водородное топливо чем опасно

Автомобиль на водороде. Пора ли прощаться с бензином?

водородное топливо чем опасно. Смотреть фото водородное топливо чем опасно. Смотреть картинку водородное топливо чем опасно. Картинка про водородное топливо чем опасно. Фото водородное топливо чем опасно

Привет, Хабр! К нашей прошлой статье о водородной энергетике вы написали очень интересные и справедливые комментарии, ответы на которые вы сможете найти в этом материале, посвященном использованию водорода в автомобилях.

Действительно, в сравнении с бензином водород — одна сплошная проблема: его очень трудно хранить и непросто получать, он взрывоопасен, а водородные автомобили в разы дороже бензиновых. Но при этом водород считается наиболее перспективным видом альтернативного топлива для транспорта. К тому же, на производство водородных автомобилей инвесторы готовы тратить многомиллиардные инвестиции.

Приговор бензину уже подписан

Согласно последнему отчету BP Statistical Review of World Energy 2018, мировые разведанные запасы нефти составляют 1,696 млрд баррелей, чего при сохранении текущего уровня потребления хватит лет на пятьдесят. Неразведанные запасы нефти, предположительно, дадут нам еще полвека углеводородной энергетики, но и стоимость ее добычи может оказаться такой, что нефть попросту станет невыгодна в сравнении с другими источниками энергии. Когда месторождения с удобной добычей истощатся, цена на сырье автоматически пойдет вверх: если сейчас стоимость добычи барреля в России некоторыми оценивается в 2-3 доллара (по альтернативным оценкам, в 18 долларов), то для сланцевой нефти это уже 30-50 долларов. А впереди у человечества реальная перспектива перейти на добычу шельфовой и арктической нефти, цена которой будет еще выше.

Всплеск интереса к электротранспорту в 70-х годах XX века возник как раз на фоне скачкообразного роста цен на нефть из-за политического кризиса — недостатка в сырье не было, но четырехкратный рост цен мгновенно сделал бензиновые автомобили и нефтяную энергетику роскошью.

А еще на пути бензиновых авто встали более спорные препятствия — забота об экологии в городах и странах, где автомобильный выхлоп стал проблемой. Из-за этого, например, Германия приняла резолюцию о запрете производства автомобилей с ДВС с 2030 года. Франция и Великобритания обещают отказаться от углеводородного топлива до 2040 года. Нидерланды — до 2030 года. Норвегия — до 2025 года. Даже Индия и Китай рассчитывают запретить продажи дизельных и бензиновых авто с 2030 года. Париж, Мадрид, Афины и Мексика запретят к использованию дизельные машины с 2025 года.

Сжигание водорода в ДВС

Сжигание водорода в обычном двигателе внутреннего сгорания кажется самым простым и логичным способом применения газа, ведь водород легко воспламеняется и сгорает без остатка. Однако из-за разницы в свойствах бензина и водорода перевести ДВС на новый вид топлива оказалось не так-то просто. Сложности возникли с долгосрочной эксплуатацией движков: водород вызывал перегрев клапанов, поршневой группы и масла, из-за втрое большей, чем у бензина, теплоты сгорания (141 МДж/кг против 44 МДж/кг). Водород неплохо показывал себя на низких оборотах движка, но при росте нагрузки возникала детонация. Возможным решением проблемы была замена водорода на бензиново-водородную смесь, концентрация газа в которой динамически уменьшалась по мере роста оборотов двигателя.

водородное топливо чем опасно. Смотреть фото водородное топливо чем опасно. Смотреть картинку водородное топливо чем опасно. Картинка про водородное топливо чем опасно. Фото водородное топливо чем опасно
Двухтопливная BMW Hydrogen 7 в кузове E65 сжигает водород в ДВС вместо бензина
Источник: Sachi Gahan / Flickr

Одним из немногих серийных автомобилей, где водород сжигался в ДВС подобно другому топливу, стал BMW Hydrogen 7, вышедший всего в 100 экземплярах в 2006–2008 годах. Модифицированный шестилитровый ДВС V12 работал на бензине или водороде, переключение между видами топлива происходило автоматически.

Несмотря на успешное решение проблемы перегрева клапанов, на этом проекте все равно поставили крест. Во-первых, при сжигании водорода мощность двигателя падала примерно на 20% — с 260 л. с. на бензине до 228 л. с. Во-вторых, 8 кг водорода хватало всего на 200 км пробега, что в разы меньше, чем в случае с дизельными элементами. В-третьих, Hydrogen 7 появился слишком рано — когда «зеленые» автомобили еще не были так актуальны. В-четвертых, ходили упорные слухи, что Агентство по охране окружающей среды США не разрешило называть Hydrogen 7 автомобилем без вредного выхлопа — из-за особенностей работы ДВС, частицы моторного масла попадали в камеру сгорания и там воспламенялись вместе с водородом.
водородное топливо чем опасно. Смотреть фото водородное топливо чем опасно. Смотреть картинку водородное топливо чем опасно. Картинка про водородное топливо чем опасно. Фото водородное топливо чем опасно
Mazda RX-8 Hydrogen RE — тот случай, когда водород загубил всю динамику роторного двигателя. Источник: Mazda

Еще раньше, в 2003 году, была представлена двухтопливная Mazda RX-8 Hydrogen RE, добравшаяся до заказчиков только к 2007 году. При переходе на водород от мощности легендарного роторного RX-8 не оставалось и следа — мощность падала с 206 до 107 л. с., а максимальная скорость — до 170 км/ч.

BMW Hydrogen 7 и Mazda RX-8 Hydrogen RE были лебединой песней водородных ДВС: к моменту появления этих автомобилей стало окончательно ясно, что куда эффективней использовать водород в давно известных топливных элементах, чем просто жечь.

Топливные элементы в автомобилях

Первым успешным экспериментом по созданию транспортного средства на водородном топливном элементе можно считать трактор Гарри Карла, построенный в 1959 году. Правда, замена дизеля на топливный элемент снизила мощность трактора до 20 л. с.

В последние полвека водородный транспорт выпускался в штучных экземплярах. Например, в 2001 году в США появился автобус Generation II, водород для которого производился из метанола. Топливные элементы создавали мощность до 100 кВт, то есть около 136 л. с. В том же году российский ВАЗ представил «Ниву» на водородных элементах, известную под именем «Антэл-1». Электродвигатель выдавал мощность до 25 кВт (34 л. с.), разгонял авто максимум до 85 км/ч и на одной заправке работал 200 км. Единственный произведенный автомобиль остался «лабораторией на колесах».

водородное топливо чем опасно. Смотреть фото водородное топливо чем опасно. Смотреть картинку водородное топливо чем опасно. Картинка про водородное топливо чем опасно. Фото водородное топливо чем опасно
Российский автомобиль на водородных топливных элементах — в то время технологии ушли дальше дизайна. Источник: «АвтоВАЗ»

В 2013 году Toyota встряхнула автомобильный мир, представив модель Mirai на водородных топливных элементах. Уникальность ситуации была в том, что Toyota Mirai был не концепт-каром, а готовым к серийному производству автомобилем, продажи которого начались уже год спустя. В отличие от электромобилей на аккумуляторах, Mirai сама вырабатывала электричество для себя.

водородное топливо чем опасно. Смотреть фото водородное топливо чем опасно. Смотреть картинку водородное топливо чем опасно. Картинка про водородное топливо чем опасно. Фото водородное топливо чем опасно
Toyota Mirai. Источник: Toyota

Электродвигатель переднеприводной Mirai имеет максимальную мощность 154 л. с., что немного для современного электромобиля, но весьма неплохо в сравнении с водородными авто прошлого. Теоретический запас хода на 5 кг водорода составляет 500 км, фактический — около 350 км. Tesla Model S по паспорту может пройти 540 км. Вот только на заправку полного бака водорода уходит 3 минуты, а батарея Tesla заряжается до 100% за 75 минут на станциях Tesla Supercharger и до 30 часов от обычной розетки на 220 В.

Постоянный ток из 370 водородных топливных элементов Mirai преобразуется в переменный, а напряжение увеличивается до 650 В. Максимальная скорость машины достигает 175 км/ч — немного в сравнении с углеводородным топливом, но более чем достаточно для повседневной езды. Для запаса энергии используется никель-металл-гидридный аккумулятор на 21 кВт∙ч, в который передаётся избыток от топливных элементов и энергия рекуперативного торможения. Учитывая японские реалии, при которых населённые пункты могут в любой момент пострадать от землетрясения, в багажнике Mirai 2016-го модельного года установлен разъем CHAdeMO, через который можно организовать электроснабжение небольшого частного дома, что делает автомобиль генератором на колёсах с предельной ёмкостью 150 кВт∙ч.

Кстати, всего за несколько лет Toyota удалось значительно уменьшить массу генератора: если в начале века в прототипах он весил 108 кг и выдавал 122 л. с., то в Mirai топливный элемент вдвое компактней (объем 37 литров) и весит 56 кг. Справедливо будет прибавить к этому 87 кг топливных баков.

Для сравнения, популярный современный турбомотор Volkswagen 1.4 TSI схожей с Mirai мощностью 140–160 л.с. славится своей «лёгкостью» благодаря алюминиевой конструкции — он весит 106 кг плюс 38–45 кг бензина в баке. Кстати, батарея Tesla Model S весит 540 кг!

За 4 км пробега Mirai вырабатывает только 240 мл дистиллированной, относительно безопасной для питья воды — энтузиасты, пробовавшие «выхлоп» Mirai, сообщали только о лёгком привкусе пластика.

Пить воду, слитую из Mirai, безопасно, хотя сперва зрелище шокирует

В Toyota Mirai установлено сразу два бака для водорода на 60 и 62 литра, в сумме вмещающих 5 кг водорода под давлением 700 атмосфер. Toyota разрабатывает и производит водородные баки самостоятельно вот уже 18 лет. Бак Mirai сделан из нескольких слоёв пластика с углеволокном и стеклотканью. Использование таких материалов, во-первых, повысило стойкость хранилищ к деформации и пробитию, а, во-вторых, решило проблему наводораживания металла, из-за которого стальные баки теряли свои свойства, гибкость и покрывались микротрещинами.
водородное топливо чем опасно. Смотреть фото водородное топливо чем опасно. Смотреть картинку водородное топливо чем опасно. Картинка про водородное топливо чем опасно. Фото водородное топливо чем опасно
Строение Toyota Mirai. Спереди расположен электродвигатель, топливный элемент спрятан под водительским сидением, а под задним рядом и в багажнике установлены баки и аккумулятор. Источник: Toyota

Каковы перспективы?

По оценкам Bloomberg, к 2040 году автомобили будут потреблять 1900 тераватт-час вместо 13 млн баррелей в сутки, то есть 8% от спроса на электричество по состоянию на 2015 год. 8% — пустяк, если учесть, что сейчас до 70% добываемой в мире нефти уходит на производство топлива для транспорта.

Перспективы рынка аккумуляторных электромобилей куда более явные и впечатляющие, чем в случае с водородными топливными ячейками. В 2017 году рынок электромобилей составлял 17,4 млрд долларов, в то время как водородный автомобильный рынок оценивался в 2 млрд долларов. Несмотря на такую разницу, инвесторы продолжают интересоваться водородной энергетикой и финансировать новые разработки.

Примером тому является созданный в 2017 году «Водородный совет» (Hydrogen Council), включающий 39 крупные компании, таких как Audi, BMW, Honda, Toyota, Daimler, GM, Hyundai. Его целью является исследование и разработка новых водородных технологий и их последующее внедрение в нашу жизнь.

Источник

Спасет ли водородное топливо экологию Земли?

водородное топливо чем опасно. Смотреть фото водородное топливо чем опасно. Смотреть картинку водородное топливо чем опасно. Картинка про водородное топливо чем опасно. Фото водородное топливо чем опасноВодородное топливо — сможет ли оно спасти экологию нашей планеты? Потенциал водородной энергетики. В конце — видео про добычу топлива из воды. Водородное топливо — сможет ли оно спасти экологию нашей планеты? Потенциал водородной энергетики. В конце — видео про добычу топлива из воды.

водородное топливо чем опасно. Смотреть фото водородное топливо чем опасно. Смотреть картинку водородное топливо чем опасно. Картинка про водородное топливо чем опасно. Фото водородное топливо чем опасно

Для полноценного развития и активной жизнедеятельности современного общества необходима энергия, каковую сейчас поставляет нефть. Однако, используемая абсолютно во всех отраслях, она не является бесконечным ресурсом и стремительно приближается к исчезновению.

Большие надежды ученые возлагают на водород — самый лёгкий и обильный элемент на планете. Сможет ли он предотвратить экологическую и экономическую катастрофу на Земле?

Зарождение водородных технологий

водородное топливо чем опасно. Смотреть фото водородное топливо чем опасно. Смотреть картинку водородное топливо чем опасно. Картинка про водородное топливо чем опасно. Фото водородное топливо чем опасно

Плотное изучение водорода как потенциального топлива началось в США в 70-х годах, когда впервые заговорили о скором истощении топливных ископаемых.

На несколько лет лучшие специалисты компании бросили все силы на работу над автомобилем с водородным двигателем, приостановив прочую деятельность, в том числе участие в престижной Формуле 1.

С конца 80-х годов японская корпорация серийно выпускает водородные автомобили, которые продемонстрировали и сравнимую с электрическими агрегатами экологичность, и достойную производительность. А в части технических характеристик они даже превосходят своих прямых конкурентов.

Единственным на сегодня недостатком водородных агрегатов по сравнению с электрическими является невозможность подзарядки — специальных заправочных водородных станций пока насчитывается лишь несколько десятков во всем мире.

Преимущества водородной энергии

водородное топливо чем опасно. Смотреть фото водородное топливо чем опасно. Смотреть картинку водородное топливо чем опасно. Картинка про водородное топливо чем опасно. Фото водородное топливо чем опасно

При сгорании водорода с целью получения топлива из него выделяется исключительно вода, что делает такую энергетику наиболее выигрышной с точки зрения решения экологических проблем планеты. Именно поэтому правительства многих развитых государств, а также крупные частные компании инвестируют колоссальные денежные средства в развитие этой отрасли.

Среди преимуществ водорода — такие факторы, как:

При таком количестве достоинств минусом можно назвать лишь один – при безграничности элемента его добыча представляется процедурой очень трудоемкой как в части получения, так и хранения, а также последующей транспортировки.

Методы добычи водорода

водородное топливо чем опасно. Смотреть фото водородное топливо чем опасно. Смотреть картинку водородное топливо чем опасно. Картинка про водородное топливо чем опасно. Фото водородное топливо чем опасно

Водород — не чистое «ископаемое», которое можно просто обнаружить и начать разрабатывать с помощью обычной техники, поэтому требует особой технологии переработки.

Наиболее распространенный метод производства водородного топлива носит название парового риформинга, отличающегося низким энергопотреблением.

Вследствие эндотермической реакции природный или сжиженный газ, сырая нефть и прочие легкие углеводороды преобразуются в чистый водород. Полученное топливо не имеет в своем составе вредных веществ, а потому не будет вредить окружающей среде в процессе эксплуатации.

Если это вещество настолько идеально, почему его до сих пор массово не применяют в разных сферах промышленности?

Аналогичным образом некоторые двигатели сконструированы таким образом, что могут самостоятельно перерабатывать водород в топливо. Но и они во время данной процедуры производят слишком большое количество углекислого газа, чтобы получить широкое распространение.

Вторым доступным методом является электролиз, заключающийся в воздействии тока на воду и распаде ее на водород и кислород. Он существенно экологичнее, позволяет дополнительно получить кислород, но при этом несоизмеримо дороже.

Наконец, третий способ, наиболее перспективный, заключается в переработке аммиака, который вследствие определенного химического воздействия распадается на азот и водород.

Этот способ дешевле электролиза и безопаснее риформинга. Кроме того, сам аммиак более пригоден для его транспортировки к перерабатывающему предприятию.

Водородный автотранспорт

водородное топливо чем опасно. Смотреть фото водородное топливо чем опасно. Смотреть картинку водородное топливо чем опасно. Картинка про водородное топливо чем опасно. Фото водородное топливо чем опасно

Активное использование водорода на автомобилях в первую очередь связано с проблемой безопасного и одновременно компактного хранения вещества на борту.

Если большие его объемы, каковые встречаются в ракетно-космической или авиационной технике, хранятся в криогенном виде, то для транспорта такое решение не применимо. Для небольшого расхода в городском цикле более эффективным станет сжатый вид или металлопластиковые баллоны для природного газа (метана).

Вторая задача состоит в том, чтобы получать водород непосредственно на борту автомобиля, для чего сейчас проектируется и тестируется компактное бортовое оборудование для риформинга.

Сейчас практически все крупные компании-автомобилестроители занимаются изучением возможностей водородной энергии. В России такие работы ведет ОАО «АвтоВАЗ», однако вследствие недостаточного финансирования отечественные разработки отстают от зарубежных конкурентов как минимум на одно десятилетие.

Потенциал водородной энергии

водородное топливо чем опасно. Смотреть фото водородное топливо чем опасно. Смотреть картинку водородное топливо чем опасно. Картинка про водородное топливо чем опасно. Фото водородное топливо чем опасно

При всех неоспоримых преимуществах переход на водородную энергию займет несколько десятков лет и многочисленные изыскания.

Например, для применения автотранспорта на водородных двигателях в городе-миллионнике потребуется производить около 500 т водорода в сутки. Если применять электролитический метод получения топлива, то энергетические затраты составят 15 млрд. кВт*ч в год или 30000 млрд. кВт*ч в год в мировом масштабе. Текущая же мировая выработка электроэнергии находится на уровне 15000 млрд. кВт*ч, что наглядно демонстрирует невозможность производства достаточного количества энергии при имеющихся мощностях.

Безусловно, хотя бы постепенный переход к освоению водорода для нужд автотранспортной системы необходим. Для его производства можно задействовать крупные электростанции (АЭС, ТЭС, ГЭС), что будет оправдано с экономической точки зрения.

Стоимость такого топлива с учетом затрат на электроэнергию, а также капитальных вложений в развитие соответствующей инфраструктуры составит примерно 93 руб./кг.

При этом в стоимость водорода следует заложить колоссальное снижение экологического ущерба, который оценен в мегаполисе с миллионным населением в 800-900 тыс. долл. в год.

То есть, при должных экономических механизмах капитальные затраты на развитие водородной энергетики окупятся за несколько лет благодаря экономии бензина и уменьшению вредных выбросов.

Заключение

Проводимые исследования показывают реальный технический и экономический потенциал для применения водородной энергии на основе избыточных электрических мощностей существующих станций, что позволит ощутимо улучшить экологическую обстановку в крупных городах.

Такие двигатели могут прослужить до 10 лет без обслуживания, превосходят по КПД классические бензиновые агрегаты и способны преодолевать до 500-600 км на одном баллоне.

Кроме того, водородные двигатели абсолютно бесшумны, что существенно оздоровит население мегаполисов, страдающих от дорожного шума. Автопроизводители даже устанавливают на свои модели «искусственный шум», чтобы автомобиль можно было заметить и избежать столкновения.

Безусловно, подобная перспектива вызывает определенное недовольство нефтяных компаний, которые опасаются снижения собственных доходов.

Даже глава Tesla Илон Маск называет подобный путь развития тупиковым, считая, что водородные ячейки в качестве мест для хранения энергии основательно уступают аккумуляторам из-за больших потерь в процессе преобразования химической энергии в электрическую.

Другие критики заявляют о небезопасности таких двигателей для жизни и здоровья, так как отсутствие запаха и цвета не позволят автомобилисту заметить утечку топлива.

Хотя Toyota и Honda, которые уже несколько лет поставляют на рынок водородные автомобили, единогласно акцентируют внимание на том, что вещество помещается в герметичные и ударопрочные углеволоконные контейнеры, угроза взрыва от удара во время ДТП остается слишком велика.

Широкомасштабные программы по изучению и развитию водородной энергетики, проводимые в разных странах, говорит о заинтересованности в переходе на новый вид топлива, который не только сэкономит природные ресурсы, но и восстановит уничтожаемую экосистему.

Видео про добычу топлива из воды:

Источник

Перспективы и недостатки водородной энергетики

Для хранения и выработки энергии от водорода используются топливные элементы. Первый водородный топливный элемент был сконструирован английским ученым Уильямом Гроувом в 30-х годах 19 века. Гроув и работавший параллельно с ним Кристиан Шенбейн продемонстрировали возможность производства энергии в водородно-кислородном топливном элементе с использованием кислотного электролита.

В 1959 году Фрэнсис Т. Бэкон из Кембриджа добавил в водородный топливный элемент ионообменную мембрану для облегчения транспорта гидроксид-ионов. Изобретением Бэкона сразу заинтересовались правительство США и NASA, обновленный топливный элемент стал использоваться на космических аппаратах «Аполлон» в качестве главного источника энергии во время их полетов.

В отличие от кислорода водород практически не встречается на земле в чистом виде и поэтому извлекается из других соединений с помощью различных химических методов.

По этим способам его разделяют на цветовые градации.

Зеленый — производится из возобновляемых источников энергии методом электролиза воды. Все, что необходимо для этого: вода, электролизер и большое снабжение электроэнергией.

Голубой — производится из природного газа, а вредные отходы улавливаются для вторичного использования. Тем не менее идеально чистым этот метод не назовешь.

Розовый или красный — произведенный при помощи атомной энергии.

Серый — водород получают путем конверсии метана. При его производстве вредные отходы выбрасываются в атмосферу.

Коричневый — водород получают в результате газификации угля. Этот метод также после себя оставляет парниковые газы.

Еще существуют технологии получения биоводорода из мусора и этанола, но их доля чрезвычайно мала.

Себестоимость производства по видам водорода, доллар за килограмм

Водородная энергетика

На переработку угля приходится 18% производства водорода, 4% обеспечивается за счет зеленого водорода и 78% — переработкой природного газа и нефти. Методы производства, основанные на ископаемом топливе, приводят к образованию 830 млн тонн выбросов CO2 каждый год, что равно выбросам Великобритании и Индонезии, вместе взятым. И тем не менее водород — это более чистая альтернатива традиционному топливу.

В мире три основных источника выбросов, способствующих потеплению климата: транспорт, производство электроэнергии и промышленность. Водород может использоваться во всех трех областях. При использовании в топливных элементах водородная энергия оставляет минимальные потери, а после использования в качестве побочного продукта остается только вода, из которой снова можно добывать водород.

Перспективы отрасли

Согласно докладу МЭА, к 2050 году мировой спрос на водород должен достичь 528 млн тонн — против 87 млн в 2020, — а его доля в мировом потреблении составит 18%, из них 10% будет приходиться на зеленый водород.

В июне 2020 года Германия объявила о реализации национальной водородной стратегии с инвестициями в 7 млрд евро, чтобы стать лидером в этой области.

Япония, Франция, Южная Корея, Австралия, Нидерланды и Норвегия начали свой курс на водород раньше Германии, а Япония сделала это раньше всех — в декабре 2017 года.

В июле 2020 года Минэнерго подготовило план развития в РФ водородной энергетики на период 2020—2024 годов. Производить водород собираются «Росатом», «Газпром» и «Новатэк». В дорожной карте предусмотрены следующие меры:

В 2021 году HydrogenOne Capital — первый в мире инвестиционный фонд, ориентированный на зеленый водород, заявил о листинге на Лондонской бирже. Фонд инвестирует в проекты мощностью 20—100 МВт с возможностью их расширения до 500 МВт.

Как сделать ремонт и не сойти с ума

Преимущества водородной энергетики

Высокая применимость. Электрификация транспорта поможет снизить выбросы в атмосферу, но авиацию, морские и грузовые перевозки на дальние расстояния трудно перевести на использование электроэнергии, потому что для этих секторов требуется топливо с высокой плотностью энергии. Зеленый водород может удовлетворить эти потребности. Например, Airbus представил концепции самолетов с водородным двигателем и надеется ввести его в эксплуатацию к 2035 году.

Nikola строит полуприцепы, работающие как на аккумуляторных батареях, так и на водороде. Компания заявляет, что ее топливные элементы могут работать при более низких температурах, чем батареи. И они легче, что делает их более практичными для грузовиков и другой тяжелой техники. Nikola также утверждает, что дальность хода такого грузовика составит 900 миль на баке с водородом. Для сравнения: у Tesla Semi с батарейным питанием, который может быть запущен в производство в конце этого года или в 2022 году, заявленная дальность — 200—300 миль.

Также свои аналогичные модели транспорта представили компании Toyota, Honda и BMW.

Время заправки электромобиля на топливных элементах в среднем составляет менее четырех минут. При этом в отличие от батарей они не нуждаются в перезарядке. Поскольку они могут работать независимо от сети, то могут использоваться как запасные генераторы электричества или тепла.

Важный элемент перехода на водород — его применение в ЖКХ. Кроме пилотных проектов в Великобритании Лидс станет первым городом, энергоснабжение которого будет полностью водородным. Согласно плану, все газовые сети и транспортное оборудование переведут на него.

Запасы водорода практически безграничны. Так как он встречается почти всюду, его можно использовать там, где он производится. В отличие от батарей, которые не могут хранить большое количество электроэнергии в течение продолжительного времени, водород можно производить из избыточной возобновляемой энергии и хранить в больших количествах.

Энергоэффективность. Водород содержит почти в три раза больше энергии, чем ископаемое топливо, поэтому для выполнения какой-либо работы его требуется гораздо меньше. Например, по сравнению с электростанцией, работающей на сжигании топлива с КПД от 33 до 35%, водородные топливные элементы выполнят ту же функцию с КПД до 65%. Для примера, у солнечных элементов КПД — 20%, а у ветряных — 40%.

Весной 2020 года в городе Фукусима была запущена самая крупная в мире электростанция, работающая на водороде. Для питания электролизных установок на ней размещены солнечные батареи общей мощностью 20 МВт. Всего станция вырабатывает 1,2 тысячи кубических метров водорода в час.

В автомобилях топливные элементы используют 40—60% энергии топлива, а также обеспечивают сокращение его расхода на 50%.

Зеленый водород — отличная среда для хранения энергии. Например, у Германии существует проблема с энергосистемой. В ясные и ветреные дни солнечные экраны и ветряные турбины на севере производят больше электроэнергии, чем может потребить эта часть страны. Из-за этого Германия вынуждена продавать излишки электроэнергии соседним странам себе в убыток. Избыток электроэнергии из ВИЭ можно хранить в виде водорода, а затем сжигать для выработки электроэнергии, когда это необходимо.

Недостатки водородной энергетики

Стоимость зеленого водорода. Как уже говорилось выше, именно стоимость добычи самого чистого вида водорода ставит наиболее сильные препятствия в его развитии. По словам и прогнозам Минэнерго РФ, перспективы водородной энергетики связаны с удешевлением стоимости водорода, производимого электролизом воды. В качестве основных факторов обеспечения конкурентоспособности зеленого водорода рассматривается перспективное снижение капитальных затрат на электролизеры, а также стоимости электроэнергии из ВИЭ.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *