выбросы nox что это
Что такое NOx.
Основными вредными веществами, загрязняющими атмосферу в результате сгорания топлива являются:
— летучие углеводороды (Cx Hy);
— окись углерода (СО);
— оксиды серы (SOx);
— оксиды азота (NOx).
В целом, объем и состав загрязняющих веществ существенно зависит от типа используемого топлива, качества его сгорания, конструктивных особенностей котла и горелки.
Оксиды азота являются единственными загрязняющими веществами, которые не могут быть устранены путем смены типа топлива, поскольку чаще всего они образуются при соединении азота с кислородом в выбрасываемых в атмосферу дымовых газах. Механизм их соединения может быть различным.
Под термином «оксид азота» формула NOx объединяетв себе три вещества:
NO (одноокись азота);
NO2 (двуокись азота);
N2O (закись азота).
Выражаясь точнее, именно NOx являются теми веществами, которые преобладают внутри котла (95 % и более), в то время как большое количество NO2 образуется только при контакте с низкими температурами, т.е. при выбросе отходящих газов в атмосферу.
В соответствии со своим происхождением можноопределить три различных механизма образования NОx.
NOx теплового происхождения
Данные вещества образуются из азота, присутствующего в воздухе, который используется для сгорания топлива при температуре 1300°С.
Их концентрация прямо пропорциональна температуре пламени, длительности пребывания дымовых газов в зоне высокой температуры, а также зависит от парциального давления кислорода в данной зоне.
Готовые NOx
Образуются при соединении присутствующего в воздухе молекулярного азота с фрагментами углеводорода, образующихся при разложении топлива на первых стадиях сгорания. Данный процесс особенно способствует образованию NO.
Количество выбрасываемого загрязняющего вещества прямо пропорционально концентрации кислорода (т.е. его избытка) и не зависит от температуры.
NOx, образующиеся из топлива
Данные вещества образуются при реакции органических азотных соединений, содержащихся в топливе с кислородом при температуре сгорания,превышающей 1000 °С. Образование оксидов азота происходит при сгорании жидкого топлива и угля, однако при сгорании метана отсутствует, поскольку последний не содержит азота.
. И КАК ЕГО УМЕНЬШИТЬ
Образование загрязняющих атмосферу веществ (NOx) при сгорании топлива зависит, прежде всего, от времени их пребывания в зоне высоких температур, а также от стехиометрии, т.е. избытка кислорода.
Образовавшиеся оксиды азота попадают в атмосферу и соединяются с ней достаточно сложным химическим путем (вступая в реакцию с водяным паром, а также фотохимическими способом).
Механизм данной реакции еще до конца не изучен.
Количество coeдинeния N2O стабильно и остается в атмосфере на долгие годы. Данное вещество вместе с углекислым газом CO2 и другими вредными выбрocaми способствует образованию парникового эффекта.
Посредством реакции с озоном O3, одно окись азота NO быстро преобразуется в двуокись NO2 и кислородO2. Позднее, двуокись азота NO2 удаляется из атмосферы. При окислении она преобразовывается в азотистую кислоту HNO2, и далее в азотную кислоту HNO3, которая способствует образованию кислотных дождей. Необходимо помнить, что NO2 является естественной и постоянной составной частью атмосферы (хотя и очень незначительной). В основном она образуется при окислении аммиака во время микробиологических реакций в органическихвеществах, присутствующих в земле и в воде.
Как снизить загрязнение атмосферы припомощи TRIOPREX N
Процесс формирования веществ NOx сильнозависит от:
-температуры пламени;
-длительности нахождения продуктов сгорания взоне высоких температур;
-парциального давления кислорода и его концентрации.
Для уменьшения образования веществ NOx необходимо:
— понизить температуру пламени;
— уменьшить теплонапряженность (кВт/м3), т.е. установить рабочий режим котла ниже номинального;
— сократить время пребывания продуктов сгорания в топке;
— снизить концентрацию кислорода.
Для решения задачи по снижению выброса NOx в атмосферу при создании котла TRIOPREX N были использованы следующие инженерные решения:
— отсутствие инверсии при движении дымовыхгазов;
— факел горелки имеет более сжатую и короткую форму для уменьшения длительности пребывания продуктов сгорания в зоне высоких температур;
— отсутствие инверсии пламени способствует быстрому снижению его температуры состороны стенок топки, которая охлаждается благодаря пoлнoму oмывaнию вoдoй;
— снижение теплонапряженности: объем топки данной серии котлов увеличен по сравнению с топками обычных трехходовых котлов эквивалентной мощности.
С внедрением современных горелок снизким уровнем NOx появилась возможность дополнительно снизить количество вредных веществ при помощи:
— рециркуляции (дожигания) дымовых газов, при которой часть дымовых газов и воздуха,используемого для сжигания топлива, отбирается и, вновь направляяcь в топку дoжигaeтcя. Таким образом, понижается парциальное давление кислорода и температуры пламени;
— уменьшения парциального давления кислорода путем уменьшения избытка воздуха.
Дополнительного контроля над выбросами NOx можно достичь путем снижения мощности горелки в пределах, предусмотренных ее техническими характеристиками.
Что такое NOx.
Основными вредными веществами, загрязняющими атмосферу в результате сгорания топлива являются:
— летучие углеводороды (Cx Hy);
— окись углерода (СО);
— оксиды серы (SOx);
— оксиды азота (NOx).
В целом, объем и состав загрязняющих веществ существенно зависит от типа используемого топлива, качества его сгорания, конструктивных особенностей котла и горелки.
Оксиды азота являются единственными загрязняющими веществами, которые не могут быть устранены путем смены типа топлива, поскольку чаще всего они образуются при соединении азота с кислородом в выбрасываемых в атмосферу дымовых газах. Механизм их соединения может быть различным.
Под термином «оксид азота» формула NOx объединяетв себе три вещества:
NO (одноокись азота);
NO2 (двуокись азота);
N2O (закись азота).
Выражаясь точнее, именно NOx являются теми веществами, которые преобладают внутри котла (95 % и более), в то время как большое количество NO2 образуется только при контакте с низкими температурами, т.е. при выбросе отходящих газов в атмосферу.
В соответствии со своим происхождением можноопределить три различных механизма образования NОx.
NOx теплового происхождения
Данные вещества образуются из азота, присутствующего в воздухе, который используется для сгорания топлива при температуре 1300°С.
Их концентрация прямо пропорциональна температуре пламени, длительности пребывания дымовых газов в зоне высокой температуры, а также зависит от парциального давления кислорода в данной зоне.
Готовые NOx
Образуются при соединении присутствующего в воздухе молекулярного азота с фрагментами углеводорода, образующихся при разложении топлива на первых стадиях сгорания. Данный процесс особенно способствует образованию NO.
Количество выбрасываемого загрязняющего вещества прямо пропорционально концентрации кислорода (т.е. его избытка) и не зависит от температуры.
NOx, образующиеся из топлива
Данные вещества образуются при реакции органических азотных соединений, содержащихся в топливе с кислородом при температуре сгорания,превышающей 1000 °С. Образование оксидов азота происходит при сгорании жидкого топлива и угля, однако при сгорании метана отсутствует, поскольку последний не содержит азота.
. И КАК ЕГО УМЕНЬШИТЬ
Образование загрязняющих атмосферу веществ (NOx) при сгорании топлива зависит, прежде всего, от времени их пребывания в зоне высоких температур, а также от стехиометрии, т.е. избытка кислорода.
Образовавшиеся оксиды азота попадают в атмосферу и соединяются с ней достаточно сложным химическим путем (вступая в реакцию с водяным паром, а также фотохимическими способом).
Механизм данной реакции еще до конца не изучен.
Количество coeдинeния N2O стабильно и остается в атмосфере на долгие годы. Данное вещество вместе с углекислым газом CO2 и другими вредными выбрocaми способствует образованию парникового эффекта.
Посредством реакции с озоном O3, одно окись азота NO быстро преобразуется в двуокись NO2 и кислородO2. Позднее, двуокись азота NO2 удаляется из атмосферы. При окислении она преобразовывается в азотистую кислоту HNO2, и далее в азотную кислоту HNO3, которая способствует образованию кислотных дождей. Необходимо помнить, что NO2 является естественной и постоянной составной частью атмосферы (хотя и очень незначительной). В основном она образуется при окислении аммиака во время микробиологических реакций в органическихвеществах, присутствующих в земле и в воде.
Как снизить загрязнение атмосферы припомощи TRIOPREX N
Процесс формирования веществ NOx сильнозависит от:
-температуры пламени;
-длительности нахождения продуктов сгорания взоне высоких температур;
-парциального давления кислорода и его концентрации.
Для уменьшения образования веществ NOx необходимо:
— понизить температуру пламени;
— уменьшить теплонапряженность (кВт/м3), т.е. установить рабочий режим котла ниже номинального;
— сократить время пребывания продуктов сгорания в топке;
— снизить концентрацию кислорода.
Для решения задачи по снижению выброса NOx в атмосферу при создании котла TRIOPREX N были использованы следующие инженерные решения:
— отсутствие инверсии при движении дымовыхгазов;
— факел горелки имеет более сжатую и короткую форму для уменьшения длительности пребывания продуктов сгорания в зоне высоких температур;
— отсутствие инверсии пламени способствует быстрому снижению его температуры состороны стенок топки, которая охлаждается благодаря пoлнoму oмывaнию вoдoй;
— снижение теплонапряженности: объем топки данной серии котлов увеличен по сравнению с топками обычных трехходовых котлов эквивалентной мощности.
С внедрением современных горелок снизким уровнем NOx появилась возможность дополнительно снизить количество вредных веществ при помощи:
— рециркуляции (дожигания) дымовых газов, при которой часть дымовых газов и воздуха,используемого для сжигания топлива, отбирается и, вновь направляяcь в топку дoжигaeтcя. Таким образом, понижается парциальное давление кислорода и температуры пламени;
— уменьшения парциального давления кислорода путем уменьшения избытка воздуха.
Дополнительного контроля над выбросами NOx можно достичь путем снижения мощности горелки в пределах, предусмотренных ее техническими характеристиками.
Механизм образования и негативное влияние выбросов, содержащих оксиды азота
Дата публикации: 09.01.2017 2017-01-09
Статья просмотрена: 9791 раз
Библиографическое описание:
Демьянцева, Е. А. Механизм образования и негативное влияние выбросов, содержащих оксиды азота / Е. А. Демьянцева, Е. А. Шваб, Е. О. Реховская. — Текст : непосредственный // Молодой ученый. — 2017. — № 2 (136). — С. 231-234. — URL: https://moluch.ru/archive/136/38002/ (дата обращения: 25.12.2021).
В процессе человеческой деятельности происходит загрязнение атмосферы выбросами различными газами, аэрозолями и твёрдыми частицами. Кроме того, человечество интенсивно «засоряет» атмосферу электромагнитным и радиационным излучением, тепловыми выбросами и так далее. Такого рода воздействия принято называть антропогенным загрязнением воздуха. Именно на долю антропогенного загрязнения атмосферного воздуха приходится основная доля вредных выбросов. Кроме того, они более опасны, чем загрязнения природного происхождения. По агрегатному состоянию различаю следующие виды антропогенных загрязнений атмосферы: твёрдые частицы, жидкости (аэрозоли) и газы. На долю газов приходится более 90 % всех выбросов.
Степень загрязнения атмосферы зависит от количества выбросов вредных веществ и их химического состава, от высоты, на которой осуществляются выбросы, и от климатических условий, определяющих перенос, рассеивание и превращение выбрасываемых веществ. Сегодня, наиболее крупным источником выбросов в атмосферу газовых выбросов — оксидов серы (SO2, SO3), азота NOx, а также оксидов углерода (CO, CO2) — является энергетика. На долю ТЭЦ и ДЭС приходится около 60 % дымовых газовых выбросов (и в том числе NOx) от общего поступления оксидов азота в атмосферу.
При сжигании серосодержащего топлива образуется два оксида серы: сернистый ангидрид (SO2) и серный ангидрид (SO3). Оксиды серы, а также образующиеся при соединении в атмосфере с водяным паром кислоты (Н2SO3 и H2SO4) оказывают вредное воздействие на здоровье людей, являются причиной гибели хвойных лесов, плодовых деревьев, снижения урожайности сельскохозяйственных культур, закисления водоемов. Кроме того, оксиды серы являются причиной коррозии стальных конструкций и разрушения различных строительных материалов.
При сжигании всех видов органического топлива в котлах ТЭС образуются оксиды азота NOx (NO + NO2). Источниками оксидов азота являются азот воздуха и азотсодержащие компоненты органической массы топлива. Из азота воздуха образуются термическиеNOx (механизм Зельдовича) и быстрые NOx (механизм Фенимора). Из связанного с органической массой азота топлива (угля, мазута) образуются топливные NOx. Скорость образования термического NOx зависит от содержания кислорода в степени 0,5 и от температуры — по экспоненте.
Учитывая высокую энергию активации реакции образования термического NOx, считается, что образование термических оксидов азота является существенным лишь в некотором температурном интервале — так называемой температурной ступеньке ΔТ. Для углеводородных топлив ΔТ = 50–70 °С, поэтому часто встречающееся утверждение о том, что количество образующихся NOх зависит от трех факторов (избытка воздуха, температуры и времени пребывания) является не совсем точным: время пребывания не следует рассматривать как самостоятельный фактор. Важно отметить, что образуются термические NOx при максимальной температуре, т. е. в той зоне факела, где уже сгорела основная масса топлива.
Быстрые оксиды азота образуются во фронте пламени и зависят главным образом от стехиометрического соотношения вместе их образования. Следовательно, существенное количество быстрых NOx образуется только при сжигании газа с коэффициентом избытка воздуха в зоне горения несколько меньше единицы. Топливные оксиды азота не образуются при сжигании природного газа (так как он, за редким исключением, не содержит связанного азота). А при сжигании мазута и особенно всех видов твердого топлива (торфа, сланцев, бурых и каменных углей) доля топливных NOx весьма велика, а в некоторых случаях составляет 100 % общего выброса NOx [1].
Сжигание большого количества органического топлива (даже с учетом того, что 2/3 этого топлива приходится на природный газ) приводит к загрязнению атмосферы токсичными веществами, в первую очередь оксидами азота. В результате происходит как региональное (кислотные дожди), так и локальное (повышение концентрации NO2 в воздухе) воздействие на окружающую среду.
Доказано, что повышенные концентрации оксидов азота в приземном слое воздуха оказывают вредное воздействие на здоровье человека, на растительный и животный мир.
Патологические эффекты проявляются в том, что NO2 делает человека более восприимчивым к патогенам, вызывающим болезни дыхательных путей. У людей, подвергшихся воздействию высоких концентраций диоксида азота, чаще наблюдаются катар верхних дыхательных путей, бронхиты, круп и воспаление легких. Кроме того, диоксид азота сам по себе может стать причиной заболеваний дыхательных путей.
Попадая в организм человека, NO2 при контакте с влагой образует азотистую и азотную кислоты, которые разъедают стенки альвеол легких. При этом стенки альвеол и кровеносных капилляров становятся настолько проницаемыми, что пропускают сыворотку крови в полость легких. В этой жидкости растворяется вдыхаемый воздух, образуя пену, препятствующую дальнейшему газообмену. Возникает отек легких, который зачастую ведет к летальному исходу. Длительное воздействие оксидов азота вызывает расширение клеток в корешках бронхов (тонких разветвлениях воздушных путей альвеол), ухудшение сопротивляемости легких к бактериям, а также расширение альвеол. Некоторые исследователи считают, что в районах с высоким содержанием в атмосфере диоксида азота наблюдается повышенная смертность от сердечных и раковых заболеваний.
Люди, страдающие хроническими заболеваниями дыхательных путей (эмфиземой легких, астмой) и сердечнососудистыми болезнями, могут быть более чувствительны к прямым воздействиям NO2. У них легче развиваются осложнения (например, воспаление легких) при кратковременных респираторных инфекциях. Полагают, что около 10–15 % населения США страдает хроническими респираторными заболеваниями. Исходя из этого, в США установлен стандарт на содержание NO2 на уровне, предохраняющем население от респираторных инфекций.
Оксиды азота NOx могут воздействовать на растения тремя путями:
– прямым контактом с растениями;
– через образующиеся в воздухе кислотные осадки;
– косвенно — путем фотохимического образования таких окислителей, как озон и ПАН.
Прямое воздействие NOx на растения определяется визуально по пожелтению или побурению листьев и игл, происходящему в результате окисления хлорофилла. Окисление жирных кислот в растениях, происходящее одновременно с окислением хлорофилла, кроме того, приводит к разрушению мембран и некрозу. Образующаяся при этом в клетках азотистая кислота оказывает мутагенное действие. Отрицательное биологическое воздействие NOx на растения проявляется в обесцвечивании листьев, увядании цветков, прекращении плодоношения и роста. Такое действие объясняется образованием кислот при растворении оксидов азота в межклеточной и внутриклеточной жидкостях.
Ботаники считают, что первоначальные симптомы повреждения растений оксидами азота проявляются в беспорядочном распространении обесцвечивающих пятен серо-зеленого оттенка. Эти пятна постепенно грубеют, высыхают и становятся белыми.
Растения более устойчивы (по сравнению с человеком) к воздействию чистого диоксида азота. Это объясняется особенностями усвоения NO2, который восстанавливается в хлоропластах и в качестве NH2— группы входит в аминокислоты. При концентрации 0,17–0,18 мг/м 3 оксиды азота используются растениями в качестве удобрений. Эта способность к метаболизированию NOx человеку не присуща.
Все это приводит к необходимости совершенствования технологий сжигания органического топлива для снижения выбросов NOx с дымовыми газами котельных установок ТЭЦ.В России, как и в других высокоразвитых странах, приняты законодательные ограничения по выбросам оксидов азота в атмосферу.
Азбука горения
Монооксид азота NO, который присутствует в городском воздухе, может самопроизвольно переходить в диоксид азота NO2 при фотохимическом окислении.
Существуют три пути образования оксидов азота, различающиеся по способу происхождения, но не по химическому составу:
Тепловые оксиды азота, составляющие большинство, образуются при высокой температуре (Т>1500 К) и при условии высокой концентрации кислорода при окислении атмосферного азота в процессе горения. Тепловые оксиды образуются при сжигании газообразного топлива (природный газ и сжиженный нефтяной газ) и топлива, в котором не содержатся вещества, имеющие в своем составе азот
Быстрые оксиды азота образуются при связывании атмосферного азота углеводородными частицами (радикалами), которые присутствуют в зоне факела. Этот метод образования оксидов протекает с очень высокой скоростью (отсюда их название; быстрые). Образование быстрых оксидов прежде всего зависит от концентрации радикалов в корневой части факела. При окислительном пламени (горение происходит с избытком кислорода) их вклад незначителен, но при сжигании обогащенных смесей и при низкотемпературном горении их доля может достигать 25% от общего содержания оксидов азота.
Топливные оксиды азота образуются при окислении азотосодержащих веществ, присутствующих в топливе в зоне факела. Концентрация топливных оксидов может достигать значительных размеров, если содержание в топливе азотосодержащих веществ превышает 0,1% от веса. Как правило, это касается только жидкого и твердого топлива.
На рис. 5 показано соотношение между NOx разных типов в зависимости от типа топлива (при стандартных условиях горения):
Доля быстрых оксидов азота более или менее постоянна, в то время как доля топливных оксидов азота увеличивается при горении видов топлива с более высоким молекулярным весом. При этом доля тепловых оксидов азота снижается.
1.4.2.1. Снижение уровня NOx при сжигании газообразного топлива
Содержание тепловых оксидов азота в газообразном топливе достигает 80% от общего количества выбросов. Снизить образование тепловых оксидов азота можно снизив температуру пламени.
Температуру пламени можно снизить различными путями:
1) снижением удельной тепловой нагрузки
Этот метод состоит в уменьшении мощности горения на единицу объёма камеры сгорания. Для этого необходимо «перерассчитать» мощность котла, то есть уменьшить его номинальную тепловую мощность (если это уже действующий котёл) или взять размер камеры сгорания с запасом (при проектировании новых объектов).
2) особой конструкции камеры сгорания
Этот метод состоит в использовании теплогенераторов, камера сгорания которых является не инверсионной, а имеет три хода по тракту дымовых газов. В котлах с инверсионными камерами сгорания дымовые газы при проходе к дымогарным трубам сужают пространство, в котором находится факел, до объёма меньшего, чем сама камера сгорания. Часть лучистой энергии, отражённой от стенок камеры сгорания, передаётся пламени, температура пламени повышается, и увеличивается образование тепловых оксидов азота. Тот же эффект наблюдается в установках с высокой температурой стенок камеры сгорания, например печах или котлах с высокой температурой теплоносителя.
3) предварительным смешиванием воздуха и газа
В обычных условиях системы сжигания настроены таким образом, чтобы работать с избыточным воздухом. Этот избыточный воздух снижает температуру горения ниже адиабатической температуры, а иногда ниже того уровня, при котором начинается образование оксидов азота (1500К)
Пламя является типичной турбулентной средой. В неё подаются два реагента, которые очень трудно равномерно смешать между собой. В результате в пламени создаются зоны с разной стехиометрией
В зонах со стехиометрическими или близкими к ним условиями, значение температуры настолько высоко, что появляются условия для образования тепловых NOx.
С учётом опасности тепловых NOx следует предотвратить появление этих условий или максимально снизить сферу их действий. Неравномерность концентрации газовоздушной смеси позволяют снизить: предварительное смешение газа с воздухом и стабилизация пламени. Это влечёт за собой снижение температуры пламени по всему объёму факела и приближение её к теоретически рассчитанному значению.
Дополнительный положительный эффект может дать равномерное распределение пламени. Лучше, если оно равномерно распределяется по широкой поверхности, не создавая маленьких язычков, внутри которых температура, как правило, более высока.
В качестве примера можно привести горелки с пористой поверхностью (из металла или керамики) или с волокнистой поверхностью, в которой имеются мельчайшие отверстия. Всё это необходимо для того, чтобы как можно аккуратнее смешать перед горением воздух и газ.
Несмотря на то, что в настоящий момент высокая стоимость и конструктивные ограничения препятствуют широкому внедрению этого метода, особенно для горелок большой мощности, он является очень многообещающим для значительного снижения выбросов NOx.
4) ступенчатое сжигание
Оксиды азота образуются быстрее, когда соотношение топлива и поддерживающего горение воздуха приближается к стехиометрическому Для того чтобы снизить скорость образования оксидов азота, можно создать систему горения использующую коэффициент избытка воздуха близкий к идеальному Внутри факела этой системы должны присутствовать зоны с, сильнотличающимся от стехиометрического, соотношением топливо-воздух. Используя аэродинамические характеристики факела и распределение топлива можно создавать чередующиеся зоны с избытком и недостатком воздуха, поддерживая в общем условия близкие к стехиометрическим.
5) рециркуляция продуктов горения
При растворении части дымовых газов в воздухе уменьшается содержание кислорода и понижается температура пламени: поэтому часть вырабатываемой в результате горения энергии немедленно передается инертным веществам, присутствующим в газообразном топливе.
Этот метод даёт очень хорошие результаты при работе с газообразным топливом: пропускаемые продукты горения и смесь поддерживающего горения воздуха и топлива легко смешиваются между собой.
В теплогенераторах большой мощности, из-за большого сопротивления возникающего на головке горелки, сложно организовать подмес продуктов горения внутри камеры сгорания. Поэтому продукты горения подмешиваются в камеру сгорания из вне.
С помощью дополнительного вентилятора или с помощью вентилятора самой горелки часть продуктов горения забирается на выходе из теплогенератора и подаётся обратно в головку горелки для того, чтобы смешать с воздухом для горения.
Даже если при некоторых обстоятельствах рециркуляция газов внутри камеры сгорания может оказаться недостаточной для достижения очень низкого содержания NOx (данный случай относится к горелкам большой мощности), этот метод можно применять в сочетании со ступенчатым сжиганием, которое было описано выше.
1.4.2.2. Снижение уровня NOx при сжигании жидкого топлива
Основное различие между сжиганием газообразного топлива и сжиганием жидкого топлива, с точки зрения оксидов азота, состоит в том, что в последнем азот находится в виде азотосодержащих соединений. Азот является причиной образования оксидов NOx, которые дают значительный вклад в общее содержание NOx. Принципы образования тепловых и быстрых оксидов азота рассмотренные в предыдущем параграфе, приемлемы и для жидкотопливных горелок.
Что же касается топливных оксидов азота, то в восстановительной среде содержащийся в топливе азот, может переходить не во вредный NOx, а в простой и безопасный молекулярный азот N2. Для этого в некоторых областях факела нужно создать богатые топливом зоны и условия для процесса восстановления. Например, в область горения сначала подается 80% от общего количества поддерживающего горение воздуха вместе со 100% топлива, а затем подаются оставшиеся 20% воздуха для горения (добавочный воздух).
Применительно к горелкам малой и средней мощности бытового и коммерческого назначения этот метод пока проходит этап тестирования. Все эти методы всё ещё находятся в стадии эксперимента на бытовых и коммерческих горелках. А в промышленных горелках эта технология уже вносит свой ценный вклад.