарного транзистора. В 2012 году самые маленькие транзисторы содержали считанные атомы вещества[13]. Транзисторы стали основной частью компьютеров и других цифровых устройств. В некоторых конструкциях процессоров их количество превышало миллиард штук.