возникновение нервного импульса под действием раздражителя происходит в чем

Возникновение нервного импульса под действием раздражителя происходит в чем

В результате действия адекватного раздражителя у большинства рецепторов увеличивается проницаемость клеточной мембраны для катионов, что приводит к ее деполяризации. Исключением из общего правила являются фоторецепторы, где после поглощения энергии квантов света в связи особенностями управления ионными каналами происходит гиперполяризация мембраны. Изменение величины мембранного потенциала рецепторов в ответ на действие стимула представляет собой рецепторный потенциал — входной сигнал первичных сенсорных нейронов. Если величина рецепторного потенциала достигнет критического уровня деполяризации или превысит его, генерируются потенциалы действия, с помощью которых сенсорные нейроны передают в центральную нервную систему информацию о действующих стимулах.

Генерация потенциалов действия происходит в ближайшем к рецепторам перехвате Ранвье миелинизированных волокон или ближайшей к рецепторам части мембраны безмиелинового волокна. Минимальная сила адекватного стимула, достаточная для генерации потенциалов действия в первичном сенсорном нейроне, определяется как его абсолютный порог. Минимальный прирост силы стимула, сопровождающийся значимым изменением реакции сенсорного нейрона, представляет собой дифференциальный порог его чувствительности.

возникновение нервного импульса под действием раздражителя происходит в чем. Смотреть фото возникновение нервного импульса под действием раздражителя происходит в чем. Смотреть картинку возникновение нервного импульса под действием раздражителя происходит в чем. Картинка про возникновение нервного импульса под действием раздражителя происходит в чем. Фото возникновение нервного импульса под действием раздражителя происходит в чем

Информация о силе действующего на рецепторы стимула кодируется двумя способами: частотой потенциалов действия, возникающих в сенсорном нейроне (частотное кодирование), и числом сенсорных нейронов, возбудившихся в ответ на действие стимула. При увеличении силы действующего на рецепторы раздражителя повышается амплитуда рецепторного потенциала, что, как правило, сопровождается увеличением частоты потенциалов действия в сенсорном нейроне первого порядка. Чем шире имеющийся частотный диапазон потенциалов действия у сенсорных нейронов, тем большее число промежуточных значений силы раздражителя способна различать сенсорная система. Первичные сенсорные нейроны одинаковой модальности различаются порогом возбуждения, поэтому при действии слабых стимулов возбуждаются только наиболее чувствительные нейроны, но с увеличением силы раздражителя на него реагируют и менее чувствительные нейроны, имеющие более высокий порог раздражения. Чем больше первичных сенсорных нейронов возбудится одновременно, тем сильнее будет их совместное действие на общий нейрон второго порядка, что в итоге отразится на субъективной оценке интенсивности действующего раздражителя.

Длительность ощущения зависит от реального времени между началом и прекращением воздействия на рецепторы, а также от их способности уменьшать или даже прекращать генерацию нервных импульсов при продолжительном действии адекватного стимула. При длительном действии стимула порог чувствительности рецепторов к нему может повышаться, что определяется как адаптация рецепторов. Механизмы адаптации не одинаковы в рецепторах разных модальностей, среди них различают быстро адаптирующиеся (например, тактильные рецепторы кожи) и медленно адаптирующиеся рецепторы (например, проприоцепторы мышц и сухожилий). Быстро адаптирующиеся рецепторы сильнее возбуждаются в ответ на быстрое нарастание интенсивности стимула (фазический ответ), а их быстрая адаптация способствует освобождению восприятия от биологически незначительной информации (например, контакт между кожей и одеждой). Возбуждение медленно адаптирующихся рецепторов мало зависит от скорости изменения стимула и сохраняется при его длительном действии (тонический ответ), поэтому, например, медленная адаптация проприоцепторов позволяет человеку получать нужную ему для сохранения позы информацию в течение всего необходимого времени.

Существуют сенсорные нейроны, генерирующие потенциалы действия спонтанно, т. е. при отсутствии раздражения (например, сенсорные нейроны вестибулярной системы), такая активность называется фоновой. Частота нервных импульсов в этих нейронах может увеличиваться или уменьшаться в зависимости от интенсивности действующего на вторичные рецепторы стимула, кроме того, она может определяться направлением, в котором отклоняются чувствительные волоски механорецепторов. Например, отклонение волосков вторичных механорецепторов в одну сторону сопровождается повышением фоновой активности сенсорного нейрона, которому они принадлежат, а в противоположную сторону — понижением его фоновой активности. Указанный способ рецепции позволяет получать информацию и об интенсивности стимула, и о направлении, в котором он действует.

Источник

Возникновение нервного импульса под действием раздражителя происходит в чем

При образовании потенциалов действия (спайное) в химических синапсах между нейронами происходит высвобождение медиаторов из пузырьков пресинаптической мембраны. Медиатор проходит через синаптическую щель и активирует рецепторы, встроенные в постсинаптическую мембрану нейрона-мишени. Рецепторы, в свою очередь, активируют медиаторозависимые ионные каналы, изменяющие поляризацию нейрона-мишени. При смещении показателей мембранного потенциала от уровня потенциала покоя (-70 мВ) в отрицательную сторону (например, — 80 мВ и более) происходит гиперполяризация мембраны, а при смещении в положительную сторону — деполяризация.

а) Электротонические потенциалы. Первоначальный ответ нейрона-мишени на воздействие возбуждающих импульсов заключается в формировании локальных ступенчатых электротонических потенциалов. Положительные злектротонические потенциалы обычно возникают в мультииолярных нейронах в результате деполяризации, обусловленной активацией медиаторозависимых ионных каналов. При низкочастотном стимулирующем воздействии по дендритам распространяются небольшие волны деполяризации, угасающие в течение 2-3 мс.

В триггерной зоне чувствительных нейронов черешнях и спинномозговых нервов формируется так называемый рецепторный потенциал. В этой области расположено большое количество ионных каналов, активирующихся под воздействием специфических чувствительных стимулов и вызывающих ступенчатое распространение волны деполяризации.

Определение триггерной области миелинизированных нервных волокон не вызывает затруднений: у мультиполярных нейронов эта область граничит с первым миелиновым сегментом с его проксимальной стороны, а у периферических чувствительных нейронов — с последним миелиновым сегментом с его дистальной стороны.

Тормозные (гиперполяризующие) постсинаптические потенциалы возникают при открытии ионных каналов, генерирующих выходящий ток (например, калиевых каналов). Распространение тормозных потенциалов также является угасающим.

возникновение нервного импульса под действием раздражителя происходит в чем. Смотреть фото возникновение нервного импульса под действием раздражителя происходит в чем. Смотреть картинку возникновение нервного импульса под действием раздражителя происходит в чем. Картинка про возникновение нервного импульса под действием раздражителя происходит в чем. Фото возникновение нервного импульса под действием раздражителя происходит в чемВременная суммация.
(А) Аксон чувствительного нейрона (выделен голубым цветом) передает единичный импульс двигательному нейрону,
вызывающий возбуждающему постсинаптический потенциал (ПСП), значения которого не достигают пороговых величин, вследствие чего этот потенциал затухает.
(Б) Аксон чувствительного нейрона передает два импульса.
Происходит временная суммация импульсов с достижением в начальном сегменте аксона пороговых значений возбуждения,
что приводит к формированию потенциала действия, который в дальнейшем распространяется по аксону двигательного нейрона.
возникновение нервного импульса под действием раздражителя происходит в чем. Смотреть фото возникновение нервного импульса под действием раздражителя происходит в чем. Смотреть картинку возникновение нервного импульса под действием раздражителя происходит в чем. Картинка про возникновение нервного импульса под действием раздражителя происходит в чем. Фото возникновение нервного импульса под действием раздражителя происходит в чем(А) Ступенчатая суммация возбуждающих постсинаптических потенциалов (ПСП), за счет которой происходит формирование пикового потенциала. Пунктирной линией указана область, соответствующая графику А.
(Б) Генераторные потенциалы достаточной силы формируют множественные пиковые потенциалы.
возникновение нервного импульса под действием раздражителя происходит в чем. Смотреть фото возникновение нервного импульса под действием раздражителя происходит в чем. Смотреть картинку возникновение нервного импульса под действием раздражителя происходит в чем. Картинка про возникновение нервного импульса под действием раздражителя происходит в чем. Фото возникновение нервного импульса под действием раздражителя происходит в чемПотенциалы действия двигательных и чувствительных нейронов скелетной мускулатуры. ЦНС — центральная нервная система. возникновение нервного импульса под действием раздражителя происходит в чем. Смотреть фото возникновение нервного импульса под действием раздражителя происходит в чем. Смотреть картинку возникновение нервного импульса под действием раздражителя происходит в чем. Картинка про возникновение нервного импульса под действием раздражителя происходит в чем. Фото возникновение нервного импульса под действием раздражителя происходит в чемОсновные характеристики потенциала действия.

Возникновение фазы следовой гиперполяризации объясняют тем, что после полной инактивации потенциалозависимых натриевых каналов многие калиевые каналы остаются открытыми. Восстановление ионных градиентов обеспечивает натрий-калиевый насос.

В ходе подробного изучения натриевых каналов было обнаружено, что их регуляция осуществляется двумя путями. В состоянии покоя (-70 мВ) активационные ворота, расположенные в средней части натриевых и калиевых каналов, закрыты. Первыми на пороговое раздражение реагируют натриевые каналы: происходят открытие активационных ворот и быстрый выход ионов Na + в клетку по концентрационному и электрическому градиентам. При достижении потенциалом действия пиковых значений (+35 мВ) происходит открытие калиевых каналов, а натриевые каналы закрываются инактивационными воротами, представленными глобулярным белком. При реполяризации и восстановлении мембранного потенциала (-70 мВ) активационные натриевые ворота закрываются, а затем вновь открываются инактивационные натриевые ворота, тем самым приводя натриевые каналы в исходное состояние.

Работа потенциалозависимых калиевых каналов регулирует одноворотный механизм: этими каналами управляют только активационные ворота.

Потенциал действия, возникающий в ответ на деполяризацию, подчиняется принципу «все или ничего», согласно которому при достижении пороговых показателей возбуждения происходит открытие потенциалозависимых натриевых каналов. С этой точки зрения потенциал действия отличается от медиаторозависимых потенциалов, суммирующихся для развития потенциалов действия. Кроме того, отличие потенциала действия от других ступенчатых потенциалов заключается в отсутствии затухания; потенциал действия распространяется в полном объеме от сомы вдоль нервного волокна к нервному окончанию (это расстояние для нейронов нижних конечностей может составлять более метра).

Во время фазы нарастания и в начале фазы реполяризации потенциала действия нейрон находится в абсолютно рефрактерном состоянии и не может воспринимать следующие импульсы в результате инактивации потенциалозависимых натриевых каналов. Вслед за этим периодом наступает интервал относительной рефрактерности, во время которого стимул, превышающий исходный более чем на 15 мВ, способен вызвать формирование повторного потенциала действия. Часто для достижения показателя 35 мВ генераторный потенциал производит от 50 до 100 импульсов в секунду (частота составляет от 50 до 100 Гц).

возникновение нервного импульса под действием раздражителя происходит в чем. Смотреть фото возникновение нервного импульса под действием раздражителя происходит в чем. Смотреть картинку возникновение нервного импульса под действием раздражителя происходит в чем. Картинка про возникновение нервного импульса под действием раздражителя происходит в чем. Фото возникновение нервного импульса под действием раздражителя происходит в чемИзменения проницаемости потенциалозависимых натриевых и калиевых каналов, обеспечивающих развитие потенциала действия. возникновение нервного импульса под действием раздражителя происходит в чем. Смотреть фото возникновение нервного импульса под действием раздражителя происходит в чем. Смотреть картинку возникновение нервного импульса под действием раздражителя происходит в чем. Картинка про возникновение нервного импульса под действием раздражителя происходит в чем. Фото возникновение нервного импульса под действием раздражителя происходит в чемПотенциалозависимые натриевые каналы в разные фазы потенциала действия.
(А) В состоянии покоя, предшествующем возбуждению, активационные ворота находятся в закрытом состоянии, а инактивационные — в открытом.
(Б) При преодолении порога возбуждения происходит открытие активационных ворот, что приводит к полному открытию ионного канала.
(В) Инактивационные ворота закрываются, что приводит к закрытию ионного канала.
(Г) При восстановлении потенциала покоя активационные ворота закрываются, а инактивационные — открываются.
Ионный канал возвращается в исходное состояние.
возникновение нервного импульса под действием раздражителя происходит в чем. Смотреть фото возникновение нервного импульса под действием раздражителя происходит в чем. Смотреть картинку возникновение нервного импульса под действием раздражителя происходит в чем. Картинка про возникновение нервного импульса под действием раздражителя происходит в чем. Фото возникновение нервного импульса под действием раздражителя происходит в чемРефрактерные периоды.
АРП — абсолютный рефрактерный период;
ОРП — относительный рефрактерный период.

в) Передача нервных импульсов. Изменение потенциала триггерной зоны распространяется вдоль аксона в соответствии с электротонической траекторией. Положительные заряды внутренней стороны мембраны распространяются в обоих направлениях через аксоплазму. Положительные заряды внешней стороны мембраны аналогичным образом проходят через внеклеточную жидкость и нейтрализуют отрицательный заряд на внешней стороне мембраны. Прилежащий проксимальный участок мембраны достаточно рефрактерен и способен противостоять деполяризации. Одновременно с этим в прилежащем дистальном сегменте возникает локальный ответ (деполяризация), который достигает пороговых величин и распространяется далее вдоль ствола и ветвей аксона к нервным окончаниям, обеспечивая проведение потенциала действия.

Проведение импульса по немиелинизированному нервному волокну происходит непрерывно, а по миелинизированному — сальтаторно (скачкообразно). Миелиновая оболочка выполняет функцию изолятора и располагается между перехватами Ранвье, где сконцентрированы натриевые каналы. В связи с этим в каждом перехвате Ранвье последовательно возникают потенциалы действия за счет распространения положительного тока вдоль аксоплазмы миелинизированного участка аксона и его выхода в области следующего перехвата Ранвье. При распространении тока в обратном направлении по внеклеточной жидкости для повторного заряда деполяризованного участка мембраны снятие положительного заряда приводит к деполяризации следующего перехвата Ранвье.

г) Скорость проведения нервных импульсов. Скорость проведения нервного импульса по немиелинизированным нервным волокнам прямо пропорциональна диаметру аксона. В первую очередь это связано с тем, что больший объем аксоплазмы обеспечивает более высокую скорость продольного распространения возбуждения. Кроме того, чем больше диаметр аксона, тем больше площадь поверхности его плазматической мембраны, следовательно, на ней расположено большее количество ионных каналов, а деполяризация и восстановление заряда мембраны происходят быстрее. Диаметр аксонов варьирует от 0,2 до 2 мкм, а скорость проведения импульсов — от 2 до 25 м/с.

возникновение нервного импульса под действием раздражителя происходит в чем. Смотреть фото возникновение нервного импульса под действием раздражителя происходит в чем. Смотреть картинку возникновение нервного импульса под действием раздражителя происходит в чем. Картинка про возникновение нервного импульса под действием раздражителя происходит в чем. Фото возникновение нервного импульса под действием раздражителя происходит в чемНаправление распространения импульса, показанное в виде прохождения положительного заряда.
(А) Непрерывное проведение импульса по немиелинизированному нервному волокну.
(Б) Скачкообразное проведение импульса по миелинизированному нервному волокну.

д) Механизм действия местных анестетиков. При применении местных анестетиков происходит обратимая блокировка проведения нервных импульсов за счет инактивации натриевых каналов, особенно потенциалозависимых, вследствие чего деполяризация мембраны становится невозможной. Молекулы местных анестетиков связывают белок, окружающий ионные каналы. В течение времени действия анестетика происходит связывание белка, окружающего ионные каналы. Для доступа к этим белкам местные анестетики должны быть хорошо растворимы в жирах. При введении анестетика вблизи периферического нерва в первую очередь происходит инактивация немиелинизированных и тонко миелинизированных Аб-волокон. При воздействии на смешанный нерв может возникнуть временный двигательный паралич.

Большинство местных анестетиков — производные амидов (бупивакаин, лидокаин) или сложных эфиров (бензокаин, новокаин). И те, и другие вызывают местное расширение сосудов за счет прямого расслабления гладкой мускулатуры артериол, что приводит к ускорению их выведения. В связи с этим в растворы для местной анестезии часто добавляют адреналин, вызывающий сокращение гладкой мускулатуры и сужение сосудов.

Первоначальная реакция мультиполярного нейрона на возбуждающий стимул заключается в формировании угасающих волн положительного электротонуса. В результате их временной и/или пространственной суммации происходит образование генераторного потенциала в начальном сегменте аксона. При достижении пороговых значений (-55 мВ) потенциалозависимые ионные каналы генерируют потенциал действия, распространяющийся по нервному волокну. Тормозные стимулы вызывают формирование волн отрицательного электротонуса, суммация которых приводит к гиперполяризации мембраны, тем самым отдаляя величины ее потенциала от пороговых значений.

При достижении потенциала действия максимальных значений происходит открытие потенциалозависимых калиевых каналов, и поток ионов Na + в клетку сменяется потоком ионов К + из клетки, что приводит к реполяризации и следовой гиперполяризации мембранного потенциала.

В течение 1 мс после воздействия первоначального импульса триггерная зона начального сегмента аксона характеризуется абсолютной рефрактерностью к восприятию следующих импульсов, а в течение 3 мс—относительной рефрактерностью. Возникновение потенциалов действия подчиняется принципу «все или ничего» и распространяется по всей длине нервного волокна и его ветвям. Проведение нервных импульсов по немиелинизированным аксонам осуществляется непрерывно, а по миелинизированным—сальтаторно (скачкообразно от одного перехвата Ранвье к другому). Сальтаторное проведение характеризуется большей скоростью. Миелинизированные участки длиннее у волокон с большим диаметром, и скорость проведения импульсов по этим волокнам выше.

Редактор: Искандер Милевски. Дата публикации: 11.11.2018

Источник

2_3 Потенциал действия и нервный импульс

Нервный импульс

Разбираясь в нервных импульсах, мы будем иметь в виду нервное возбуждение, бегущее (=распространяющееся) по мебране нейрона. Строго говоря, движущееся по нейронам и нервам возбуждение представляет собой нервные импульсы, а не потенциалы действия, хотя в физиологической литературе два этих понятия обычно используют как синонимы.

возникновение нервного импульса под действием раздражителя происходит в чем. Смотреть фото возникновение нервного импульса под действием раздражителя происходит в чем. Смотреть картинку возникновение нервного импульса под действием раздражителя происходит в чем. Картинка про возникновение нервного импульса под действием раздражителя происходит в чем. Фото возникновение нервного импульса под действием раздражителя происходит в чем

Можно сказать короче:

Потенциал действия – это резкое скачкообразное изменение мембранного потенциала с отрицательного на положительный и обратно.

возникновение нервного импульса под действием раздражителя происходит в чем. Смотреть фото возникновение нервного импульса под действием раздражителя происходит в чем. Смотреть картинку возникновение нервного импульса под действием раздражителя происходит в чем. Картинка про возникновение нервного импульса под действием раздражителя происходит в чем. Фото возникновение нервного импульса под действием раздражителя происходит в чем

Сравните два приведённых выше рисунка (покликайте по ним) и, как говорится, почувствуйте разницу!

Где рождаются нервные импульсы?

Как ни странно, не все студенты, изучившие физиологию возбуждения, могут ответить на этот вопрос. ((

Хотя ответ не сложен. Нервные импульсы рождаются на нейронах всего в нескольких местах:

1) аксонный холмик (это переход тела нейрона в аксон),

2) рецепторное окончание дендрита,

3) первый перехват Ранвье на дендрите (триггерная зона дендрита),

4) постсинаптическая мембрана возбуждающего синапса.

Места возникновения нервных импульсов:

Важно также учесть следующий факт. От аксонного холмика нервный импульс разбегается по всей мембране своего нейрона: как по аксону к пресинаптическоим окончаниям, так и по дендритам к постсинаптическим «начинаниям». Все локальные потенциалы при этом снимаются с мембраны нейрона и со всех его синапсов, т.к. они «перебиваются» потенциалом действия от пробегающего по всей мембране нервного импульса.

2. Рецепторное окончание чувствительного (афферентного) нейрона.

Если нейрон имеет рецепторное окончание, то на него может воздействовать адекватный раздражитель и порождать на этом окончании сначала рецепторный потенциал, затем генераторный потенциал, а потом и нервный импульс. Когда генераторный потенциал достигает КУД, то на этом окончании открываются потенциал-зависимые натриевые ионные каналы и рождается потенциал действия и нервный импульс. Нервный импульс бежит по дендриту к телу нейрона, а затем по его аксону к пресинаптическим окончаниям для передачи возбуждения на следующий нейрон. Так работают, к примеру, болевые рецепторы (ноцицепторы), являющиеся дендритными окончаниями болевых нейронов. Нервные импульсы в болевых нейронах вознимают именно на рецепторных окончаниях дендритов.

3. Первый перехват Ранвье на дендрите (триггерная зона дендрита).

4. Постсинаптическая мембрана возбуждающего синапса.

В редких случаях ВПСП на возбуждающем синапсе может быть настолько силён, что прямо там же достигает КУД и порождает нервный импульс. Но чаще это бывает возможно только в результате суммации нескольких ВПСП: или с нескольких соседних синапсов, сработавших одновременно (пространственная суммация), или за счёт того, что на данный синапс пришло несколько импульсов подряд (временная суммация).

Видео: Проведение нервного импульса по нервному волокну

Потенциал действия как нервный импульс

Ниже размещён материал, взятый из учебно-методического пособия автора данного сайта, на который вполне можно ссылаться в своём списке литературы:

Сазонов В.Ф. Понятие и виды торможения в физиологии центральной нервной системы: Учебно-методическое пособие. Ч. 1. Рязань: РГПУ, 2004. 80 с.

Все процессы мембранных изменений, происходящих в ходе распространяющегося возбуждения, достаточно хорошо изучены и описаны в научной и учебной литературе. Но не всегда это описание легко понять, поскольку в данном процессе задействовано слишком много компонентов (с точки зрения обычного студента, а не вундеркинда, конечно).

Для облегчения понимания мы предлагаем рассматривать единый электрохимический процесс распространяющегося динамичного возбуждения с трех сторон, на трех уровнях:

Электрические явления – развитие потенциала действия.

Химические явления – движение ионных потоков.

Структурные явления – поведение ионных каналов.

Три стороны процесса распространяющегося возбуждения

1. Потенциал действия (ПД)

Потенциал действия – это скачкообразное изменение постоянного мембранного потенциала с отрицательной поляризации на положительную и обратно.

Обычно мембранный потенциал в нейронах ЦНС изменяется от –70 мВ до +30 мВ, а затем вновь возвращается к исходному состоянию, т.е. к –70 мВ. Как видим, понятие потенциала действия характеризуется через электрические явления на мембране.

Кратко опишем электрические явления во время течения потенциала действия:

возникновение нервного импульса под действием раздражителя происходит в чем. Смотреть фото возникновение нервного импульса под действием раздражителя происходит в чем. Смотреть картинку возникновение нервного импульса под действием раздражителя происходит в чем. Картинка про возникновение нервного импульса под действием раздражителя происходит в чем. Фото возникновение нервного импульса под действием раздражителя происходит в чем

Восходящая ветвь графика:

потенциал покоя – исходное обычное поляризованное электроотрицательное состояние мембраны (–70 мВ);

нарастающий локальный потенциал – пропорциональная раздражителю деполяризация;

критический уровень деполяризации (–50 мВ) – резкое ускорение деполяризации (за счет самораскрытия натриевых каналов), с этой точки начинается спайк – высокоамплитудная часть потенциала действия;

самоусиливающаяся круто нарастающая деполяризация;

переход нулевой отметки (0 мВ) – смена полярности мембраны;

«овершут» – положительная поляризация (инверсия, или реверсия, заряда мембраны);

пик (+30 мВ) – вершина процесса изменения полярности мембраны, вершина потенциала действия.

Нисходящая ветвь графика:

реполяризация – восстановление прежней электроотрицательности мембраны;

переход нулевой отметки (0 мВ) – обратная смена полярности мембраны на прежнюю, отрицательную;

переход критического уровня деполяризации (–50 мВ) – прекращение фазы относительной рефрактерности (невозбудимости) и возврат возбудимости;

следовые процессы (следовая деполяризация или следовая гиперполяризация);

восстановление потенциала покоя – норма (–70 мВ).

Итак, сначала – деполяризация, затем – реполяризация. Сначала – утрата электроотрицательности, затем – восстановление электроотрицательности.

Образно можно сказать, что заряженные ионы – это и есть создатели электрических потенциалов в нервных клетках. Для многих людей звучит странно утверждение, что вода не проводит электрический ток. Но на самом деле это так. Сама по себе вода является диэлектриком, а не проводником. В воде электрический ток обеспечивают не электроны, как в металлических проводах, а заряженные ионы: положительные катионы и отрицательные анионы. В живых клетках основную «электрическую работу» выполняют катионы, так как они более подвижны. Электрические токи в клетках – это потоки ионов.

На химическом уровне мы, описывая распространяющееся возбуждение, должны рассмотреть, как изменяются характеристики ионных потоков, идущих через мембрану. Главное в этом процессе то, что при деполяризации резко усиливается поток ионов натрия внутрь клетки, а затем он внезапно прекращается на спайке потенциала действия. Входящий поток натрия как раз и вызывает деполяризацию, так как ионы натрия приносят с собой положительные заряды в клетку (чем и снижают электроотрицательность). Затем, после спайка, значительно нарастает выходящий наружу поток ионов калия, что вызывает реполяризацию. Ведь калий, как мы неоднократно говорили, выносит с собой из клетки положительные заряды. Отрицательные заряды остаются внутри клетки в большинстве, и за счет этого усиливается электроотрицательность. Это и есть восстановление поляризации за счет выходящего потока ионов калия. Заметим, что выходящий поток ионов калия возникает практически одновременно с появлением натриевого потока, но нарастает медленно и длится в 10 раз дольше. Несмотря на продолжительность калиевого потока самих ионов расходуется немного – всего одна миллионная доля от запаса калия в клетке (0,000001 часть).

Подведем итоги. Восходящая ветвь графика потенциала действия образуется за счет входа в клетку ионов натрия, а нисходящая – за счет выхода из клетки ионов калия.

Параллельно в открытием натриевых каналов с небольшим отставанием во времени идет нарастающее открытие калиевых каналов. Они медлительные по сравнению с натриевыми. Открытие дополнительных калиевых каналов усиливает выход положительных ионов калия из клетки. Выход калия противодействует «натриевой» деполяризации и вызывает восстановление полярности (восстановление электроотрицательности). Но натриевые каналы опережают калиевые, они срабатывают примерно в 10 раз быстрее. Поэтому входящий поток положительных ионов натрия в клетку опережает компенсирующий выход ионов калия. И поэтому деполяризация развивается опережающими темпами по сравнению с противодействующей ей поляризацией, вызванной утечкой ионов калия. Вот почему, пока натриевые каналы не закроются, восстановление поляризации не начнется.

Пожар как метафора распространяющегося возбуждения

Для того чтобы перейти к пониманию смысла динамичного процесса возбуждения, т.е. к пониманию его распространения вдоль мембраны, надо представить себе, что описанные нами выше процессы захватывают сначала ближайшие, а затем все новые, все более и более отдаленные участки мембраны, пока не пробегут по всей мембране полностью. Если вы видели «живую волну», которую устраивают болельщики на стадионе за счет вставания и приседания, то вам легко будет представить себе мембранную волну возбуждения, которая образуется за счет последовательного протекания в соседних участках трансмембранных ионных токов.

Когда мы искали образный пример, аналогию или метафору, которая может наглядно передать смысл распространяющегося возбуждения, то остановились на образе пожара. Действительно, распространяющееся возбуждение похоже на лесной пожар, когда горящие деревья остаются на месте, а фронт огня распространяется и уходит все дальше и дальше во все стороны от очага возгорания.

Как же в этой метафоре будет выглядеть явление торможения?

Ответ очевиден – торможение будет выглядеть как тушение пожара, как уменьшение горения и затухание огня. Но если огонь распространяется сам по себе, то тушение требует усилий. Из потушенного участка процесс тушения сам по себе не пойдет во все стороны.

Существует три варианта борьбы с пожаром: (1) либо надо ждать, когда все сгорит и огонь истощит все горючие запасы, (2) либо надо поливать водой горящие участки, чтобы они погасли, (3) либо надо поливать заранее ближайшие нетронутые огнем участки, чтобы они не загорелись.

Можно ли «погасить» волну распространяющегося возбуждения?

Вряд ли нервная клетка способна «погасить» этот начавшийся «пожар» возбуждения. Поэтому первый способ подходит только для искусственного вмешательства в работу нейронов (например, в лечебных целях). Но вот «залить водичкой» некоторые участки и поставить блок распространению возбуждения, оказывается, вполне возможно.

© Сазонов В.Ф. Понятие и виды торможения в физиологии центральной нервной системы: Учебно-методическое пособие. Ч. 1. Рязань: РГПУ, 2004. 80 с.

АВТОВОЛНЫ В АКТИВНО-ВОЗБУДИМЫХ СРЕДАХ (АВС)

Основные свойства волн, распространяющихся в активно-возбудимых средах (АВС)

Видео: Потенциал действия (Action potential)

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *