выберете для чего могут применяться лазеры в науке и технике

Выберете для чего могут применяться лазеры в науке и технике

выберете для чего могут применяться лазеры в науке и технике. Смотреть фото выберете для чего могут применяться лазеры в науке и технике. Смотреть картинку выберете для чего могут применяться лазеры в науке и технике. Картинка про выберете для чего могут применяться лазеры в науке и технике. Фото выберете для чего могут применяться лазеры в науке и технике

выберете для чего могут применяться лазеры в науке и технике. Смотреть фото выберете для чего могут применяться лазеры в науке и технике. Смотреть картинку выберете для чего могут применяться лазеры в науке и технике. Картинка про выберете для чего могут применяться лазеры в науке и технике. Фото выберете для чего могут применяться лазеры в науке и технике

Лазерная деревообработка запись закреплена

При переходе атома с низшего энергетического уровня на высший.

Выберите один из 4 вариантов ответа:

1) атомом поглощается фотон

2) атомом испускается фотон

3) атомом испускается два когерентных фотона

4) происходит явление термоэлектронной эмиссии

На чем основана работа рубинового лазера с трехуровневой системой?

Выберите один из 4 вариантов ответа:

1) На том факте, что в различных возбужденных состояниях атом может находится в течение неодинаковых промежутков времени

2) На явлении фотоэффекта

3) На том, что в этом лазере используется не два зеркала (как в обычном), а три

4) Правильного ответа нет

Выберете, для чего могут применяться лазеры в науке и технике?

Выберите несколько из 4 вариантов ответа:

1) Для резки металлов

2) Для истребления паразитов

3) Для хранения информации

На чем основана работа лазера

Выберите один из 4 вариантов ответа:

1) На явлении фотоэффекта

2) На явлении индуцированного излучения

4) На инфракрасном излучении

При переходе атома из высшего энергетического уровня на низший.

Выберите один из 4 вариантов ответа:

1) атомом поглощается фотон

2) атомом испускается фотон

3) атомом испускается два когерентных фотона

4) происходит явление термоэлектронной эмиссии

По типу активной среды лазеры подразделяются на…

Выберите один из 4 вариантов ответа:

Накачка в газовых лазерах может производиться вследствие…

Выберите один из 4 вариантов ответа:

1) химической реакции

2) воздействия мощного источника света

3) электрического разряда

4) перехода электрона с одного типа полупроводника на другой

Накачка в химических лазерах может производиться вследствие…

Выберите один из 4 вариантов ответа:

1) химической реакции

2) воздействия мощного источника света

3) электрического разряда

4) перехода электрона с одного типа полупроводника на другой

Накачка в оптических лазерах может производиться вследствие…

Выберите один из 4 вариантов ответа:

1) химической реакции

2) воздействия мощного источника света

3) электрического разряда

4) перехода электрона с одного типа полупроводника на другой

Какое свойство лазера используется при строительстве туннелей

Источник

ТЕСТ НА ТЕМУ «ЛАЗЕРЫ.МЕТОДЫ НАБЛЮДЕНИЯ И РЕГИСТРАЦИИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ»

Тест «Лазеры. Методы наблюдения и регистрации элементарных частиц.»

При переходе атома с низшего энергетического уровня на высший.

Выберите один из 4 вариантов ответа:

1) атомом поглощается фотон

2) атомом испускается фотон

3) атомом испускается два когерентных фотона

4) происходит явление термоэлектронной эмиссии

На чем основана работа рубинового лазера с трехуровневой системой?

Выберите один из 4 вариантов ответа:

1) На том факте, что в различных возбужденных состояниях атом может находится в течение неодинаковых промежутков времени

2) На явлении фотоэффекта

3) На том, что в этом лазере используется не два зеркала (как в обычном), а три

4) Правильного ответа нет

Выберете, для чего могут применяться лазеры в науке и технике?

Выберите несколько из 4 вариантов ответа:

1) Для резки металлов

2) Для истребления паразитов

3) Для хранения информации

На чем основана работа лазера

Выберите один из 4 вариантов ответа:

1) На явлении фотоэффекта

2) На явлении индуцированного излучения

4) На инфракрасном излучении

Действие какого прибора для регистрации элементарных частиц основано на ударной ионизации

Выберите один из 4 вариантов ответа:

1) Счетчика Гейгера

Действие какого прибора для регистрации элементарных частиц основано на конденсации перенасыщенного пара на ионах с образованием капель воды

Выберите один из 4 вариантов ответа:

1) Счетчика Гейгера

При переходе атома из высшего энергетического уровня на низший.

Выберите один из 4 вариантов ответа:

1) атомом поглощается фотон

2) атомом испускается фотон

3) атомом испускается два когерентных фотона

4) происходит явление термоэлектронной эмиссии

Можно ли с помощью камеры Вильсона регистрировать незаряженные частицы?

Выберите один из 5 вариантов ответа

1)Можно, если они имеют маленькую массу (электрона)

2)Можно, если они имеют большую массу (нейтроны)

3)Можно, если они имеют маленький импульс

4)Можно, если они имеют большой импульс

Прибор для регистрации элементарных частиц, действие которого основано на образовании пузырьков пара в перегретой жидкости, называется

Выберите один из 4 вариантов ответа:

1) Счетчика Гейгера

Какие частицы входят в состав атомного ядра?

Выберите несколько из 4 вариантов ответа:

Действие какого прибора для регистрации элементарных частиц основано на конденсации

перенасыщенного пара на ионах с образованием капель воды

Действие какого прибора для регистрации элементарных частиц основано на конденсации

перенасыщенного пара на ионах с образованием капель воды:

выберете для чего могут применяться лазеры в науке и технике. Смотреть фото выберете для чего могут применяться лазеры в науке и технике. Смотреть картинку выберете для чего могут применяться лазеры в науке и технике. Картинка про выберете для чего могут применяться лазеры в науке и технике. Фото выберете для чего могут применяться лазеры в науке и технике

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

выберете для чего могут применяться лазеры в науке и технике. Смотреть фото выберете для чего могут применяться лазеры в науке и технике. Смотреть картинку выберете для чего могут применяться лазеры в науке и технике. Картинка про выберете для чего могут применяться лазеры в науке и технике. Фото выберете для чего могут применяться лазеры в науке и технике

Курс повышения квалификации

Педагогическая деятельность в контексте профессионального стандарта педагога и ФГОС

выберете для чего могут применяться лазеры в науке и технике. Смотреть фото выберете для чего могут применяться лазеры в науке и технике. Смотреть картинку выберете для чего могут применяться лазеры в науке и технике. Картинка про выберете для чего могут применяться лазеры в науке и технике. Фото выберете для чего могут применяться лазеры в науке и технике

Курс профессиональной переподготовки

Физика: теория и методика преподавания в образовательной организации

Ищем педагогов в команду «Инфоурок»

выберете для чего могут применяться лазеры в науке и технике. Смотреть фото выберете для чего могут применяться лазеры в науке и технике. Смотреть картинку выберете для чего могут применяться лазеры в науке и технике. Картинка про выберете для чего могут применяться лазеры в науке и технике. Фото выберете для чего могут применяться лазеры в науке и технике

Номер материала: ДБ-347112

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

выберете для чего могут применяться лазеры в науке и технике. Смотреть фото выберете для чего могут применяться лазеры в науке и технике. Смотреть картинку выберете для чего могут применяться лазеры в науке и технике. Картинка про выберете для чего могут применяться лазеры в науке и технике. Фото выберете для чего могут применяться лазеры в науке и технике

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

выберете для чего могут применяться лазеры в науке и технике. Смотреть фото выберете для чего могут применяться лазеры в науке и технике. Смотреть картинку выберете для чего могут применяться лазеры в науке и технике. Картинка про выберете для чего могут применяться лазеры в науке и технике. Фото выберете для чего могут применяться лазеры в науке и технике

В России утвердили новый порядок формирования федерального перечня учебников

Время чтения: 1 минута

выберете для чего могут применяться лазеры в науке и технике. Смотреть фото выберете для чего могут применяться лазеры в науке и технике. Смотреть картинку выберете для чего могут применяться лазеры в науке и технике. Картинка про выберете для чего могут применяться лазеры в науке и технике. Фото выберете для чего могут применяться лазеры в науке и технике

Ученые изучили проблемы родителей, чьи дети учатся в госпитальных школах

Время чтения: 5 минут

выберете для чего могут применяться лазеры в науке и технике. Смотреть фото выберете для чего могут применяться лазеры в науке и технике. Смотреть картинку выберете для чего могут применяться лазеры в науке и технике. Картинка про выберете для чего могут применяться лазеры в науке и технике. Фото выберете для чего могут применяться лазеры в науке и технике

В Минпросвещения рассказали о формате обучения школьников после праздников

Время чтения: 1 минута

выберете для чего могут применяться лазеры в науке и технике. Смотреть фото выберете для чего могут применяться лазеры в науке и технике. Смотреть картинку выберете для чего могут применяться лазеры в науке и технике. Картинка про выберете для чего могут применяться лазеры в науке и технике. Фото выберете для чего могут применяться лазеры в науке и технике

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

выберете для чего могут применяться лазеры в науке и технике. Смотреть фото выберете для чего могут применяться лазеры в науке и технике. Смотреть картинку выберете для чего могут применяться лазеры в науке и технике. Картинка про выберете для чего могут применяться лазеры в науке и технике. Фото выберете для чего могут применяться лазеры в науке и технике

Поставщики интернета для школ будут работать с российским оборудованием

Время чтения: 1 минута

выберете для чего могут применяться лазеры в науке и технике. Смотреть фото выберете для чего могут применяться лазеры в науке и технике. Смотреть картинку выберете для чего могут применяться лазеры в науке и технике. Картинка про выберете для чего могут применяться лазеры в науке и технике. Фото выберете для чего могут применяться лазеры в науке и технике

АСИ организует конкурс лучших управленческих практик в сфере детского образования

Время чтения: 2 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Что такое лазер?

статьи | Jun 11, 2019 | Наука и Образование | выберете для чего могут применяться лазеры в науке и технике. Смотреть фото выберете для чего могут применяться лазеры в науке и технике. Смотреть картинку выберете для чего могут применяться лазеры в науке и технике. Картинка про выберете для чего могут применяться лазеры в науке и технике. Фото выберете для чего могут применяться лазеры в науке и технике50802

Лазеры вызывают восторг и неизменно ассоциируются с фантастическими фильмами и наукой будущего. Эти устройства кажутся сверхъестественными, что умело использовали создатели таких популярных блокбастеров, как «Люди X» или «Звездные войны», где джедаи эффектно сражаются на лазерных мечах.

Тем не менее лазеры — это уже давно не фантастика, а рабочий инструмент во многих областях современной науки. Эти устройства, будучи очень функциональными, окружают современного человека в повседневной жизни.

Как расшифровывается?

Английское выражение Light Amplification by Stimulated Emission of Radiation переводится как «Усиление света посредством вынужденного излучения». По первым буквам этого выражения образована аббревиатура LASER.

Попросту говоря, лазер производит поток света, обладающий чрезвычайной концентрацией.

Кто изобрел лазер?

Первые открытия, подарившие человечеству лазер, были сделаны еще на заре XX века.

Эйнштейн

Еще в 1917 году Альберт Эйнштейн написал революционную работу, в которой заложил основы квантово-механического принципа действия лазера. Революционность заключалась в том, что автор предсказал абсолютно новое явление в физике — вынужденное излучение. Из теории Эйнштейна следует, что свет может излучаться и поглощаться не только спонтанно. Существует также возможность вынужденного (или стимулированного) излучения. Это значит, что возможно «принудить» электроны излучать свет необходимой длины волны в одно и то же время.

Майман

Реализовать эту идею на практике удалось только в 60-е годы двадцатого века. Самый первый лазер создал калифорнийский физик Теодор Майман 16 мая 1960 года. В работе этого лазера использовались кристалл рубина и резонатор Фабри — Перо. Лампа-вспышка являлась источником накачки. Работа лазера была импульсной, волна имела длину 694,3 нм.

Басов, Прохоров и Таунс

В 1952 году академики из СССР Николай Басов и Александр Прохоров рассказали всему миру, что возможно создание микроволнового лазера, работающего на аммиаке. Эта же идея параллельно и независимо развивалась физиком из Америки Чарлзом Таунсом. Он создал и показал, как работает такой лазер, в 1954 году. Спустя десятилетие, в 1964 году, все трое удостоились за эти достижения Нобелевской премии по физике.

Наши дни

Сегодня мы можем наблюдать очень интенсивное развитие лазеров. Практически ежегодно изобретаются новые их виды — химические, эксимерные, полупроводниковые, лазеры на свободных электронах.

ПРинцип работы лазера

Чтобы понять, как работает лазер, посмотрим на его структуру. Типичный лазер выглядит так: трубка, внутри которой размещен твердый кристалл, чаще всего рубин. С обоих торцов она закрыта зеркалами: прозрачным и не полностью прозрачным. Под воздействием электрической обмотки атомы кристалла генерируют световые волны. Эти волны перемещаются от одного зеркала к другому до того момента, пока не наберут интенсивность, достаточную для прохождения через не полностью прозрачное зеркало.

выберете для чего могут применяться лазеры в науке и технике. Смотреть фото выберете для чего могут применяться лазеры в науке и технике. Смотреть картинку выберете для чего могут применяться лазеры в науке и технике. Картинка про выберете для чего могут применяться лазеры в науке и технике. Фото выберете для чего могут применяться лазеры в науке и технике

Как создается лазерный луч?

Электроны всех атомов (на картинке — черные точки на внутренних окружностях) занимают основной энергетический уровень.

выберете для чего могут применяться лазеры в науке и технике. Смотреть фото выберете для чего могут применяться лазеры в науке и технике. Смотреть картинку выберете для чего могут применяться лазеры в науке и технике. Картинка про выберете для чего могут применяться лазеры в науке и технике. Фото выберете для чего могут применяться лазеры в науке и технике

Под действием энергии из разрядной трубки электроны перемещаются на более высокие энергетические орбиты (на картинке — внешние окружности).

выберете для чего могут применяться лазеры в науке и технике. Смотреть фото выберете для чего могут применяться лазеры в науке и технике. Смотреть картинку выберете для чего могут применяться лазеры в науке и технике. Картинка про выберете для чего могут применяться лазеры в науке и технике. Фото выберете для чего могут применяться лазеры в науке и технике

Электроны начинают покидать высокие энергетические орбиты и спускаться к основному уровню. При этом они начинают испускать свет и побуждают к этому остальные электроны. Образуется общий результирующий пучок света с одинаковой длиной волны у каждого источника. Чем больше новых электронов вернется к низким орбитам, тем мощнее свет лазера.

выберете для чего могут применяться лазеры в науке и технике. Смотреть фото выберете для чего могут применяться лазеры в науке и технике. Смотреть картинку выберете для чего могут применяться лазеры в науке и технике. Картинка про выберете для чего могут применяться лазеры в науке и технике. Фото выберете для чего могут применяться лазеры в науке и технике

Резкость фокусировки

Длина световой волны в лазерном пучке только одна, следовательно, и цвет также один. Этот свет четко фокусируется линзой почти что полностью в одной точке.

(См. рисунок: слева — свет лазера, справа — естественный свет). Если сравнить свет лазера с естественным светом, то будет видно, что последний не способен иметь настолько резкий фокус. Благодаря концентрации в узком луче огромной энергии лазер способен передать этот луч на гигантские расстояния, избегая рассеяния и ослабления, присущих многоцветному свету — естественному. Эти качества лазера превращают его в незаменимый инструмент для человека.

выберете для чего могут применяться лазеры в науке и технике. Смотреть фото выберете для чего могут применяться лазеры в науке и технике. Смотреть картинку выберете для чего могут применяться лазеры в науке и технике. Картинка про выберете для чего могут применяться лазеры в науке и технике. Фото выберете для чего могут применяться лазеры в науке и технике

Физическое обоснование

Разберем вышеописанный механизм работы лазера подробнее. Выясним, какие именно физические законы делают возможным его функционирование.

Активная среда

Энергетические уровни атомов

Важный момент: состав активной среды таков, что у каждого ее атома есть как минимум три энергетических уровня. В спокойном состоянии атомы активной среды располагаются на низшем энергетическом уровне Е0. Как только включается лампа, атомы поглощают энергию ее света, поднимаются на уровень Е1 и довольно долго пребывают в таким возбужденном состоянии. Именно это и обеспечивает лазерный импульс.

Инверсная заселенность

Инверсная заселенность — фундаментальное физическое понятие. Это такое состояние среды, когда число частиц на каком-то верхнем энергетическом уровне атома (любом из существующих) больше, чем на нижнем. Собственно, активной и называется та среда, в которой уровни являются инверсно заселенными.

Фотоны и световой пучок

Электроны атома не располагаются хаотично. Они занимают определенные орбиты, окружающие ядро. Атом, получающий квант энергии, с огромной вероятностью переходит в состояние возбуждения, характеризующееся сменой орбиты электронами — с самой низкой (метастабильной или основной) на обладающую более высоким уровнем энергии. На такой орбите длительное нахождение электронов невозможно, поэтому происходит их самопроизвольное возвращение к основному уровню. В момент возвращения каждый электрон испускает волну света, называемую фотоном. Одним атомом запускается цепная реакция, и электроны многих других атомов также перемещаются на орбиты с более низкой энергией. Одинаковые световые волны движутся огромным потоком. Изменения этих волн согласованы во времени и в результате формируют общий мощный световой пучок. Этот пучок света и зовется лазерным лучом. Мощность луча у каких-то лазеров настолько огромна, что им можно разрезать камень или металл.

Классификация лазеров

Существует несколько видов лазера, отличающихся друг от друга по принципу агрегатного состояния активной среды и по способу ее возбуждения. Перечислим основные.

Твердотельные лазеры

С этих лазеров все начиналось. Активная среда в них была твердой и состояла из кристаллов рубина и небольшого количества ионов хрома. Накачка осуществлялась при помощи импульсной лампы. Самый первый рубиновый лазер собрал американец Т. Майман в 1960 году. Твердотельные лазеры также изготавливают из стекла с примесью неодима Nd, алюмоиттриевого граната Y2Al5O12 с примесью хрома и неодима — все это также вещества для активной среды твердотельного лазера.

Газовые лазеры

В газовых лазерах активная среда формируется из газов с очень низким давлением или из их смесей. Газы заполняют стеклянную трубку, в которую впаяны электроды. Американцы А. Джаван, У. Беннетт и Д. Эрриот стали первыми создателями газового лазера в 1960 году. В качестве накачки такого лазера обычно применяют разряд электричества, производимый генератором высоких частот. Излучение газового лазера отличается своей непрерывностью. Плотность газов невысока, так что требуется довольно длинный стержень активной среды. Интенсивность излучения обеспечивается в этом случае за счет массы активного вещества.

Газодинамические, химические и эксимерные лазеры

По большому счету эти три вида можно классифицировать как газовые лазеры.

Жидкостные лазеры

Первые жидкостные лазеры появились почти тогда же, когда и твердотельные — в 60-х годах XX века. Для создания активной среды в них используются разнообразные растворы органических соединений. Плотность такого вещества выше, чем у газа, хотя и ниже, чем у твердых тел. Поэтому такие лазеры способны генерировать достаточно сильное излучение (до 20 Вт), при том что объем их активного вещества сравнительно невелик. Работать они могут и в импульсном, и в непрерывном режимах. В качестве накачки используются импульсные лампы и другие лазеры.

Полупроводниковые лазеры

В 1962 году появились и первые полупроводниковые лазеры — в результате параллельной работы нескольких ученых из США: Р. Холла, М.И. Нейтена, Т. Квиста и их групп. Теоретически работа этого лазера была обоснована ранее, в 1958 году, русским физиком Н.Г. Басовым.

В полупроводниковом лазере в качестве активной среды используется кристалл-полупроводник, например арсенид галлия GaAs. Поэтому на первый взгляд его можно было бы отнести к твердотельным лазерам. Однако он принципиально отличается тем, что излучательные переходы в нем происходят не между энергетическими уровнями атомов, а между энергетическими зонами или подзонами кристалла.

Накачка такого лазера производится постоянным электрическим током. Грани кристалла-полупроводника тщательно полируются, и из них получается отличный резонатор.

Лазеры в природе

В нашей Вселенной учеными были найдены лазеры с естественным происхождением. Существуют гигантские межзвездные облака, созданные конденсированными газами. В них инверсная заселенность образуется естественным образом. Свет ближних звезд или другие излучения в космосе выполняют роль накачки, а газовые облака сами по себе являются превосходной активной средой протяженностью в несколько сотен миллионов километров. Возникает естественный астрофизический лазер, который не нуждается в резонаторе, — вынужденное электромагнитное излучение образуется в них самопроизвольно, как только проходит волна света.

Свойства лазерного излучения

Свет от лазера имеет особенные и очень ценные свойства, выгодно отличающие его от света обычных, тепловых источников.

Применение лазеров

Свойства лазерного излучения уникальны. Это превратило лазеры в незаменимый для самых различных областей науки и техники инструмент. Кроме этого, лазеры широко используются в медицине, в быту, в индустрии развлечений, в сфере транспорта.

Технологические лазеры

Лазерная связь

Появившиеся лазеры вывели на принципиально новый уровень технику связи и записи информации.

Радиосвязь, развиваясь, постепенно переходила на все более короткие длины волн, поскольку было доказано, что высокие частоты (с наименьшей длиной волны) предоставляют каналу связи наибольшую пропускную способность. Настоящим прорывом стало понимание того, что свет — это такая же электромагнитная волна, просто короче во множество десятков тысяч раз. Следовательно, через лазерный луч возможно передавать объем информации, в десятки тысяч раз превосходящий объем, передаваемый высокочастотными радиоканалами. В результате этого были усовершенствованы различные виды связи по всему миру.

Также при помощи луча лазера записываются и воспроизводятся компакт-диски со звуками — музыкой, и изображениями — фото и фильмами. Индустрия звукозаписи, получив такой инструмент, сделала гигантский шаг вперед.

Применение лазеров в медицине

Лазерные технологии широко применяются как в хирургии, так и в терапевтических целях.

Современные научные исследования

Военные лазеры

Лазеры в индустрии развлечений

Лазеры нашли широкое применение в индустрии развлечений. Многие знакомы с лазерным шоу: такие представления часто сопровождают фестивали, концерты, праздничные мероприятия. Лазерное шоу может быть создано как внутри помещения, так и на свежем воздухе. Организатор способен выбрать оборудование под свои задачи и проецировать изображение любой сложности в любом цветовом диапазоне.

Так, одним из самых ярких и масштабных событий, которое сопровождалось лазерным шоу, стал концерт знаменитого музыканта Jean-Michel Jarre на Воробьевых горах в 1995 году. Он был приглашен Юрием Лужковым по случаю празднования 850-летия Москвы.

Музыкант выступал перед зданием МГУ, во время мероприятия на фасад университета проецировались фрагменты истории города.

Но в наше время лазерным шоу никого не удивишь. В Нью-Йорке в ноябре 2012-го появилась кратковременная лазерная установка с названием Global Rainbows — 35-километровым лазерным лучом в небо. Установка представляла собой

пучок из семи мощных лазерных лучей всех цветов радуги, которые могли быть направлены как в одну сторону, так и в разные. Конструкция была установлена после того, как на город обрушился ураган «Сэнди» в октябре 2012 года. Гигантская радуга показывала: город пережил катастрофу, и его жизнь продолжается.

Еще одним интересным примером применения лазера в индустрии развлечений стал лазерный костюм для вечеринок, разработанный тайваньским дизайнером по имени Wei-Chieh Shih. Одежда представляет собой лазерную установку и способна освещать все вокруг красным светом, генерируя лучи, направленные в разные стороны.

Лазеры в сфере транспорта

Лазеры могут быть полезны и в сфере транспорта. Так, например, в Нидерландах планируют внедрить установку лазерных излучателей на локомотивах поездов: это позволит убирать мусор и опавшие листья с путей прямо во время движения. Ведь все посторонние предметы, прилипшие к колесам, увеличивают тормозной путь и повышают риск катастрофы.

Лазер может быть использован и при езде на велосипеде. Велосипедными дорожками оснащены далеко не все улицы. А в темное время суток автомобилисты могут не увидеть разметку. В «умных» байках появилась необычная функция: они могут проецировать велосипедную дорожку при помощи лазерной установки. Такой подход повышает безопасность: велосипедист становится видимым и для других участников дорожного движения в темное время суток.

Еще один схожий способ применения лазера предложили создатели инновационной системы уличной безопасности Guardian. Смысл разработки — в установке специальных излучателей на столбах возле светофоров. Когда горит красный свет для пешеходов, проход закрыт лазерным лучом. Как только загорается зеленый, красный свет закрывает путь автомобилистам. Система направлена на повышение безопасности на дорогах: она работает как сдерживающий психологический фактор.

Лазерные гаджеты

Лазер встроен в некоторые современные гаджеты. Так, например, устройство Magic Cube способно проецировать виртуальную клавиатуру на рабочий стол или другую поверхность. Гаджет ориентирован на пользователей планшетов и смартфонов.

Применение лазеров в спорте

Интересное применение лазера придумала компания Nike. Разработка представляет собой мобильную установку, которая может проецировать поля для игры в футбол при помощи лазерных лучей. Площадку можно создать на любой ровной поверхности — как в городе, так и за его пределами.

Выводы

Мы нисколько не преувеличиваем, когда говорим, что, появившись в середине XX века, лазеры сыграли в нашей жизни такую же значимую роль, как электричество и радио. Лазер проник практически во все области деятельности человека, и если вдруг изъять его, то мир перестанет быть таким привычным и комфортным. Даже текст этой статьи, читаемый вами сегодня с компьютера или смартфона, доступен благодаря полупроводниковым лазерам, активно используемым в новейших оптических средствах связи. Без лазеров невозможно представить компьютеры, а значит, и огромный пласт современной жизни человека. Будучи очень интересно устроенным, лазер открывает перед современной наукой новые перспективы развития. Свойства его невероятно многогранны, и можно смело сказать, что лазерный луч « высвечивает » себе путь абсолютно во всех сферах человеческой жизни, делая ее качественнее и счастливее!

Поделитесь этим с друзьями!

выберете для чего могут применяться лазеры в науке и технике. Смотреть фото выберете для чего могут применяться лазеры в науке и технике. Смотреть картинку выберете для чего могут применяться лазеры в науке и технике. Картинка про выберете для чего могут применяться лазеры в науке и технике. Фото выберете для чего могут применяться лазеры в науке и технике

Автор HiTecher с 2019 года, редактор, педагог. Имеет степень бакалавра с отличием по английской литературе, сертификат PGCE в квалификации преподавателя PCET. Живет в Саутгемптоне (Великобритания).

Будьте первым, кто оставит комментарий

Пожалуйста, авторизируйтесь для возможности комментировать

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *