во вселенной больше звезд чем песчинок на пляжах земли
Звёзд во Вселенной больше, чем песчинок на пляжах Земли, а атомов в одной песчинке, больше, чем звёзд
Впервые это предположение выдвинул Карл Саган, но действительно ли это так, доподлинно неизвестно. Чтобы ответить на этот вопрос, следует обратиться к математике.
Карл Саган
Мы знаем, что звёзд в нашей галактике Млечный Путь — от 100 до 400 млрд, а во Вселенной более 100 млрд галактик — вполне возможно, что их около 500 млрд. Если умножить звёзды на галактики, то получится минимум десять секстиллионов звёзд — сначала 1, а потом 22 нуля. Максимальное число звёзд, таким образом, 200 секстиллионов.
Диаметр одной песчинки составляет примерно полмиллиметра. Если поставить их в ряд, то в сантиметре уместится 20 песчинок, следовательно, в 1 см³ поместится 8000 песчинок. Если взять десять секстиллионов песчинок и собрать их в шар, то диаметр шара составит 10,6 км, а шар из 200 секстиллионов песчинок будет около 72-х км в диаметре. Если бы Земля имела такой диаметр, то всё было бы проще.
Доктор Джейсон Маршалл подсчитал, что объём песка на пляжах Земли — около 700 триллионов м3, а число песчинок — около пяти секстиллионов. Маршалл отмечает, что его расчёт — приблизителен, и песчинок может быть в два раза меньше, «всего» 2,5 секстиллиона. Тем не менее, на всех пляжах мира десяти секстиллионов песчинок не наберётся. Таким образом, звёзд во Вселенной действительно больше, чем песчинок, примерно в пять-десять раз.
Но давайте вместо песчинок поговорим об атомах. Как вы думаете, какой объём займут десять секстиллионов атомов? Кажется, довольно много. Но если действительно собрать такое количество атомов в плотный шар, то диаметр этого шара будет примерно в четыре раза меньше пылевого клеща. Это означает, что атомов в одной песчинке гораздо больше, чем звёзд во Вселенной.
Звёзд во Вселенной больше, чем песчинок на пляжах
«Звёзд во Вселенной больше, чем песчинок на пляжах Земли, а атомов в одной песчинке, больше, чем звёзд
Впервые это предположение выдвинул Карл Саган, но действительно ли это так, доподлинно неизвестно. Чтобы ответить на этот вопрос, следует обратиться к математике.
Мы знаем, что звёзд в нашей галактике Млечный Путь — от 100 до 400 млрд, а во Вселенной более 100 млрд галактик — вполне возможно, что их около 500 млрд. Если умножить звёзды на галактики, то получится минимум десять секстиллионов звёзд — сначала 1, а потом 22 нуля. Максимальное число звёзд, таким образом, 200 секстиллионов.
Диаметр одной песчинки составляет примерно полмиллиметра. Если поставить их в ряд, то в сантиметре уместится 20 песчинок, следовательно, в 1 см; поместится 8000 песчинок. Если взять десять секстиллионов песчинок и собрать их в шар, то диаметр шара составит 10,6 км, а шар из 200 секстиллионов песчинок будет около 72-х км в диаметре. Если бы Земля имела такой диаметр, то всё было бы проще.
Доктор Джейсон Маршалл подсчитал, что объём песка на пляжах Земли — около 700 триллионов м3, а число песчинок — около пяти секстиллионов. Маршалл отмечает, что его расчёт — приблизителен, и песчинок может быть в два раза меньше, «всего» 2,5 секстиллиона. Тем не менее, на всех пляжах мира десяти секстиллионов песчинок не наберётся. Таким образом, звёзд во Вселенной действительно больше, чем песчинок, примерно в пять-десять раз.
Но давайте вместо песчинок поговорим об атомах. Как вы думаете, какой объём займут десять секстиллионов атомов? Кажется, довольно много. Но если действительно собрать такое количество атомов в плотный шар, то диаметр этого шара будет примерно в четыре раза меньше пылевого клеща. Это означает, что атомов в одной песчинке гораздо больше, чем звёзд во Вселенной.»
Звёзд во Вселенной больше, чем песчинок на пляжах Земли, а атомов в одной песчинке, больше, чем звёзд
Впервые это предположение выдвинул Карл Саган, но действительно ли это так, доподлинно неизвестно. Чтобы ответить на этот вопрос, следует обратиться к математике.
Мы знаем, что звёзд в нашей галактике Млечный Путь — от 100 до 400 млрд, а во Вселенной более 100 млрд галактик — вполне возможно, что их около 500 млрд. Если умножить звёзды на галактики, то получится минимум десять секстиллионов звёзд — сначала 1, а потом 22 нуля. Максимальное число звёзд, таким образом, 200 секстиллионов.
Диаметр одной песчинки составляет примерно полмиллиметра. Если поставить их в ряд, то в сантиметре уместится 20 песчинок, следовательно, в 1 см³ поместится 8000 песчинок. Если взять десять секстиллионов песчинок и собрать их в шар, то диаметр шара составит 10,6 км, а шар из 200 секстиллионов песчинок будет около 72-х км в диаметре. Если бы Земля имела такой диаметр, то всё было бы проще.
Доктор Джейсон Маршалл подсчитал, что объём песка на пляжах Земли — около 700 триллионов м3, а число песчинок — около пяти секстиллионов. Маршалл отмечает, что его расчёт — приблизителен, и песчинок может быть в два раза меньше, «всего» 2,5 секстиллиона. Тем не менее, на всех пляжах мира десяти секстиллионов песчинок не наберётся. Таким образом, звёзд во Вселенной действительно больше, чем песчинок, примерно в пять-десять раз.
Но давайте вместо песчинок поговорим об атомах. Как вы думаете, какой объём займут десять секстиллионов атомов? Кажется, довольно много. Но если действительно собрать такое количество атомов в плотный шар, то диаметр этого шара будет примерно в четыре раза меньше пылевого клеща. Это означает, что атомов в одной песчинке гораздо больше, чем звёзд во Вселенной.
Звёзд во Вселенной больше, чем песчинок на пляжах Земли, а атомов в одной песчинке, больше, чем звёзд
Впервые это предположение выдвинул Карл Саган, но действительно ли это так, доподлинно неизвестно. Чтобы ответить на этот вопрос, следует обратиться к математике.
Карл Саган
Мы знаем, что звёзд в нашей галактике Млечный Путь — от 100 до 400 млрд, а во Вселенной более 100 млрд галактик — вполне возможно, что их около 500 млрд. Если умножить звёзды на галактики, то получится минимум десять секстиллионов звёзд — сначала 1, а потом 22 нуля. Максимальное число звёзд, таким образом, 200 секстиллионов.
Диаметр одной песчинки составляет примерно полмиллиметра. Если поставить их в ряд, то в сантиметре уместится 20 песчинок, следовательно, в 1 см поместится 8000 песчинок. Если взять десять секстиллионов песчинок и собрать их в шар, то диаметр шара составит 10,6 км, а шар из 200 секстиллионов песчинок будет около 72-х км в диаметре. Если бы Земля имела такой диаметр, то всё было бы проще.
Доктор Джейсон Маршалл подсчитал, что объём песка на пляжах Земли — около 700 триллионов м3, а число песчинок — около пяти секстиллионов. Маршалл отмечает, что его расчёт — приблизителен, и песчинок может быть в два раза меньше, «всего» 2,5 секстиллиона. Тем не менее, на всех пляжах мира десяти секстиллионов песчинок не наберётся. Таким образом, звёзд во Вселенной действительно больше, чем песчинок, примерно в пять-десять раз.
Но давайте вместо песчинок поговорим об атомах. Как вы думаете, какой объём займут десять секстиллионов атомов? Кажется, довольно много. Но если действительно собрать такое количество атомов в плотный шар, то диаметр этого шара будет примерно в четыре раза меньше пылевого клеща. Это означает, что атомов в одной песчинке гораздо больше, чем звёзд во Вселенной.
Насколько огромна наша Вселенная?
Вселенная – это грандиозная структура, которая состоит из бесконечного множества самых разнообразных объектов. Их разделяют настолько бескрайние космические пространства, что даже свет теряется в их глубинах. Ведь для того, чтобы достигнуть ближайшей звезды, фотону, покинувшему Солнце, потребуется более 4 лет. А преодоление межгалактических расстояний займет миллионы лет. Осознание того, что этот гигантский путь – лишь крошечный шаг в масштабах макрокосмоса, не может не поражать воображение. Так насколько же велика Вселенная на самом деле?
Закат
Красивая Красота
Фото из Мурманской области попало в TIME’s Top 100 Photos of 2021 — список лучших фотографий по версии журнала.
К звёздам
Уют постсоветских городов и тяга к космосу
Звёздное скопление Плеяды, 6 декабря 2021 года
-объектив Samyang 135mm f/2 ED UMC Canon EF
-камера Canon 550Da (20 кадров по 60 секунд, ISO 800)
-автогид Юпитер-37А + камера QHY5III178m
-монтировка Sky-Watcher AZ-GTi (EQ-режим).
Калибровка и сложение снимков в DeepSkyStacker.
Место съемки: станица Линейная, Краснодарский край.
Мой космический Instagram: star.hunter
Почему Солнечная система самая необычная из всех известных планетных систем?
Текстовая версия видео:
Солнечная система воспринимается нами как что-то само собой разумеющееся, как что-то простое и обычное во Вселенной. Казалось бы, что таких звездных систем полно в необъятном космосе, наполненном триллионами звезд. Но это не так. Наша Солнечная система выделяется на фоне других обнаруженных планетарных систем.
Пока что это самая необычная планетарная система из открытых. В этой статье я не буду рассказывать о том, как ученые обнаруживают другие планетарные системы и откуда известны их свойства. Человечество не живет в пещерах и наши технологии позволяют даже напрямую наблюдать внесолнечные системы.
А о методе Доплера, методе транзита, периодических пульсаций и гравитационного линзирования вы можете почитать сами, я тут просто приведу несколько аргументов в пользу того, что Солнечная система – самая уникальная и странная из всех известных.
Начнем с нашей звезды – Солнца, а потом перейдем к планетам и системе вообще. В общем, звезд такого типа как Солнце – во Вселенной всего около 7.5%. Большинство звезд во Вселенной – это звезды класса М, Красные карлики (76,4% от всех звезд).
Этих звезд (Красных карликов), кстати, не видно невооруженным глазом на ночном небе. Если бы их было видно, то ночное небо было бы намного больше усыпано звездами. Скажу больше. Большинство звезд, которые выглядят как одиночные точки на ночном небе, это, на самом деле, двойные звездные системы.
Но это не значит, что все остальные звезды одиночные – некоторые из остальных звезд тройные, а некоторые имеют даже 7 звезд в системе как, например, Ню Скорпиона. Как итог – по крайней мере две трети (больше, чем 66% всех звезд) являются членами двойных или кратных звездных систем. Так что да – одиночных звезд меньшинство.
А теперь по поводу планет. Оказывается, в Солнечной системе нет самой распространённой (из известных) планет во Вселенной, а именно горячих суперземель или горячих мининептунов. Короче, нет планеты средней между Землей и Нептуном. Смотрите, как все у нас тут устроено:
Юпитер в 3.3 раза тяжелее Сатурна. Сатурн в 5.5 раз тяжелее Нептуна. Нептун почти такой же, как Уран (всего в 1.1 раз тяжелее него), а дальше Уран резко в 14.5 раз тяжелее Земли! Опа. Что это за резкий переход? Смотрим на натуральные цифры: 3, 5, 1 и резко 14. Да и вообще, посмотреть на состав этих планет – резкая разница в составе между Землей, и Нептуном с Ураном. Что-то тут не то, правда?
В Солнечной системе планеты либо слишком большие, либо слишком маленькие. Ощущение, как будто между Землей, и Ураном с Нептуном должен быть какой-то переходной тип планеты, правда?
Оказывается, что такой тип планет (средний между Землей и Нептуном) – самый распространённый тип из известных экзопланет во Вселенной.
Посмотрите на эту периодическую таблицу открытых экзопланет:
По горизонтали у нас отмечена температура их поверхности – по центру температура оптимальная для известной нам жизни, наверху – слишком горячая, а снизу – слишком холодная температура для известной жизни. По вертикали слева направо: в первом столбце находятся так называемые мини-земли – планеты, размером и массой похожие на Меркурий; Во втором столбце показаны субземли – планеты размером с Марс, в третьем – планеты c размером Земли, в четвертом – суперземли – планеты в 5-10 раз тяжелее Земли и больше примерно в два раза; Дальше идут Нептуны – планеты размером с Нептун и наконец Юпитеры – планеты размером сопоставимым с Юпитером. Конкретные цифры приведены непосредственно над таблицей, где М – масса Земли и R – радиус Земли. Вот как раз планет из категории горячая «суперземля» открыто больше всего (25.1% среди всех остальных 18 категорий планет).
Вот такая же таблица, но с кандидатами в экзопланеты:
Тут тоже лидирует горячая суперземля – почти треть от всех кандидатов. Что же это за планета такая – горячая суперземля? Пусть вас не вводит в заблуждение название «суперземля», это не означает, что это планеты с условиями на поверхности похожими на Землю, это характеризует только массу и размер.
Суперземля – это планета с массой от 5 до 10 Земель и радиусом от 1.5 до 2.5 радиусов Земли. «Горячая» означает, что там температура на поверхности слишком высокая для известных форм жизни (больше 100 градусов Цельсия). По сути, это все параметры, о которых можно говорить более-менее уверенно, но разумно предполагать, что в основном такие планеты являются каменно–металлическими, как Земля, но с более мощной атмосферой (из-за большей гравитации), такие планеты могут быть планетами-океанами или мини нептунами, то есть иметь очень мощную газовую оболочку при сравнительно небольшом каменно-металлическом ядре.
Кстати, если на какой-то суперземле существует разумная жизнь, то такой цивилизации нужно развиться технически намного лучше, чем нашей, чтобы полететь в космос. И все из-за большей силы гравитации на суперземлях. При таких технологиях, как у нас, мы бы еще долго не смогли вылететь в космос из суперземли. Возможно, планета такого типа когда-то существовала в Солнечной системе, но была выброшена из системы вследствие гравитационных пертурбаций во время формирования Солнечной системы. Некоторые ученые также предполагают существование еще одной планеты где-то за Нептуном.
А теперь внимание! Кто-то скажет, что суперземли самые распространённые из известных просто потому, что планеты меньше Земли обнаружить труднее, а тем более холодные, и будет максимально прав. Вполне возможно, что статистика изменится после того, как человечеству станут доступны более продвинутые технологии для поиска экзопланет. Если посмотреть на такую же таблицу для Солнечной системы, то мы увидим, что холодные мини земли – самый распространённый тип небесных тел, входящих в рамки этой классификации.
Это небесные тела размером с нашу Луну, но ни одно из этих тел не является планетой согласно определению планеты. Это луны других планет, и вот тут можно уже практически с уверенностью заявлять, что таких лун во Вселенной намного больше, чем остальных планет в этой таблице. Но именно лун, а не планет. Из-за методов поиска экзопланет, обнаружить большие, горячие планеты вблизи своей звезды намного проще, чем холодные, маленькие, лежащие далеко от звезды, именно поэтому в названии статьи содержится слово «из известных», так как человечество не владеет полной информацией, скажем, о всех планетарных системах в нашей галактике, и вполне возможно, что Солнечная система не такая уж и необычная, но возможно также, что она еще более необычна, чем мы себе представляем.
Идем дальше. Известные экзопланеты находятся очень близко к своей звезде. Большинство планет находятся к своей звезде ближе, чем Меркурий к Солнцу. Вот два графика дающих наглядное представление о расстоянии экзопланет от звезды:
Тут расстояние показано в милях и астрономических единицах, если кому-то сложно сориентироваться, то скажу конкретно –наибольшее количество экзопланет находится на расстоянии от звезды в пределах от 6 до 30 миллионов километров. Для сравнения, Земля находится в среднем на расстоянии 150 миллионов километров от Солнца, а Меркурий – 58 миллионов километров. Нептун – 4.5 миллиардов километров от Солнца. Приведу конкретный пример – звезда TRAPPIST-1 и ее система планет, все из которых находятся очень, очень близко к звезде. Самая далекая находится на расстоянии 9 миллионов километров, а самая близкая – почти два миллиона километров от звезды. Еще раз напомню, что Меркурий находится на расстоянии 58 миллионов километров от Солнца.
Из-за такой близости к звезде на этих планетах год длится пару Земных дней. Я понимаю, что это выглядит странно, но все как раз наоборот – такая ситуация, когда планеты ближе к своей звезде, чем Меркурий к Солнцу – обычна во Вселенной. Это не всегда значит, что на этих планетах супер жарко, так как большинство звезд не такие большие и горячие как Солнце.
Кроме этого, Солнечная система необычайно велика. Как я уже упоминала, расстояние от Солнца до Нептуна в среднем составляет 4.5 миллиарда километров. Сравните это с тем же ТРАППИСТ – 1 и самой далекой планетой там, которая удалена всего на 9 миллионов километров от своей звезды.
Вообще, другие планетные системы редко превышают размер орбиты Земли, так что Солнечная система просто гигантская по сравнению с большинством других известных планетных систем, хотя далеко не самая большая. И в этом ничего странного – большинство звезд, как я уже сказала, это красные карлики. Их масса меньше солнечной в несколько раз, поэтому они и неспособны удерживать большие планетные системы.
Еще одна странность — это то, что газовым гигантам свойственно находиться близко к звезде, в Солнечной системе же наоборот – все газовые гиганты отдалены от Солнца.
Ученые так же обнаружили корреляцию между эксцентриситетом орбит и количеством планет в планетной системе. Эксцентриситет орбиты – это, если объяснять по-человечески, мера сжатости орбиты, ну или вытянутости, смотря как посмотреть.
Как известно, орбиты – это не идеальные круги, а эллипсы. Эксцентриситет показывает, насколько эти эллипсы как бы «сплющены». Вот примерное сравнение эксцентриситетов орбит планет в Солнечной системе.
Как видно, самый большой эксцентриситет (сплющенность орбиты) у Меркурия. Самый маленький – у Нептуна. Заметьте одну очень важную вещь – эти орбиты не пересекаются. Некоторые тела в Солнечной системе имеют очень большой эксцентриситет, и эти тела могут столкнуться с планетами.
Так вот, в большинстве других планетарных систем, эксцентриситеты орбит очень большие, они пересекаются и из-за этого всегда есть шанс, что планеты столкнутся.
А так как временные масштабы существования многих планетных систем измеряются в миллиардах лет, то реализуются даже самые маленькие шансы, и планеты с большим эксцентриситетом сталкиваются с другими планетами. Из-за этого, в других планетных системах (в подавляющем большинстве) очень мало планет по сравнению с нашей системой, причем это показывают не только наблюдения, но и теоретические предсказания. В общем пока что, если сравнивать с другими системами, Солнечная имеет наибольшее количество планет в системе. Только одна система из известных имеет такое же количество планет.
Аргументов исключительности можно привести больше, это только основные, но их уже достаточно, чтобы заявить, что Солнечная система – самая уникальная из известных. Не забывайте, что ключевое слово тут – из известных. Окажется ли, что Солнечная система еще более необычная, или же она все же менее необычная, узнаем только в будущем. Напомню, что новый флагманский космический телескоп Джеймса Уэбба должны запустить уже совсем скоро, под конец 2021 года. Ожидается, что он откроет очень много внесолнечных планет. Поживем – увидим.
Напоследок вспомню самую уникальную вещь Солнечной системы – это единственная система из известных, в которой существует жизнь. Но тут опять же, ключевое слово – из известных…
Что происходит с Бетельгейзе? Эволюция звёзд
Прежде, чем мы попытаемся разобраться в произошедшем, стоит понять, что же представляет из себя Бетельгейзе. Этот объект относится к классу красных сверхгигантов, и, согласно современной теории эволюции звёзд, находится на завершающей стадии своего жизненного цикла. Его светимость и радиус постоянно меняются, а внешние оболочки крайне нестабильны. Периодически светило выбрасывает миллионы тонн раскаленного газа в космическое пространство, формируя гигантские протуберанцы. Остывая, они пополняют собой газовую туманность, окружающую Бетельгейзе.
История Земли за 24 часа
Мы часто рассуждаем про далекий космос, неведомые миры и непостижимые законы, забывая обращать внимание на то, что рядом – наш дом. Давайте исправим эту оплошность и поговорим про старушку Землю. Именно старушку – вы сейчас поймете, насколько она не молода. Наша планета существует треть времени жизни Вселенной и за это время повидала немало. Чтобы не путаться в огромных цифрах, давайте сравним историю Земли с сутками.
Итак, 4 миллиарда 567 миллионов лет назад запустились наши образные 24 часа – молодая звезда по имени Солнце оставила после своего рождения тот еще беспорядок. Пространство было заполнено плотным газом и пылью, образующими вращающийся вокруг нового светила протопланетный диск. Области диска с бОльшим количеством вещества притягивали к себе газ и пыль, наращивая массу и становясь все плотнее. С ростом массы зарождающаяся планета, как снежный ком, притягивала больше вещества.
Прошло всего 6 минут (20 миллионов лет), а наша Земля превратилась из протопланеты в самостоятельный объект молодой Солнечной системы. Да уж, она точно не была похожа на тихую голубую планету, какой мы видим ее сейчас. Это был настоящий ад: вся поверхность Земли была раскалена и расплавлена. Один сплошной океан лавы, в который непрерывно что-то сыпалось из космоса. Планета то и дело сталкивалась с маленькими и большими космическими телами. Есть мнение, что одно из таких столкновений привело к появлению Луны в 00:12 часов по нашему образному времени.
К 3 часам утра планета остыла достаточно, чтобы на ней начал конденсироваться пар, образуя гидросферу. Тут и там начали появляться моря, температура которых доходила до +90°С. Тяжелая бомбардировка метеоритами уже почти завершилась и примерно в это же время на Земле начала появляться примитивная жизнь. Планета все еще не выглядела дружелюбной: кипящие моря и лавовые реки не кончались. Непрерывный вулканизм выбрасывал тонны вещества из недр, наполняя атмосферу углекислым газом, азотом и водяным паром.
В промежутке между 03:00 и 05:30 появляются первые доядерные организмы – прокариоты. У этих примитивных одноклеточных нет даже ядра, но они успешно населяют остывающую планету, которая все больше становится пригодной к жизни. К 09:20 появляется полноценная земная кора, способная формировать континенты. В это же время бактерии познали, что такое фотосинтез. Благодаря этому атмосфера медленно начала наполняться кислородом. Но таким новшеством бактерии сами себя загнали в ловушку, изменив облик Земли до неузнаваемости.
Уже в 11 часов утра случилась так называемая Кислородная катастрофа. Бактерии увеличили концентрацию кислорода и уменьшили количество метана и углекислого газа, которые создавали парниковый эффект. Температура опустилась настолько, что буквально вся Земля превратилась в один большой снежный шар. Лед был даже на экваторе. Гуронское оледенение – так назвали этот период, закончилось лишь в час дня, продлившись 300 миллионов лет. С началом потепления произошел скачок в эволюции, и у простейших появилось ядро в клетке. Наступила эпоха эукариотов.
Долгое время на Земле царило великое затишье. С 14:30 до 20:15 не происходило абсолютно ничего. Ученые назвали этот период «скучный миллиард». Он начался 1,8 миллиарда лет назад и закончился 720 миллионов лет назад. В эволюции жизни не происходили очевидные скачки, да и климат оставался одинаковым на протяжении всего этого времени. Идиллию нарушил очередной ледниковый период, который опять произошел из-за повышения уровня кислорода. Продлился он недолго: начавшаяся в 20:40 вулканическая деятельность вновь запустила парниковый эффект, что спровоцировало дальнейшую эволюцию жизни.
Дальше счет идет «на минуты»:
21:48 – образуются Уральские горы, появляются первые земноводные.
22:07 – первые деревья и семена. Это дало возможность растениям быстро распространиться по всей суше. Появились первые пресмыкающиеся.
22:25 – произошло самое массовое вымирание за всю историю жизни на Земле. За 20 тысяч лет исчезло 95% всех видов растений и животных на суше и в океане. Ученые до сих пор не могут установить причину этой катастрофы. На восстановление разнообразия жизни ушло более 30 миллионов лет. Но исчезновение одних видов, дало возможность развития других.
22:40 – появляются первые динозавры.
22:56 – первые сумчатые млекопитающие. Расцвет эпохи динозавров.
23:03 – суперконтинент Пангея разделился на два континента – Лавразию и Гондвану. Начался дрейф материков.
23:12 – первые птицы.
23:18 – первые цветковые растения.
23:39 – произошла еще одна катастрофа – вымирание динозавров.
23:42 – первые парнокопытные и древние киты.
23:52 – появление первых человекообразных обезьян.
…За 80 секунд до полуночи появляются австралопитеки, за 15 секунд – предки добывают огонь, а за 4 секунды – появляется человек разумный, который всего за 0,3 секунды до конца суток успевает населить Северную и Южную Америку.
Начался новый день. Сегодняшний день. Что он нам принесет? Поживем – увидим.
Пошла первая секунда.
Поставьте лайк, если задумались, что динозавры вымерли всего 20 минут назад и подписывайтесь, если еще не с нами.
Космос – это интересно!
Цефеиды: переменные звёзды сверхгиганты – астрофизик Анатолий Засов
Чем цефеиды отличаются от других звёзд? Почему звёзды-сверхгиганты с массой более 10 Солнц так редки во Вселенной? Какими бывают переменные звёзды-цефеиды? Как они были обнаружены? Рассказывает Анатолий Засов, астрофизик, доктор физико-математических наук, профессор физического факультета МГУ имени М. В. Ломоносова рассказывает, какие бывают звёзды, как они рождаются и умирают и о многом другом.
Интересные факты о космических объектах
Самые дальние галактики, сфотографированные Хабблом, самая большая известная звезда, Супер-Юпитеры, двойные звезды, и другие интересные факты о космических объектах!
Зачем астроному грабли или как я заболел небом
Это случилось в одно прекрасное воскресенье, звучит довольно банально, но это так. До этого тоже были попытки, но осознанный шаг произошел именно тогда, в детском магазине игрушек. Я увидел телескоп, нахлынули воспоминания: мы с Папой на даче, летней ночью лежим на крыше бани и смотрим на звёздное небо. А еще спортивный лагерь: выбежав ночью по малой нужде и случайно подняв взгляд на небо, застыл от изумления. Ни истинная цель моей ночной «прогулки», ни даже голодные комары, не в силах были заставить десятилетнего подростка отвести глаза от прекрасного августовского неба и летящего между скоплениями звезд спутника.
Естественно, телескоп я приобрел! Ну и как многие уже догадались, разочаровался в инструменте очень быстро – игрушка она и в Африке игрушка. Пластиковые линзы, хлипкий штатив. Наблюдать можно, но только, не то, что хочешь.
В последующую неделю, избороздив множество специализированных форумов и сайтов, открыл для себя неизведанный мир, который я не заслуженно обделял вниманием. И конечно же встал на первые “грабли” начинающего любителя астрономии – пошел покупать телескоп с ворохом информации, не определившегося, чего же он хочет. Напоминает жонглера, который орудует различными предметами и одновременно балансирует на паре стульев, пытаясь при этом прыгать на скакалке, держа еe в зубах. Представили? Мне хотелось всего и сразу: и наблюдения, и астрофотографию, и планеты, и объекты глубокого космоса, и все вот это сразу здесь и сейчас, немедленно. Пожалуйста никогда так не поступайте. Лучше сделать небольшую паузу, дайте чувствам успокоиться, перенесите поход в магазин на день. А еще лучше на неделю!
Да каким я был наивным! Вспоминая себя в прошлом, понимаешь: Большое путешествие начинается с первого шага, и ты его сделал, а странствия и открытия продолжаются по сию пору!
Чистого неба и удачных наблюдений!
ЗЫ Рассказ из цикла Записки Звездного Искателя
Все мы в Матрице
Галилеевы спутники Юпитера — удивительные космические тела, пригодные для жизни
Всего у Юпитера, самой крупной планеты Солнечной системы, насчитывается 79 различных спутников. Галилеевыми называют спутники, открытые Галилео Галилеем в 17 веке. От других спутников Юпитера их отличает абсолютно круглая форма и размер — они настолько огромны, что их можно разглядеть в небольшой телескоп. Интересны они еще и тем, что на некоторых из них, предположительно, может существовать внеземная жизнь.
Все изображения — это настоящие фотографии, сделанные космическими аппаратами.
Место под звёздами
Лесная поляна, залитая светом звезд и восходящей за деревьями Луны
Снято 28 сентября 2021 года около озера Сегденского в Рязанской области.
Мозаика из 9 кадров (6 кадров неба с ведением и 3 кадра земли, неподвижно)
Камера Canon 60D, объектив Canon 24-105mm f/4 L, монтировка Sky-Watcher Star Adventurer для компенсации вращения Земли. Сложение мозаики в PTGui Pro и Photoshop.
Больше ночных фотографий и астрофотографий в моём инстаграме и в телеграм-канале.
Как отдохнуть на море без qr кода и дешево
— Доктор! Помогите! У меня завелись подписчики. Что мне делать?
— Ооо, голубчик! Медицина тут бессильна. Пилите посты, принимайте витамины, кофеин. Вы не первый, многие теперь с этим живут и ничего, привыкните. Идите, пилите.
Обещал подписчику снять и показать Сириус. @Veteraniks, лови.
Возраст системы Сириуса, по современным исследованиям, составляет примерно 230 млн лет (оценки варьируют от 200 до 300 млн. лет). Первоначально система Сириуса состояла из двух бело-голубых звёзд спектрального класса В: масса одного компонента (Сириус B) была 5 масс Солнца, второго (Сириус A) — 2 массы Солнца. Затем, около 120 млн. лет назад, более массивный Сириус B прогорел и стал красным гигантом, а затем сбросил внешнюю оболочку и перешёл в своё современное состояние белого карлика. Масса Сириуса B составляет 1,02 массы Солнца, это один из самых тяжелых известных белых карликов (масса типичных белых карликов 0,5–0,6 M).
Сложение: 200 кадров из 485
Созвездие Ориона, туманность Ориона (М42), Бетельгейзе, Сириус, Млечный Путь 06.11.-07.11.2021
Повезло выбраться на выходных подальше от городской засветки. За 240 км от города небо подарило нам с @hellobunny одну очень ясную, но безумно ветреную и холодную ночь. При сильном ветре не спасало даже гидирование. Куча фоток получились смазанными (с треками). Складывать было нечего, поэтому выкладываю одиночные кадры.
Млечный путь + (Андромеда)
— Телескоп SW bkp 2001
-Монтировка SW Heq5pro
-камера Fujifilm ax7
Место съемки: Псковская область
Мультивселенная. Главные научные гипотезы
В древнеегипетском пантеоне богов присутствовала богиня Нут. У древних египтян она символизировала небо. Согласно мифологии, она каждый день проглатывала звезды и рождала их снова, то есть этим объяснялась смена дня и ночи. По ее телу, то есть по небу, плыл на лодке бог солнца Ра – вот так объяснялось перемещение Солнца.
Шли времена, наука развивалась, все описывалось более точно, наблюдения позволяли проверить правильность наших представлений о мире и вот Вселенная какой мы ее знаем:
Сфера, радиусом 46 миллиардов световых лет, заполнена триллионами галактик и еще большим количеством звезд и планет. Она называется «Видимой Вселенной». Почему «Видимой»? Потому, что из-за того, что скорость света конечна, мы не можем увидеть то, что находится за границами (или же за горизонтом событий Видимой Вселенной).
Что находится за горизонтом событий? Ученые не сомневаются, что такие же галактики и звезды, что Видимая Вселенная — это лишь маленькая часть всей Вселенной, которая, возможно, бесконечна или же безгранична, мы этого не знаем, известно только, что вся Вселенная как минимум в 250 раз больше, чем Видимая Вселенная.
А возможно ли, что существуют другие Вселенные? Мы этого тоже не знаем, но некоторые ученые предполагают, что да. Люди догадались, что Солнечная Система — это не весь мир, что другие звезды – это такие же Солнца как наше, что наша Солнечная Система не уникальна, похожих систем миллиарды в нашей галактике. Потом люди догадались и подтвердили, что и галактика наша не уникальна, их триллионы во Вселенной.
Можем ли пойти еще дальше и предположить, что и Вселенная наша не уникальна, что существуют триллионы или даже бесконечность таких Вселенных? Посмотрите на эту гравюру неизвестного автора:
На ней изображен человек, одетый в средневековую одежду пилигрима с посохом в руке. Он добрался до края Земли и сквозь занавес небесного свода рассматривает устройство Вселенной. Можно сделать некоторые выводы о научной парадигме, которая существовала в те времена. У нас ситуация несколько посложнее, мы не можем добраться до края Вселенной и посмотреть, что же за ним находится. Мы даже не знаем, существует ли вообще этот край Вселенной. Но у нас есть развитая физика, математика, космология, наука в целом и вообще, мы вроде как умнее того, кто сделал эту гравюру, правда? В этом фильме я расскажу о научных гипотезах, которые касаются темы Мультивселенной. Сразу стоит подчеркнуть, что это гипотезы и предположения, мы не знаем наверняка существуют ли другие Вселенные, поэтому стоит относится к этому соответственно – как к предположениям и гипотезам и даже если они обоснованы наукой, это не значит, что они верны.
А начнем мы от «Инфляционной модели Вселенной». Эта модель была разработана, чтобы попытаться объяснить некоторые космологические вопросы: однородность и изотропность Вселенной, то есть почему она настолько одинакова, почему пространство плоское, почему она настолько огромная и почему мы не наблюдаем магнитные монополи, то есть частицы с одним магнитным полюсом.
Все известные частицы, имеющие магнитный момент – это магнитные диполи, то есть имеют два магнитных полюса. Согласно инфляционной модели, до Большого взрыва существовало инфлятонное поле с определенным значением потенциальной энергии. Как и все поля, это поле флуктуировало случайным образом и энергии случайной флуктуации хватило, чтобы преодолеть барьер с более высокой потенциальной энергией, после чего оно опустилось на еще более низкий уровень потенциальной энергии и в процессе этого «опускания» произошло экспоненциальное расширение пространства, а лишняя энергия сконденсировалась в виде частиц, которые мы сейчас наблюдаем. Конечно, за этим всем стоит математический формализм и все намного сложнее, чем вышеупомянутое описание.
Хоть и эта гипотеза очень популярна среди космологов, самая популярная на данный момент, но не является до конца подтвержденной, не переведена в статус теории. Проблема в том, что значения потенциальной энергии и других переменных должны быть очень точно подобраны, чтобы получилась именно такая Вселенная, которую мы наблюдаем, если говорить просто, то шанс на это менее чем один из триллионов, триллионов, триллионов… короче чуть ли не один из бесконечности. Как же так получилось, почему тогда Вселенная именно такая? Впервые ответ появился 1983 году в этой статье.
— Где находятся эти гипотетические Вселенные с различными физическими законами?
В разных частях пространства которое недоступно для наблюдения, находится за горизонтом событий нашей Видимой Вселенной, в статье автора гипотезы есть такое изображение:
— Может ли подобное произойти в видимой части Вселенной?
Да, но, судя по всему, расстояния между такими областями намного, на очень много больше, чем размер Видимой Вселенной, так что шанс на это небольшой.
— Можно ли попасть в другие Вселенные?
На этот вопрос ответа я не удалось найти, но даже если и да, то попасть в другую Вселенную с другими законами физики, где, например электрон не имеет массы – это “смертельно” не только для биологических форм жизни, а и для всяких роботов, космических аппаратов и т. д.
— Существуют ли подобные Вселенные вечно?
Зависит от начальных условий, некоторые моментально прекращают свое существование, некоторые – продолжают существовать практически вечно.
— А как все началось? Как запустился подобный процесс, что было до?
Боюсь неправильно интерпретировать ответ автора, поэтому вот скрин статьи с переводом:
Идем дальше. Практически все попытки создать квантовую теорию гравитации оперируют с дополнительными пространствами, большими чем наше трехмерное пространство. Нас интересует теория струн. Из нее следует существование 10^500 вариантов компактификации дополнительных измерений, ну и такое же количество возможных Вселенных, каждая из своими законами физики.
Это называется «ландшафтом теории струн», предложенным Леонардом Сасскиндом. Поэтому я буду ссылаться на его книгу, в которой идет речь об этом. В ней он приводит хорошие примеры того, что вообще значит Вселенная с другими законами физики, с другими константами. Оказывается, не надо представлять себе что-то абстрактное, достаточно заглянуть в рабочий аппарат МРТ. В нем сильные магнитные поля и это создает внутри «минивселенную» с немного другой физикой внутри.
Там можно заметить, что свободные электроны и другие заряженные частицы летают не по прямой, а по спирали, более того, электрон немного тяжелее чем в обычных условиях, так как сильное магнитное поле влияет на спины этих частиц.
Электронные оболочки атомов вытягиваются по силовым линиям поля, изменяются энергетические уровни атомов, что приводит к изменению спектров излучения. Конечно, это не большие изменения, но теоретически все может проявляться намного сильнее, настолько, что никакая биологическая жизнь или существование атомов не будет возможным. Другой пример – поле Хиггса, которое придает массу различным частицам. Если его изменять, так же, как и магнитное поле, то можно изменять массу частиц. Ну или вообще убрать это поле с некоторой области пространства, тогда все частицы будут двигаться в ней со скоростью света.
А теперь о Мультивселенных. Сасскинд сравнивает их с погодой в различных точках мира. Вот в одной стране такая-то температура, такое-то атмосферное давление, скорость и направление ветра и так далее. Похоже и с Вселенными, только вместо погоды – различные состояния вакуума(значения и свойства различных полей). В одной области физические константы одни, где-то – другие, что приводит к различным физическим законам, некоторые Вселенные и законы физики в ней не позволяют ей существовать, поэтому она практически сразу же коллапсирует, другие Вселенные расширяются слишком быстро и в них не могут появиться атомы, в некоторых частицы не имеют массы, а некоторые Вселенные похожи к нашей.
Как можно заметить, эта гипотеза похожа на предыдущую. Многие ученые считают, что такое(10^500) количество возможных Вселенных – это проблема теории струн, называемая «проблемой ландшафта теории струн». Дело обстоит примерно так:
Это по-другому еще называется «антропный принцип». Кто прав и верна ли теория струн сейчас неизвестно и возможно не будет известно еще долгое время.
Подход Сасскинда критикует Ли Смолин. У него свой подход к проблеме, почему у нашей Вселенной именно такие физические константы и законы физики. Он автор так называемой «гипотезы космологического естественного отбора». Согласно этой гипотезе, «по ту сторону» любой чёрной дыры возникает новая Вселенная, в которой фундаментальные физические постоянные могут отличаться от значений для Вселенной, содержащей эту чёрную дыру.
Разумные наблюдатели могут появиться в тех Вселенных, где значения фундаментальных постоянных благоприятствуют появлению жизни. Процесс напоминает мутации в ходе биологического естественного отбора. По мнению Смолина, его модель лучше за антропный принцип объясняет «тонкую настройку Вселенной», необходимую для появления жизни, так как имеет два важных преимущества, цитирую:
1. В отличие от антропного принципа, модель Смолина имеет физические следствия, которые поддаются опытной проверке
2. Жизнь во множественных вселенных возникает не случайным образом, а закономерно: больше «потомков» в ходе отбора имеют те Вселенные, параметры которых приводят к возникновению большего числа чёрных дыр, и эти же параметры, по предположению Смолина, благоприятствуют возможности зарождения жизни.
Спор Смолина и Сасскинда по поводу ландшафта теории струн и Космологического естественного отбора вы можете прочитать по ссылке. Чтения примерно на минут 40-час.
Продолжим. Многомировая интерпретация Хью Эверетта. Это одна из популярных интерпретаций квантовой механики, но я не считаю, что стоит ее включать в список гипотез о Мультивселенной, потому что она не предполагает реального наличия именно других миров, она предлагает лишь один реально существующий мир. Все остальные альтернативные реальности просто бессмысленные для нас.
Космолог Макс Тегмарк высказал предположение, названное «гипотезой математической Вселенной», гласящей, что любому математически непротиворечивому набору физических законов соответствует независимая, но реально существующая Вселенная.
Тегмарк предложил следующую классификацию миров:
Уровень 1: Миры за пределами нашего космологического горизонта (то есть все что находится за Видимой Вселенной).
Уровень 2: Миры с другими физическими константами (это то, что было описано в трех первых гипотезах).
Уровень 3: Миры, возникающие в рамках многомировой интерпретации квантовой механики.
Уровень 4: Конечный ансамбль (включает все Вселенные, реализующие все возможные математические структуры, то есть абсолютно все возможные Вселенные и альтернативные реальности, как в многомировой интерпретации).
Хоть подобная гипотеза описывается и в теории струн в том числе, но гипотезы циклической Вселенной довольно маргинальны в научных кругах. Одну разновидность этой гипотезы активно продвигается нобелевским лауреатом Роджером Пенроузом, называется «конформная циклическая космология», не буду рассказывать детали, суть циклических гипотез кратко описана выше.
Это был краткий обзор научных и не совсем гипотез о Мультивселенной. Считаю ли я, что существует Мультивселенная? Я думаю так. Безусловно, антропный принцип, который был описан в двух первых гипотезах, очень элегантный, простой и логичный. Но все же я отношусь к нему скептически, и вот почему я так думаю. Давайте вспомним историю. Кеплер, который придумал три закона движения планет, который заменил модель эпициклов эллиптической орбитой, задумывался: «Почему планета Земля находится именно на таком расстоянии от Солнца, как так получилось?». Оказалось, ответ очень прост – существуют миллиарды звездных систем подобных до Солнечной, мы просто появились в одной из таких, она не была создана специально для нас, мы просто появились в таких условиях. Вот ответ на вопрос Кеплера. Мы можем продолжить этот ход мышления и ответить на вопрос, почему в нашей Вселенной законы физики именно такие: «Да потому, что наша Вселенная одна из множества Вселенных и законы физики в нашей Вселенной позволяют существовать формы жизни, которая может задавать такие вопросы». Это выглядит логично и просто, но! Но давайте вспомним Коперника. В его время уже полторы тысячи лет существовала парадигма Птоломея – Земля в Центре мира, вокруг которой вращаются Луна, Солнце и другие планеты, а звезды как бы нарисованы на куполе окружавшим этот мир. Коперник заменил Землю в центре Солнцем, что было очень смелым допущением в те времена, все остальное он оставил таким же.
Но был еще такой астроном, Томас Диггес. Диггес убрал из схемы Коперника край Вселенной, заполнив ее звездами вдаль и до бесконечности.
Понимаете, это простейшая идея, объяснить звезды на небе как множество, простирающееся в бесконечность. Он даже не мог предположить, что существуют более сложные структуры – галактики, сверхскопления галактик, черные дыры. В каком-то смысле ученые поступают как Томас Диггес. Он просто заполнил все пространство звездами до бесконечности, современные ученые заполняют все пространство другими Вселенными до бесконечности. Именно поэтому я отношусь скептически. Да, у нас более развита наука чем во времена Диггеса, но возможно структура Вселенной намного более сложная, чем бесконечное число Вселенных с разными физическими законами, настолько сложная, что современная наука и величайшие умы человечества не в состоянии даже приблизится к ее пониманию, возможно это не просто другие Вселенные, а нечто более сложное, неописуемое современным уровнем физики, математики, нашей логикой и даже больной фантазией.
Египтяне (вспоминайте начало статьи), да и другие народы и отдельные личности, описывали наблюдаемое и ненаблюдаемое так, как позволяла их фантазия и уровень науки, если можно это назвать наукой. Можем ли мы быть уверенны, что современная наука, описывая ненаблюдаемое как множество Вселенных не допускает ту же ошибку, что и египтяне и все остальные? Нет. История показывает, что до реальных наблюдений, предположения и гипотезы в той или иной мере почти всегда оказывались ошибочны. Это не значит, что Мультивселенная наверняка не существует. Это значит, что все может быть устроено покруче даже мозговыносящей Мультивселенной…