все что связано с электрикой
Основные понятия электротехники, термины и определения
Рассмотрены самые важные понятия электротехники: электрический ток, контур электрического тока, электродвижущая сила, напряжение, электрическое сопротивление, закон Ома, электрическая энергия и мощность.
1. Электрический ток
Движущиеся носители электрического заряда образуют электрический ток подобно тому, как движущиеся частички воздуха или воды образуют воздушный или водяной поток. В зависимости от способности различных материалов проводить электрический ток они разделяются на проводники, диэлектрики и полупроводники.
К проводникам относятся вещества, обладающие электронной проводимостью, — проводники 1-го рода (все металлы, уголь) и вещества, обладающие ионной проводимостью, — проводники 2-го рода (кислоты, основания, растворы солей). Металлы содержат большое количество свободных электронов (около 1023 в одном кубическом сантиметре), которые характеризуются большой подвижностью.
Диэлектрики содержат незначительное количество свободных электронов. Поэтому они используются в качестве электроизоляционных материалов.
В полупроводнике перемещение электрических зарядов происходит при движении не только электронов, но и так называемых «дырок». Дырки представляют собой незанятые электронами места в кристаллической решетке и по своим функциям уподобляются носителям положительных зарядов.
По способности проводить электрический ток полупроводники стоят между проводниками и диэлектриками, причем их проводимость в значительной степени зависит от имеющихся в них примесей.
Наличие тока можно обнаружить по тем эффектам, которые он вызывает. Три эффекта сопровождают электрический ток:
в среде, окружающей провода с током, наблюдается магнитное поле;
проводник, по которому течет ток, нагревается;
в проводниках с ионной проводимостью при электрическом токе наблюдается перенос вещества.
За направление электрического тока принимается направление движения ионов металла (т. е. положительных зарядов) при электролизе растворов солей. Направление перемещения электронов в металлических проводниках противоположно вышеуказанному направлению (они перемещаются от отрицательного полюса источника к положительному).
Единицей электрического тока является 1 ампер (1 А). Эта единица выбрана в качестве основной при записи закона электродинамического силового взаимодействия проводников, что устанавливает ее связь с основными механическими единицами.
Сила, вызывающая движение электронов в проводнике (ток), распространяется со скоростью света. Однако сами электроны движутся в проводнике со скоростями всего порядка 1 мм/с.
Подробно про электрический ток:
2. Контур электрического тока
В электрической цепи электрический ток циркулирует по замкнутому контуру. От источника ток течет по проводу через выключатель к приемнику, где он и производит желаемый эффект.
По второму проводу ток возвращается к источнику, проходит через него и снова начинает свой путь. На этом пути электрический ток черпает энергию для своего движения в источнике, а затем отдает ее приемнику обычно путем ее перехода в энергию другого вида — световую, тепловую, механическую и т.д.
В природе и технике встречается много подобных циклических процессов. Например, хорошую, но, конечно, формальную аналогию можно усмотреть в случае движения воды в системе охлаждения автомобиля. Вода получает тепловую энергию от стенок цилиндров двигателя внутреннего сгорания.
Даже без водяного насоса возникает движение воды по трубопроводам системы охлаждения и вода отдает большую часть полученной тепловой энергии в радиаторе, являющемся в данном случае приемником энергии.
Согласно современным представлениям электрический ток в проводниках образуется очень большим количеством мельчайших носителей заряда, называемых электронами. Электрический заряд следует рассматривать как одну из основных характеристик частиц и тел, которая проявляет себя в различного рода силовых взаимодействиях.
3. Электродвижущая сила, напряжение
Если на некотором участке цепи носители зарядов получают энергию, то принято говорить, что этот участок цепи — источник, развивающий электродвижущую силу (ЭДС). Источники электрической энергии называются источниками ЭДС.
На участке электрической цепи, где заряды отдают энергию, имеет место так называемое падение напряжения. Падение напряжения на участках цепи — приемниках называют короче просто напряжением.
Исходящий от источника ЭДС «импульс напряжения» распространяется со скоростью света, в то время как сами электроны движутся с очень малыми скоростями.
Электрический ток в простой электрической цепи одинаков на всех ее участках, и вследствие высокой скорости распространения импульса напряжения все электроны приходят в движение практически одновременно.
В случае разомкнутой цепи с источником ЭДС направленного движения потока электронов в ней быть не может. Однако в этой цепи свободные электроны находятся в состоянии постоянной готовности к движению, как только электрическая цепь будет замкнута. В таком случае принято говорить, что оба конца разомкнутой цепи находятся под напряжением.
Направления ЭДС Е и падения напряжения U совпадают с направлением тока, т. е. противоположны направлению движения электронов.
Единицей ЭДС и напряжения является 1 вольт (1В).
Для напряжения выбран ряд стандартизованных значений, чтобы установить единство в снабжении потребителей электрической энергией.
Для потребителей малой мощности применяются главным образом напряжения 12, 24, 36, 48, 110, 220 В. Для промышленных сетей низкого напряжения и бытовых сетей установлены напряжения 220 и 380 В. Для передачи электроэнергии на дальние расстояния применяются высокие напряжения 6000, 10000, 35000, 110000, 220000, 330000, 500000 и 750000 В.
Подробнее про электродвижущую силу и напряжение:
4. Электрическое сопротивление, закон Ома
Электрические величины (ток, напряжение и сопротивление) связаны между собой. Закон Ома определяет зависимость между током, протекающим по цепи, напряжением, приложенным к участку цепи, и сопротивлением этого участка цепи.
В общем виде этот закон формулируется так: электрический ток прямо пропорционален напряжению и обратно пропорционален сопротивлению.
Закон Ома для всей цепи формулируется так: ток прямо пропорционален электродвижущей силе и обратно пропорционален сопротивлению всей цепи.
При своем движении по проводнику электроны сталкиваются с атомами и при этом теряют часть своей энергии, что приводит к нагреву проводника. Таким образом, наблюдается сопротивление движению электронов. Опыты показывают, что ток в участке электрической цепи тем больше, чем больше напряжение (падение напряжения) на этом участке.
Символом G в данном уравнении обозначена электрическая проводимость участка цепи, которая тем больше, чем меньшее сопротивление оказывает проводник прохождению электрического тока.
Георг Симон Ом (1789—1854) обнаружил в 1826 году, что сопротивление многих материалов (проводников) не зависит от значения тока в проводнике и, следовательно, является константой.
Из закона Ома следует, что с ростом напряжения пропорционально увеличивается ток и что при увеличении сопротивления ток уменьшается. Единицей электрического сопротивления является 1 Ом.
На практике часто требуется определить электрический ток в некотором приемнике. Значение этого тока можно установить на основании известных значений электрического сопротивления приемника и поданного на него напряжения.
Если напряжение будет слишком велико, то ток может быть настолько большим, что вследствие теплового эффекта может разрушить приемник. Большие значения тока могут возникнуть в электрической цепи и при слишком малом сопротивлении или в случае прямого контакта (короткого замыкания) токоведущих частей цепи.
Для защиты устройств и приборов от перегрузок по току в электрические цепи включаются плавкие предохранители, которые перегорают, или автоматические выключатели, которые выключаются если ток в цепи превышает некоторое определенное значение.
Сопротивление проводника или провода тем больше, чем больше его длина l и чем меньше площадь его поперечного сечения S.
Сопротивление проводника зависит не только от его длины, площади поперечного сечения и материала, но и от температуры.
У ряда материалов значение электрического сопротивления при температуре вблизи абсолютного нуля скачкообразно падает до чрезвычайно малого значения. Это явление получило название сверхпроводимости. В настоящее время явление сверхпроводимости не получило еще широкого применения в технике, однако уже с успехом используется при решении некоторых специальных технических задач, как, например, при получении сверхмощных магнитных полей для физических исследований.
Подробнее об электрическом сопротивлении и законе Ома:
В каждой электрической цепи происходит обмен энергией. Следует при этом различать два процесса: получение электрической энергии (в источнике ЭДС) и ее преобразование в другие виды (на участках цепи, где есть падение напряжения).
Принимая во внимание закон Ома, можно написать выражение для энергии электрического тока, преобразуемой в приемнике с сопротивлением R (закон Джоуля—Ленца): W = I 2 Rt
При расчетах электроэнергетических установок чаще в качестве единиц энергии выбирают ватт-час или киловатт-час. Электрическую энергию можно преобразовывать в другие виды энергии.
Мощность можно определить как изменение энергии в единицу времени : P = dW/dt
Электричество. Основные понятия
2013-05-13 Теория 3 комментария
В этой статье предлагаю вам вспомнить базовые понятия в электрике, без которых любая работа, связанная с электричеством становится проблематичной.
Итак, любая электрическая цепь представляет собой совокупность различных устройств, образующих путь для прохождения электрического тока. Простейшая электрическая цепь может состоять из источника энергии, нагрузки и проводников.
Проводники — вещества, проводящие электрический ток. Они обладают малым удельным сопротивлением( т.е оказывают наименьшее сопротивление прохождению тока) и способны проводить электрический ток практически без потерь. Лучшими проводниками являются золото, серебро, медь и алюминий. Наибольшее распространение, вследствии дороговизны золота и серебра, получили медь и алюминий. Медь наиболее часто встречающийся проводник, в отличии от алюминия, обладающий большей устойчивостью к окислению и физическим воздействиям: изгибу, скручеванию. Недостатком меди, по сравнению с алюминием, является более высокая стоимость.
Помимо проводников существуют также диэлектрики — вещества которые обладают большим удельным сопротивлением электрическому току (т.е являются непроводящими электрический ток). К ним относятся пластмассы, дерево, текстолит и т.д
Также надо отметить и еще один тип — полупроводники. По своему удельному сопротивлению они занимают промежуточное положение между проводниками и диэлектриками. Проводимость этих материалов существенно меняется под влиянием внешних факторов. К числу полупроводников относятся многие химические элементы, но наибольшее распространение получили кремний и германий.
Источник энергии — это устройство, преобразующее механическую, химическую, тепловую и другие виды энергии в электрическую.
Нагрузка — потребитель электрической энергии, т.е любой электроприбор, который преобразовывает электрическую энергию в механическую, тепловую, химическую и т.д
Прохождение электрического тока возможно только при замкнутой цепи.
Электрическим током в электротехнике называют направленное движение заряженных частиц под действием электрического поля, создаваемого источником питания. Величина, характеризующая ток называется сила тока. Сила тока измеряется в Амперах и обозначается буквой А. Различают постоянный и переменный токи.
Постоянный ток ( DC, по-английски Direct Current) — это ток, свойства которого и направление не меняются с течением времени. Обозначается постоянный ток и напряжение в виде короткой горизонтальной черточки или двух параллельных, одна из которых штриховая.
Переменный ток (AC по-английски Alternating Current) — это ток, который изменяется по величине и направлению с течением времени. На электроприборах обозначается отрезком синусоиды «
». Основными параметрами переменного тока являются период, амплитуда и частота.
Период — промежуток времени, в течение которого ток совершает одно полное колебание.
Частота — величина, обратная периоду, число периодов в секунду, измеряется в герцах (Гц).
Ток и напряжение в нагрузке увеличиваются и уменьшаются, а разница между минимальным и максимальным их значением называется амплитудой.
Измерение тока проводится амперметром, который подключается последовательно нагрузке.
Любой проводник в цепи, в зависимости от сечения, длины, материала, оказывает сопротивление прохождению электрического тока. Свойство проводника препятствовать прохождению электрического тока называют сопротивлением. Сопротивление измеряется в Омах (Ом).
Разность потенциалов на концах источника питания называется напряжением. Напряжение измеряют в Вольтах и обозначают буквой В (V). В трехфазной электрической сети различают такие понятия, как линейное и фазное напряжения. Линейное напряжение ( или иначе межфазное) — это напряжение между двумя фазными проводами (380V). Фазное напряжение — это напряжение между нулевым проводом и одним из фазных (220V). Измеряется напряжение вольтметром, который подключается параллельно нагрузке.
Еще одним важным понятием в электротехнике является понятие мощности. Мощность источника характеризует скорость передачи или преобразования электроэнергии. Мощность измеряется в Ваттах (Вт, W).
Суммарная мощность всех подключенных потребителей равна сумме потребляемых мощностей каждым потребителем. Робщ = Р1+Р2+. Рn
Различают понятия активной и реактивной мощности. P – активная мощность (эффективная), связана с той электрической энергией, которая может быть преобразована в другие виды энергии – тепловую, световую, механическую и др., измеряется в ваттах (Вт), представляет собой полезную мощность, которую можно использовать для выполнения работы.
P = IUcosф – для однофазной цепи, P = √3IUcosф – для трехфазной цепи, P = U*I — в цепи, где есть только активное сопротивление.
Q – реактивная мощность, связана с обменом электрической энергией между источником и потребителем, измеряется в вольт-амперах реактивных (вар), когда среднее значение мощности за период равно нулю, активная мощность равна нулю, энергия накопленная магнитным полем индуктивности, возвращается назад к источнику, ток в цепи не совершает работы, реактивный ток бесполезно загружает источники энергии и провода линии передач. Источниками реактивной энергии могут являться элементы, обладающие индуктивностью — электродвигатели, трансформаторы. Для того, чтобы уменьшить реактивную мощность на зажимах потребителей подключают конденсаторы (последовательно или параллельно).
Q = IUsinф – для однофазной цепи, Q = √3IUsinф – для трехфазной цепи
Сдвиг по фазе между током и напряжением обозначается углом φ. Коэффициент мощности — это соотношение активной мощности к полной, величина cosф равная углу сдвига фаз между напряжением и током. Чем выше cos φ, тем меньше тока требуется для преобразования электроэнергии в другие виды энергии. Это приводит к уменьшению потерь электроэнергии, ее экономии.
На этом пока все, а в следующей части познакомимся с основными законами электротехники, которые необходимо знать любому человеку, связанному с электричеством.
Электрика для чайников
Что такое электричество
Электрический ток – это движение заряженных частиц (электронов), которое, как и всякое движение, можно направить на выполнение полезной работы. 2 основные единицы измерения электричества:
Для простоты сравним электричество с водой, протекающей по трубам. На примере воды под напряжением можно подразумевать силу, с которой вода выталкивается из источника (насоса), а под силой тока – количество воды, проходящей за единицу времени через участок трубы определенного диаметра (сечение провода). Как и в случае с водой в электротехнике сечение провода подбирается в зависимости от силы тока – неправильно выбранный провод просто сгорит при прохождение через него тока большей силы, нежели он рассчитан. Также следует отметить, что электроток может течь лишь в замкнутой цепи и бывает постоянным и переменным. Этот момент разберем подробнее.
Постоянный ток протекает в одном направлении от положительного полюса источника (+) к отрицательному (-), переменный же изменяет направление движения с заданной частотой. Частота – это еще одна единица измерения, применимая лишь к переменному току. По сути это количество изменений направления движения тока в секунду. Измеряется частота в герцах и обозначается буквами Гц, либо латинскими Hz. Так в бытовой электросети частота тока равна 50-ти герцам, то есть ток изменяет свое направление 50 раз в секунду. О переменном токе стоит немного рассказать дополнительно. Так в бытовой однофазной электросети 2 провода – один из них фаза (именно на него подается ток от электростанции), второй провод – нулевой. По сути 0 это пустой провод, по которому ток возвращается обратно к источнику питания (как мы помним электричество способно течь лишь в замкнутой цепи), но с точки зрения безопасности. полагаться на это не стоит. Так, например в замкнутой цепи опасное напряжение присутствует на обоих проводах. Вообще осторожность – главное правило при работе даже с казалось бы, низким и безопасным напряжением. Немного разобравшись с теорией, (к которой еще вернемся) перейдем к более практическим вещам, которые пригодятся при дальнейшей работе с электричеством.
Видео – Что такое электричество
Условные обозначения
Как и в прочих сферах, в электротехнике существуют общепринятые условные обозначения, с основными из которых мы сейчас познакомимся – они пригодятся для дальнейшей работы с электрическими приборами и сетями. Ниже будут приведены условные обозначения и пояснения к ним, начиная с простейших, постепенно переходя к более сложным.
На рисунках 1 и 2 показаны внешне схожие, но принципиально разные обозначения. Впрочем, схематические изображения электро-, а зачастую и радиоэлементов, как правило, интуитивно понятны. Так нетрудно догадаться, что на рисунке 1 обозначено простое пересечение проводников, а на рисунке 2 – их соединение.
Также интуитивно понятны рисунки 3 и 4, на которых изображены выключатель (рис.3) и предохранитель плавкий (рис.4). На предохранителе стоит немного задержаться – это неприметная, но довольно нужная деталь, нередко позволяющая избежать серьезных неприятностей. Назначение предохранителя, как понятно из названия, предохранять проводку и аппарату от повреждений и возгорания. Состоит предохранитель из диэлектрической (не пропускающей электроток) трубки и проводника внутри нее. Проводник этот рассчитан на силу тока, несколько меньшую, чем выдерживает цепь, которую он призван защищать и в случаях скачка напряжения до опасной отметки, предохранитель просто плавится, размыкая тем самым цепь и защищая приборы либо провода от серьезных повреждений, или воспламенения.
Следующие обозначения будут, возможно, не столь понятными, но. думаю, многим знакомыми еще по школьному курсу физики.
Это лампа накаливания, она же обычная электрическая лампочка (рисунок 5).
Резистор (в обиходе – сопротивление, рис. 6), сюда же, пожалуй, добавим все чаще заменяющий обычные лампочки светодиод (рисунок 7), а также элемент, давший название светодиоду – полупроводниковый диод (рисунок 8). О светодиоде расскажу подробнее – свое название он получил благодаря обладанием свойствами полупроводникового диода – пропускать ток только в одну сторону – от анода к катоду (речь сейчас идет о постоянном токе). То есть при подключении к аноду положительного полюса источника питания, ток через диод проходить будет, при подключении же отрицательного полюса ток не проходит и цепь остается разомкнутой. Более подробно это свойство диода показано на рисунке 9, размещенном ниже.
Не менее важными элементами электрических схем являются разъемы питания. Здесь приведен простейший вариант – розетка (рисунок 10) и вилка (рис.11).
Теперь же, зная схематические изображения некоторых основных элементов, можно попробовать научиться читать и составлять схемы.
Учимся читать схемы
Принципиальная электрическая схема устройства – штука на самом деле не такая запутанная и непонятная как кажется с первого взгляда при условии знания условных обозначений элементов. В доказательство мы сейчас вместе разберем схему подключения электрической лампочки через выключатель и предохранитель (рис.12).
Как видно из рисунка, лампочка просто включается в розетку, на одном из проводов (обычно это фаза) установлен выключатель, предохранитель (по правде в этой схеме он не нужен, но все же…) оберегает лампочку и проводку от сгорания в результате скачков напряжения либо короткого замыкания (что тоже, по сути, является скачком напряжения, ибо сила тока при резком падении сопротивления до нуля возрастает в разы – вспомним закон Ома). Немного ознакомившись со схемами и теорией (хотя бы с ее основами), хотелось бы поскорее приступить к практическим работам. Сделать, например, для жены подсветку зеркала в ванной, но, прежде чем приступить к подобной работе, еще немного поговорим об основах – их знание (даже не просто знание, это должно быть в крови и выполняться автоматически) может сохранить нервы, здоровье, а возможно и жизнь.
Что нужно знать начинающему электрику
Первое, что необходимо усвоить при работе с электричеством – технику безопасности, ведь электричество способно не только выполнять полезную работу, но и таит в себе серьезную опасность. Дело в том, что мышцы человека (и не только человека) имеют свойство непроизвольно сокращаться под воздействием электрического тока (вспомните, как судорожно отдергивается рука при ударе током). Точно так же сокращаются и остальные мышцы, включая сердечную и дыхательные, поэтому продолжительное воздействие тока высокого напряжения смертельно опасно. Также следует знать, что по той же причине – сокращение мышц под действием электричества, подозрительных проводов и металлических поверхностей следует касаться только тыльной стороной ладони, поскольку в противном случае, пальцы судорожно сожмут провод. загнав незадачливого испытателя в смертельную ловушку. Помимо поражения электротоком насмерть, существует также риск серьезных ожогов, вызванных электричеством, а также возможно возгорание электропроводки в результате неграмотного ее монтажа. Думаю выше перечислено достаточно причин относиться к технике безопасности, теории и основам электротехники в целом, более серьезно.
Видео – Первое, что должен усвоить начинающий электрик
Основы электротехники для начинающего электрика
В этой главе продолжим изучение электротока, рассмотрим способы его изменения, узнаем больше о постоянном и переменном токе, а также рассмотрим несколько новых условных обозначений элементов. Как уже было сказано выше, бытовая электросеть подключена к источнику переменного тока с частотой колебаний в 50 герц. Эта частота вполне подходит для питания некоторых электроприборов – таких как лампочки, электронагревательные приборы, а также двигатели переменного тока, но подавляющему большинству электропотребителей ток требуется постоянный, причем значительно меньшего напряжения, чем подается в электросеть. Как же решается эта проблема? Сейчас мы рассмотрим этот вопрос в той последовательности, в какой это происходит в самих приборах, где напряжение сначала понижается до нужного и лишь потом преобразуется в постоянное.
Трансформаторы – устройство и принцип работы
Способов понижения напряжения существует несколько, но здесь мы рассмотрим самый простой – понижающий трансформатор (схематическое изображение показано на рисунке 13).
На рис.14 показан самый простой китайский трансформатор, похоже, от магнитофона, но на нем хорошо видно, что однофазный понижающий трансформатор содержит 2 обмотки, внутри которых помещен металлический сердечник. Обмотки называются первичной и вторичной. Первичная содержит большее число витков и включается непосредственно в электросеть вторичная же витков содержит меньше и с нее снимается пониженное напряжение.
Давайте рассмотрим как это работает. Переменный ток (а трансформаторы, дроссели и катушки индуктивности допускается запитывать только переменным током – от постоянного они перегорают), проходя через первичную обмотку, генерирует электромагнитное поле той же частоты, что и подаваемое напряжение. Благодаря металлическому сердечнику, во вторичной обмотке возникает ЭДС (электродвижущая сила) и генерируется выходное напряжение. Рассчитать это напряжение можно зная примерное соотношение количества витков в обмотках. Так, если первичная обмотка содержит 1000 витков и питается от электросети напряжением 220 В, а вторичная – 100 витков, то выходное напряжение трансформатора будет около 22-х В. Эта же зависимость справедлива и в обратную сторону, то есть, если число во вторичной больше, нежели в первичной, то трансформатор будет повышающим. Теперь, зная, как понизить напряжение до необходимого значения, разберем, как преобразовать его в постоянное, ведь. как уже было сказано, большинство приборов запитывается именно постоянным током.
Диод и его выпрямляющие свойства
Для того, чтобы легче понять принцип выпрямления тока диодами, вернемся к разговору о переменном токе. Как разъяснялось ранее, сетевой переменный ток меняет свое направление 50 раз в секунду. Это пояснение дает довольно точное представление о сути переменного тока, но не позволяет понять его структуры. Получить более детальное представление о нем поможет график на рис. 15, где волны изображенные выше нуля по шкале Y являются положительным полупериодом, а те, что располагаются ниже 0 – отрицательным.
Благодаря этому графику, мы понимаем, что фазовый провод становится то положительным, то отрицательным проводником. Видя такое свойство переменного тока, давайте вспомним о полупроводниковом диоде, который, как известно пропускает ток только в одном направлении. Сопоставив два этих знания, мы понимаем. что уже находимся на полпути к решению. И в самом деле, пропуская переменный ток через диод, на выходе мы получаем только положительный полупериод. То есть включив в цепь два диода в разном направлении, на выходе другого мы получим отрицательную полуволну, а это уже почти источник постоянного тока. Но такой ток будет пульсирующим, что непригодно для питания аппаратуры (работать-то она какое-то время будет, но очень скоро придет в негодность). Как быть? А вот тут на выручат еще 2 диода (рис. 16), добавленные в помощь двум первым. Такая схема называется диодным мостом.
Правда и таким образом выпрямленный ток все равно не будет считаться окончательно выпрямленным, его амплитуда будет такой, как показано на рисунке 17.
Плохо? Нормально! Выход есть и о нем мы сейчас поговорим.
Конденсатор и его свойства
Чтобы сгладить пульсацию тока, выпрямленного диодным мостом, нам потребуется конденсатор (схематическое изображение на рисунке 18).
Одним из его свойств является пропускать переменный ток и задерживать постоянный, чем мы и воспользуемся. Благодаря этому свойству конденсатора остаточная пульсация, проходя через него, будет просто «уходить в землю». На рисунке 19 мы видим, как всего лишь один конденсатор сгладил напряжение практически до полностью постоянного.
Как теперь будет выглядеть схема нашего источника постоянного тока показано на рисунке 20.
Что еще нужно знать о конденсаторе? Основным его свойством является обладание электрической емкостью, то есть способностью накапливать электрический ток (да, почти как аккумулятор, только в отличии от него, конденсатор как заряжается, так и отдает весь заряд практически мгновенно). Емкость эта измеряется в фарадах (обозначается буквой Ф, либо латинской F). Правда с такой большой емкостью столкнуться, скорее всего, никогда не придется, чаще всего приходится иметь дело с микрофарадами (1/1000000 доля фарада, обозначается буквами mkF), нанофарадами (1/1000 микрофарада, обозначается nF) и пикофарадами (1/1000 нанофарада, pF).
Также конденсаторы делятся на сухие и электролитические, последние имеют полярность, на рисунке 18 изображен как раз такой. Сухие на схемах обозначаются также, только без знака “+”. Теперь когда мы знаем кое-что о катушках и многое о конденсаторах, стоит узнать и запомнить одну истину, знать которую нужно каждому электрику.
Примечание! Чем выше частота тока тем выше индуктивное сопротивление и ниже емкостное.
В переводе на нормальный русский язык это значит, что в цепи переменного тока катушка обладает высоким сопротивлением, а конденсатор низким, а при постоянном токе – наоборот. Вот почему выше писалось, что в цепь постоянного тока катушки включать нельзя – при отсутствии сопротивления сила тока возрастает во много раз и катушка попросту сгорает.
Инструмент электрика
Для начала перечисленного инструмента вполне достаточно, но со временем его количество будет увеличиваться. Также в будущем понадобится электроинструмент – перфоратор, болгарка, шуруповерт. Все это будет приобретаться с течением времени и количество инструментов будет постоянно расти. К инструментам же можно добавить расходные материалы. К ним относятся изолента, термоусадки, колпачки. соединительные зажимы и клеммные колодки. Горстка всего этого добра всегда должна быть под рукой.
Цены на наборы электромонтажного инструмента
Немного практики – ремонтируем старый удлинитель
Если дома завалялся старый неработающий удлинитель, выкидывать его не стоит. То есть просто не стоило раньше, а теперь после прочтения этого материала уже и поздно. Надо ведь теперь применить полученные знания, отдохнуть от скучной теории, да и просто руки размять. В первую очередь разбирается корпус вилки и самого удлинителя и проверяются контакты. Они могут отгореть, окислиться, может быть переломлен провод на сгибе. Если обнаружилась одна из этих причин, провод аккуратно обрезается ножом, зачищается и прикручивается на место, после чего все собираем как было и проверяем. Заработало? Поздравляю с первым, пусть простым, но все-таки ремонтом электротехники! Нет? Тогда где-то поврежден провод. Иногда встречаюсь с рекомендациями вроде “осмотри провод, посади на скрутку и замотай изолентой”. Можно, конечно сделать и так, но… Начнем с того, что удлинитель сразу теряет первоначальный внешний вид. Потом надежность контакта. Да, скрутку нередко используют в электрике, но в основно в тех местах, где провода неподвижны (например в распределительных коробках). Но провод на наличие повреждений осмотреть все же стоит – если оно находится недалеко от вилки или блока розеток, то его можно просто обрезать, зачистить концы и прикрутить на свое место. Если же повреждение где-то ближе к средине провода, то намного разумнее заменить его новым, желаемой длины и сечения. В итоге удлинитель будет отремонтирован в любом случае, но при замене провода станет более удобным, так как длина и сечение подбирались исходя из потребностей.
Видео – Как починить удлинитель в домашних условиях
Что еще нужно знать электрику – рекомендации, советы, правила
Здесь мы узнаем некоторые правила, которые облегчат дальнейшую работу. Какие-то из них ближе к советам и хитростям, но некоторые знать и выполнять обязательно.
В первую очередь мы вспомним закон Ома, который поможет нам рассчитать силу тока и подобрать подходящее сечение провода. Формулировка закона выглядит так: “сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению”, что в переводе на русский звучит как ” чем выше напряжение, тем выше ток, но при увеличении сопротивления ток понижается” и выражается формулой I=U/R, где I – сила тока, U – напряжение и R – сопротивление. Знание этой формулы облегчит нам выбор подходящего сечения провода.
Еще из полезного – немного о проводах. В последнее время в провода однофазной сети часто добавляют третий, заземляющий, провод. Так вот, земля всегда желтого цвета с зеленой полоской. Ее сложно отлить от нуля при помощи индикатора или тестера, но очень легко это сделать по цветовой маркировки. Добавлю к сказанному, что нуль принято подключать на провод синего цвета.
А это правило следует запомнить и всегда выполнять. Нередко провода соединяют методом скрутки, это принятая практика и, в принципе, вполне допустимо. Но есть один нюанс – скручивать между собой допустимо лишь провода из однородных металлов (к примеру медь с медью). При скручивании меди с алюминием, в месте скрутки со временем появляется оксидная пленка, что ведет к повышению сопротивления и возможному возгоранию.
Магнитные свойства электрического тока были отрыты случайно в 1820 г. датским физиком Гансом Христианом Эрстедом (не путать с Андерсеном). В результате одного из опытов он заметил, что проводник, по котором протекает, отклоняет магнитную стрелку. Узнав об этом открытии, Франсуа Араго, делает о нем устное заявление на заседании Французской Академии. В результате опытов, члены Академии выводят законы электромагнетизма, которые в дальнейшем будут взяты за основу при создании современных электромагнитных приборов (электродвигатели, трансформаторы, генераторы. Даже радиоволны по своей сути – это электромагнитное излучение сверхвысокой частоты).
Вот мы и разобрались немного с основами электротехники (скажу более – некоторые места были посвящены даже радиотехнике), которая на поверку оказалась вовсе не такой непонятной и запутанной. Теперь получив необходимый багаж знаний, можно продолжать двигаться в этом направлении дальше. Тут главное – побольше уверенности! А мы в свою очередь будем постоянно выкладывать все новые и новые советы и интересную информацию по теме.