волоконный лазер что это
Как работает волоконный лазер
Волоконное оборудование — это разновидность твердотельного оборудования для генерации высокотемпературного излучения. Луч, создаваемый станками подобного типа, имеет длину волны 1,064 мкм и отличается крайне малым углом расхождения, высокой мощностью, когерентностью, монохроматичностью.
Оптоволоконные лазерные аппараты в ассортименте: от небольших настольных вариантов до мощнейших промышленных устройств
Преимущественной сферой использования волоконных устройств является резка и гравировка широкой группы металлов и их сплавов, а также обработка керамики, камня и некоторых видов пластиков.
Плюсы и характерные преимущества волоконного лазерно-гравировального оборудования
Аппараты лазерной резки на основе оптоволокна обладают максимальным количеством производственных достоинств, чем и обусловлен тот факт, что именно такие станки можно встретить сегодня в большинстве цехов дерево-, металлообработки и прочих промышленных предприятий. В первую очередь необходимо упомянуть такие пункты, как:
Сварка двух металлических элементов с использованием лазерного луча
Как работает волоконный лазер
Схематическое изображение процесса генерации лазерного излучения в оптическом волокне
Работа волоконного станка основана на использовании тончайших по диаметру нитей кварца (400-600 мкм), имеющих ярко выраженный отражательный эффект. Обязательным сопутствующим компонентом выступают полупроводниковые диоды, которые накачивают оптический элемент энергией. Для стабильной работы и исключения вероятности повреждений волокно заключено в полимерную оболочку и внешнее защитное покрытие. Мощность станка зависит от количества диодных ламп (одна или несколько) и протяженности волоконного кабеля, средняя длина которого составляет 20-40 м, а в отдельных случаях может доходить до 100 м.
В самом волокне имеется несколько волноводов, один из которых (центральный, диаметром всего 6-12 мкм) имеет легирующее покрытие, а остальные являются проводниками излучения, поступающего от диодов. Постепенно напитываясь светом от диодов, второстепенные волноводы передают энергию в основной, приводя иттербиевую среду (наиболее часто используемый тип покрытия в промышленных волоконных аппаратов) в активное состояние.
Лазерное волокно вместе в оптическими диодами. Для удобства хранения, волоконный кабель скручивают в бухту и укладывают между зажимами, установленными на крышке лазерного шкафа
Для улучшения характеристик луча и увеличения его мощности в начале и конце волоконного кабеля устанавливаются отражающие зеркала (обычное и полупрозрачное). Кроме этого на крайние участки легированной иттербием сердцевины наносят насечки, формируя дифракционную решетку, называемую также брэгговской. Такой метод позволяет регулировать длину импульса и когерентность излучения.
При включении волоконного оборудования загораются диодные лампы и начинается процесс накачки волокна, после чего можно запускать программу обработки, заложенную предварительно в память станка или запущенную через подсоединенный к нему компьютер. Луч, выходящий из одного из концов кабеля, падает на фокусирующую линзу, установленную на подвижной лазерной головке, и передается с ее помощью на поверхность материала.
Детальный видеообзор на профессиональный лазерный станок Wattsan 6040. Внутренее устройство и технические характеристики оборудования.Побывали в гостях на производстве предприятия «АЛЬТАИР», которое успешно занимается производством деревянных игрушек и сувенирной продукции.
Видео с производства компании Пластфактория — наш уже постоянный клиент, который занимается POS-материалами и работает с крупными косметическими брендами.
Волоконный лазер, как устроен, сравнение с СО2 лазером, преимущества и недостатки
Волоконный лазер — универсальный инструмент, который активно используется в различных направлениях промышленности. Его КПД составляет около 70%, что позволяет сократить временные затраты на выполнение работ любой сложности.
Устройство состоит из двух основных частей: ламп накачки и оптического кабеля, внутри которого расположено светопроводящее волокно и сердцевиной из прозрачного кварца.
Это позволяет обеспечить максимальную точность лазерного луча и возможность направить его на конкретный участок обрабатываемой поверхности. На концах центрального стержня также расположена дифракционная решетка в виде нанесенных особым образом штрихов.
Именно насечки отвечают за быстрое отражение луча от поверхности, что позволяет поддерживать необходимую длину волны в течение всей работы, а также сохранить монохромность луча.
Для чего используется волоконный лазер
Волоконный лазер можно назвать универсальным инструментом, который используется на производствах различных назначений. Он с точностью вырезает даже острые углы, а также подходит для обработки поверхностей с требованиями высокой точности в работе.
Основное назначение волоконного лазера – работа с металлами различной толщины и уровня плотности.
Отличается широтой сфер применения и используется при:
Волоконный лазер отлично справляется с обработкой не только металлов, но и камня (искусственного и натурального), стекла, некоторых видов пластика.
Отличия волоконного и CO2 лазеров
Основной волоконного лазера является оптически активное волокно, лазера CO2 – смесь газов, ключевым среди которых является углекислый.
Основное различие двух лазеров заключается в длине волны – для газового показатель составляет 10,6 кмк, тогда как для волоконного всего 1,06 кмк, что позволяет добиться высокой точности при обработке и сохранить поверхность вокруг обрабатываемого участка нетронутой, не нагретой.
Сокращенная длина волны волоконного лазера также обеспечивает увеличенную скорость обработки металлов и камня, а также получение идеально гладкой поверхности материала.
Главный недостаток волоконного лазера заключается в сложностях при обработке НЕметаллов, что с легкостью обеспечивается при помощи лазера CO2.
Главные отличия волоконного и газового лазеров можно обозначить следующим образом:
Волоконный лазер – оборудование нового поколения, которое применяется практически во всех сферах, где требуется комплексная обработка металлов, камня или стекла (в некоторых случаях – пластика).
Простота установки и легкость самой конструкции позволяют использовать его в том числе в небольших промышленных центрах, ювелирных мастерских (при изготовлении украшений, нанесении гравировки на поверхность).
Преимущества использования волоконного лазера
Волоконный лазер – удобный, универсальный и производительный лазер, который в промышленности просто незаменим.
Он используется на основе оптически активного или кварцевого волокна, генерация излучения происходит непосредственно в волокне и уже оттуда поступает к месту обработки материала.
Волоконный лазер имеет широкий список преимуществ перед газовыми и твердотельными аппаратами, среди которых:
Луч волоконного лазера действует направленно и позволяет обработать поверхность небольшого размера – материал вокруг при этом не нагревается. Излучение быстро поглощается различными металлами, поэтому использование лазера такого плана безопасно для окружающих.
Волоконный лазер – достаточно компактное оборудование, подходящее для решения широкого спектра задач.
Где заказать волоконный лазер
Компактность волоконного лазера позволяет разместить его практически в любом помещении и сократить затраты на доставку, установку. На качество обработки металлов, стекла и камня в первую очередь влияет качество поставляемого оборудования, поэтому приобретать его следует только в проверенном месте.
Заказать волоконынй лазерный станок для резки и гравировки металла Вы можете в нашей компании – мы работаем на рынке не первый год и точно знаем, каким должно быть оптоволоконное оборудование высокого качества.
Какие преимущества сотрудничества мы предлагаем:
Если вы не имеете опыта, как правильно настроить и запустить волоконный лазер, наши специалисты помогут вам с решением всех спорных вопросов. Предлагаем консультацию в том числе при выборе оборудования и оформлении заказа.
Волоконный лазер что это
В мире лазеров лишь немногие системы, похоже, завоевали популярность среди пользователей так же быстро, как ранние волоконно-лазерные системы.
Это не удивительно. Волоконные лазеры представляют собой значительный скачок по сравнению с тем, что было возможно с более ранними технологиями, такими как первые диодные системы с накачкой, или с установленными методологиями, такими как СО2-лазер.
Для инженеров и ученых волоконный лазер представляет собой устройство, в котором «среда с активным усилением представляет собой оптическое волокно, легированное редкоземельными элементами, такими как эрбий, иттербий, неодим, диспрозий, празеодим, тулий и гольмий».
Но для неинженеров и тех, кто не совсем научен, такое объяснение оставляет желать лучшего.
Итак, давайте объясним.
Волокно вместо газа
Этот уровень луча подходит для резки самых разных материалов. CO2-лазеры также полезны в медицинских ситуациях, таких как хирургия мягких тканей или дерматология.
В отличие от этого, волоконный лазер заменяет газ обычным оптическим волокном, изготовленным из кварцевого стекла. Это волокно затем «легируется», когда к нему добавляется чуть-чуть одного из редкоземельных элементов.
Атомы, составляющие лазерную среду, затем помещаются в это легированное редкоземельными элементами волокно. Когда фотоны испускаются, они заключены внутри этой легированной волоконной сердцевины.
Почему выбирают волоконный лазер?
Идея ограничить фотоны в легированном редкоземельным волокном волокне дает его главное преимущество перед конкурентами: стабильность.
Поскольку волоконный лазер генерирует свой луч внутри сердечника, для доставки луча не требуется сложное или чувствительное оптическое оборудование.
С другой стороны, обычный лазер использует оптическое волокно для перемещения лазерного луча или зеркала, чтобы отражать его. Любой подход работает, но оба требуют чрезвычайно точного выравнивания. Это делает обычные лазеры чувствительными к движению и ударам. И как только все выходит из строя, специалист должен все исправить.
У волоконного лазера такой чувствительности нет. Это стабильно. Волоконный лазер может справиться с ударами, ударами, вибрациями и общим диссонансом на любой сборочной линии.
Есть еще одно преимущество, заключающееся в том, что лазерный луч ограничен сердечником из легированного волокна: он удерживает луч прямым и небольшим.
Это, в свою очередь, позволяет малым и необходимость фокусировки. Как правило, в лазерах чем меньше точка, создаваемая лучом, тем эффективнее резка.
Еще одним преимуществом является то, что волоконные лазеры являются энергоэффективными.
Волоконный лазер может преобразовать почти 100 процентов входного сигнала, который он получает, в луч, тем самым ограничивая количество энергии, преобразуемой в тепловую энергию. Это означает, что волокно имеет тенденцию оставаться защищенным от теплового повреждения или разрушения.
Все это создает надежный лазер, который практически не требует обслуживания.
Телесис и волоконный лазер
Волоконные лазеры имеют долгую историю. Они были впервые изобретены Элиасом Снитцером в 1963 году. Но первые коммерческие модели появились на рынке только в конце 1980-х годов.
Нашей первой моделью был лазер на основе иттербиевого волокна. В нем использовался подход, получивший признание в коммуникациях, но Telesis признал, что его можно адаптировать для использования в маркировочных материалах. Это было потрясающее развитие. Этот новый стиль лазерной маркировки был самой передовой технологией своей эпохи.
Его основной прорыв был связан с его устойчивым характером. Иттербиевый волоконный лазер производил время работы 20,000 часов и выше. Такая успешная технология доказала, что она до сих пор широко используется для маркировки поверхностей.
Следующим шагом для Telesis стала разработка лазерной системы Vanadate. В этой системе используется кристалл из ванадата (соединение химического элемента ванадия) с волоконно-связанными диодами.
Лазер Ванадат производит луч очень высокого качества, который может производить необычайно тонкие линии на удивительно широком диапазоне материалов.
Сегодняшние модели
Сегодня Telesis производит и продает несколько разновидностей не требующих обслуживания лазеров с иттербиевым волокном с модуляцией добротности специально для маркировки.
Наши модели электростанций называются Серия FiberЭти лазеры имеют средние уровни мощности от 10 до 100 Вт и подают мощный лазерный луч прямо на маркировочную головку с помощью гибкого оптоволоконного кабеля в металлической оболочке.
Волоконно-оптические технологии и прочная механическая конструкция делают лазеры идеально подходящими для промышленных сред, где удары, вибрация и пыль могут оказаться слишком многими другими подходами.
Конструкция волоконно-оптических маркеров серии F позволяет сделать корпус в целом очень маленьким и модульным, что облегчает его интеграцию в различные промышленные приложения. Системы лазерной маркировки серии Fiber обеспечивают лучшую в своем классе надежность MTBF-диода на 100,000 110 часов без требований к водяному охлаждению и только для однофазного питания 220/XNUMX В переменного тока.
Недавно мы выпустили совершенно новую продуктовую линейку, нацеленную на снижение затрат при одновременном повышении скорости производства для производственных клиентов.
Идея позади Импульсная волоконная лазерная маркировочная система с двумя головками Это просто: пусть один человек, использующий только один персональный компьютер, может одновременно управлять несколькими лазерами.
Тем не менее, несмотря на эту простоту, система Dual Head поддерживает качество луча, которым известны все волоконные лазеры Telesis, а также надежность работы MTBF-диода в 100,000 XNUMX часов. Система Dual Head полностью охлаждается воздухом и питается от однофазной электрической розетки.
Самое главное, что система Dual-Head позволяет легко перейти от более традиционной печати цифровых кодов к современной 2D-матричной печати, которая может кодировать большие объемы данных отслеживания.
Крупные производители видят выгоду. Система с двумя головками была развернута и протестирована на ведущих производителях, таких как Harley-Davidson® Motorcycles и Nissan® Motor Co. Ltd.
Волоконные лазеры следующего поколения
В быстро меняющемся мире технологии волоконных лазеров ни одна компания не может почивать на лаврах. Даже такая компания, как Telesis.
Наш последний прорыв только недавно вошел в производство: Лазерная система на 100 Вт.
Сообщество инженеров давно знает об исключительной мощи 100-ваттных волоконных лазеров. Но люди в C-suite давно знают, что лазерные системы с таким уровнем власть была слишком дорогой для всех, кроме немногих. Вот почему Telesis поручил нашей команде ученых и инженеров мирового уровня создать доступную версию такой системы.
Примечательно, что они сделали это.
Наш новый мощный волоконный лазер делает глубокие (0.3 миллиметра) метки за один проход! Благодаря такой скорости и глубине 100-ваттный лазер идеально подходит для таких применений, как создание меток VIN в автомобильной промышленности или идентификаторов деталей для авионики.
Производители взволнованы. Мы продали три из этих новых волоконных лазерных систем, пока они еще тестировались!
С прорывом 100-ваттного оптоволоконного лазера хочется сказать, что индустрия достигла своего апогея. Чего еще можно ожидать от волоконного лазера?
Мы намерены выяснить.
Наши инженеры знают, что надежная природа волоконно-лазерных машин в сочетании с точным лучом, который они производят, указывают на будущее все более быстрых и менее дорогих маркировочных устройств.
На самом деле, у них уже есть несколько сюрпризов. Так что следите за обновлениями.
В отличие от многих других производителей, Telesis производит самые разные маркировочные машины, используя самые разные технологии. Это первая статья из серии, в которой объясняются различные технологии, которые мы используем, и рассматриваются их преимущества и недостатки в любой конкретной среде.
Как устроен волоконный лазер
Волоконный лазерный аппарат представляет собой мощный станок для создания одномодового излучения с максимально высокими рабочими и качественными характеристиками. Оптоволоконные устройства для обработки материалов занимают порядка одной четвертой части всего рынка производственного оборудования.
Диаметр волоконного излучателя имеет микро значения, поэтому луч с абсолютной точностью вырезает острые углы и прочие сложные формы даже в листе металла повышенной твердости и большой толщины
Луч, сформированный в оптоволоконной среде, предназначен преимущественно для работы с металлическими поверхностями, поэтому в числе сфер применения данного типа оборудования выступают такие, как:
Кроме металлов волоконный станок хорошо зарекомендовал себя в работе с камнем, стеклом и некоторыми видами пластика, поэтому его используют и в тех отраслях, которые массово используют работе эти материалы (рекламная индустрия, некоторые виды строительных работ и т. д.).
Достоинства оптоволоконных станков
Приоритетность в использовании твердотельного оборудования (именно к этой категории и относятся волоконные лазеры) перед любыми другими станками объясняется большим количеством экономических и качественных преимуществ, главными из которых являются следующие:
Устройство волоконного лазера
Протяженность оптического кабеля может составлять от пары метров до 40, а то и 100 метра, поэтому для оптимизации пространства его скручивают кольцами и укладывают на поверхности оборудования
Волоконный принцип преобразования светового излучения в лазерное является одним из самых совершенных. Эффективность процесса получения полезной энергии составляет порядка 80-90%, при этом в ходе генерации лазера практически полностью исключены искажения волнового фронта и потери мощности луча на всем оптическом маршруте.
Система лазерообразования волоконных устройств состоит из двух основных частей: ламп накачки (полупроводниковых диодов) и оптического кабеля. Внутри последнего расположено светопроводящее волокно с сердцевиной из прозрачного кварца, легированного ионами редкоземельных элементов (в большинстве станков, используемых в промышленности, это иттербий). На концах центрального стержня чаще всего делают брэгговскую (дифракционную) решетку, представляющую собой штрихи, нанесенные определенным образом. Участки с насечками имеют измененную отражательную способность и выступают в качестве резонаторов, отражая свет, распространяющийся вдоль волокна, и поддерживая требуемую длину волны. Благодаря им луч сохраняет свою монохромность и прочие качественные характеристики.
Оптическое волокно в разрезе
Диодные лампы включаются при запуске станка и начинают подпитывать световод энергией, одновременно накачивая волокно на всей его протяженности и приводя сердцевину в рабочее состояние. Это активирует иттербиевое покрытие, которое начинает генерировать ионы, причем, благодаря брэгговской решетке, выступающей в роли отражающих зеркал, часть светового потока постоянно присутствует внутри волокна, порождая создание все новых атомов. Вторая половина световой энергии вырывается наружу стабильным и мощным лазерным лучом.
Сторона оптического кабеля, предназначенная для выхода лазерного потока, соединяется с подвижной режущей головкой, размещенной над поверхностью материала. Фокусирующая линза внутри головки автоматически или по командам управляющей программы сводит луч в световое пятно нужного диаметра и направляет его в зону реза.
Детальный видеообзор на профессиональный лазерный станок Wattsan 6040. Внутренее устройство и технические характеристики оборудования.Побывали в гостях на производстве предприятия «АЛЬТАИР», которое успешно занимается производством деревянных игрушек и сувенирной продукции.
Видео с производства компании Пластфактория — наш уже постоянный клиент, который занимается POS-материалами и работает с крупными косметическими брендами.