вна двигателя самолета что это
Входной направляющий аппарат компрессора
Компрессор газотурбинной установки предназначен для сжатия воздуха и подачи его в камеру сгорания. Скорость вращения компрессора постоянна.
Процесс подачи воздуха часто требует изменения скорости потока при сохранении относительно постоянного давления. Это необходимо для максимально эффективной работы в рамках заранее определенных условий эксплуатации.
Изменение выходной мощности газотурбинной установки, как правило, требует изменения расхода и давления воздуха. Изменение данных показателей приводит к снижению входной скорости потока, которая должна оставаться постоянной. Тем самым, создается высокий угол потока на входные кромки лопаток компрессора, что увеличивает нагрузку и уменьшает их срок службы.
Поворотные лопатки направляющего аппарата
Поворотные лопатки входного направляющего аппарата позволяют изменить угол входа потока в компрессор, что позволяет сохранить постоянную скорость подачи воздуха и снизить нагрузку на компрессор.
Поворотные лопатки входного направляющего аппарата имеют специальную конструкцию при довольно сложном механизме регулирования их угла. Механизм должен иметь высокую устойчивость к загрязнению, для того, чтобы сохранять точность угла регулировки. При попадании загрязняющих веществ в механизм и постоянной регулировке угла, возникает преждевременный износ и выход из строя подвижных частей. Соответственно, желательно обезопасить входной направляющий аппарат компрессора от воздействия окружающей среды, а механизм регулировки должен иметь минимальную массу и отсутствие механических зазоров между отдельными деталями.
Как устроена силовая установка пассажирского самолета
Всем привет. Недавно я читал ликбез очередному студенту на тему общего устройства оборудования самолёта. Вводный рассказ, хоть и отработанный до автоматизма, отнял пару часов времени и выявил необходимость ещё в двух-трёх вводных. Но лень — двигатель прогресса и я наконец дозрел до оформления всех этих «лекций» в печатном виде. А там, где есть внутренняя методичка, недалеко и до публикации на Хабре: вдруг, кому ещё интересно почитать будет.
Перед началом изложения хочу оговориться, что моя основная специализация — бортовое оборудование, так что из моего описания может вполне получиться «идеальный самолёт для технолога». Тех, кого этот подход не пугает, а также всех тех, кому интересно зачем в кабине экипажа нужны все эти кнопки и ручки — прошу оценить первую публикацию «Силовая установка».
Кликабельная картинка, чтобы рассмотреть получше:
Про силовую установку
Силовая установка — общее название двигателей летательных аппаратов. Начну с них потому, что без двигателей самолет — не самолет, а в лучшем случае планер. Цена двигателей, к слову, составляет половину стоимости авиалайнера и компетенциями в разработке современных гражданских авиадвигателей обладают гораздо меньше стран, чем тех, кто обладают компетенциями в разработке самолетов.
На авиалайнерах сейчас ставят почти исключительно двухконтурные турбореактивные двигатели (ТРДД). Вот принципиальная схема такого двигателя:
Детали устройства можно прочитать во многих источниках, начиная с Википедии. Для нас, электронщиков, важно понимать следующие факты о работе такого двигателя:
Как запускать двигатель
Чтобы запустить двигатель, надо раскрутить турбину высокого давления, подать топливо и дать первоначальную искру. После того, как турбина раскрутится примерно до 50% оборотов, двигатель начнёт раскручивать себя сам.
Первоначальную раскрутку двигателя можно осуществлять электрическим стартер-генератором (для маленьких двигателей) или специально поданным воздухом высокого давления от пневматической системы. К слову, воздух высокого давления в пневматической системе берется от второго (уже запущенного) двигателя, вспомогательной силовой установки (ВСУ) или внешнего источника.
Пример пульта управления, используемого для запуска двигателя:
Для автоматического запуска надо выполнить следующие действия:
Как управлять двигателем
Управление двигателями осуществляется с помощью рычагов управления двигателями (РУД).
На каждый двигатель — свой рычаг. Тут всё просто: толкаем рычаг от себя — двигатель крутится быстрее, тяга растёт. Тянем рычаг на себя — крутится медленнее. Так как РУД не связан с топливным дросселем напрямую, можно не бояться, что мы сожжем двигатель большим количеством топлива или заглушим недостаточным. FADEC в любом случае не даст ему превысить предельную температуру выхлопных газов или заглохнуть. Кстати, с ограничением температуры выхлопных газов связан тот факт, что в жару и/или на высокогорных аэродромах двигатель может выдать меньшую тягу.
В районе «малого газа» у рычага упор. Чтобы разблокировать перевод рычагов в зону режимов реверса, надо потянуть за специальную скобу. При реверсе двигателя специальные створки разворачивают поток от вентилятора двигателя в обратном направлении, помогая самолету остановиться:
Вообще, с помощью реверса самолёт может даже поехать назад, но, так как в этом режиме для двигателей, висящих под крылом, возможна ситуация засасывания в двигатель мусора и даже камней с взлётно-посадочной полосы, для авиалайнеров не рекомендуется включать реверс на малых скоростях.
Для включения реверса FADEC анализирует не только положение РУДов, но и датчики обжатия шасси, так что случайно в воздухе запустить реверс невозможно.
Про индикацию и сигнализацию
Данные работы двигателей, как правило, отображаются на неотключаемой части центрального дисплея пилотов и на специальной странице с расширенными данными по двигателю.
В постоянно индицируемом окне статуса работы двигателя доступны следующие данные:
а. Текущие обороты вентилятора двигателя (напрямую влияют на тягу)
б. Температура выхлопных газов — параметр работы двигателя, часто ограничивающий максимальную тягу. FADEC ограничивает ток топлива в том числе, чтобы не расплавить конструкцию лопаток турбин. Лётчику тоже важно понимать, почему обороты не растут, хотя он «просит»
в. Заданные обороты вентилятора двигателя (разгон двигателя с малого газа до взлётного режима занимает десятки секунд и текущие обороты не всегда совпадают с заданными)
г. Обороты турбины высокого давления. Помните, что турбин две и они работают независимо? Так вот данные оборотов турбины высокого давления важны при запуске двигателя. В полёте контролировать их не надо
д. Текущий расход топлива
е. Признак включения реверса
ж. Установившийся режим работы двигателя (малый газ, взлётный, набор высоты)
На специальной странице дополнительных параметров работы двигателя может выводиться такая информация, например как:
Варианты газотурбинных двигателей
Двигатели, в которых вентилятор вынесен за пределы мотогондолы (корпуса двигателя) называются турбовинтовыми. Они обладают лучшими взлетно-посадочными характеристиками, но быстро теряют эффективность при росте скорости больше 0.5 скорости звука (приблизительно). Поэтому они в основном применяются в самолётах для местных авиалиний и военно-транспортной авиации, где возможность использования коротких и неподготовленных взлетно-посадочных полос важнее, чем крейсерская скорость. В конструкции таких двигателей также часто применяется понижающая трансмиссия, как, например, на рисунке ниже.
Газотурбинные двигатели также используются на вертолётах, только в этом случае они крутят не пропеллер, а винт, сами двигатели в этом случае называются турбовальными. Хорошее видео, иллюстрирующее принципы их работы:
Ещё газотурбинные (турбовальные) двигатели ставят на танки (Т-80, Абрамс).
К преимуществам таких двигателей относят высокую удельную мощность, хороший запуск даже при низких температурах, возможность тянуть «с низов» — турбина высокого давления отделена от силовой турбины и двигатель не глохнет, когда гусеницы стоят неподвижно.
К недостаткам – высокую стоимость двигателя, сложность технического обслуживания, низкую приёмистость. По каждой из особенностей применения газотурбинных двигателей для танков есть разные полярные мнения, я же не специалист по танкам — не кидайте в меня камни. Я мог ошибиться. 🙂
Нелокализованный разлёт осколков
Одним из «свойств» двигателя, сильно влияющим на конструкцию бортового оборудования, является так называемый «нелокализованный разлёт осколков двигателя». Это событие возникает при взрывном разрушении двигателя, когда лопатки компрессоров и турбин разлетаются во все стороны.
При оценке последствий такого отказа, считается, что осколки обладают «бесконечной» энергией, которой достаточно, чтобы пробить любые преграды, разрубить любые трубы и провода. Для обеспечения безопасного завершения полета в случае такого нелокализованного разлета разработчики архитектуры электронного оборудования для каждого критического провода должны предусмотреть резервный, проложенный в отдельном канале, который не может быть перебит тем же осколком, что и основной провод.
Примечание для впечатлительных: на самом деле разработчики двигателей делают всё возможное, чтобы избежать нелокализованного разлёта, и действительно они случаются очень редко. Даже попадание крупной птицы в двигатель не сломает его. Но авиация — отрасль консервативная и мы закладываем в архитектуру противодействие всем потенциально возможным рискам.
Идеальный самолёт глазами инженеров. Лично мне взгляд технологов особенно симпатичен.
Авиационные газотурбинные двигатели
Всем привет! В этой статье я хочу рассказать о том, как работают авиационные газотурбинные двигатели (ГТД). Я постараюсь сделать это наиболее простым и понятным языком.
Авиационные ГТД можно можно разделить на:
Начнём с турбореактивных двигателей.
Турбореактивные двигатели
Такой тип двигателей был создан в первой половине 20-го века и начал находить себе массовое применение к концу Второй мировой войны. Первым в мире серийным турбореактивным самолетом был немецкий Me.262. ТРД были популярны вплоть до 60-ых годов, после чего их стали вытеснять ТРДД.
Современная фотография Me-262, сделанная в 2016 году
Самый простой турбореактивный двигатель включает в себя следующие элементы:
А теперь рассмотрим что для чего нужно и зачем.
Входное устройство — это расширяющийся* канал, в котором происходит подвод воздуха к компрессору и его предварительное сжатие. В нём кинетическая энергия входящего воздуха частично преобразуется в давление.
*здесь и дальше мы будем говорить про дозвуковые скорости. На сверхзвуковой скорости физика меняется, и там все совсем не так.
Компрессор — это устройство, в котором происходит повышение давление воздуха. Компрессор можно характеризовать такой величиной, как степень повышения давления. В современных двигателях оно уже начинает переступать за 40 единиц. Кроме того, в нем увеличивается температура (может быть, где-то до 400 градусов Цельсия).
Камера сгорания — устройство, в котором к сжатому воздуху (после компрессора) подводится тепло из-за горения топлива. Температура в камере сгорания очень высокая, может достигать 2000 градусов Цельсия. Вам может показаться, что давление газа в камере тоже сильно увеличивается, но это не так. Теоретически принято считать, что подвод тепла осуществляется при постоянном давлении. В реальности оно немного падает из-за потерь (проблема несовершенства конструкции).
Турбина — устройство, превращающее часть энергии газа после камеры сгорания в энергию привода компрессора. Так как турбины используются не только в авиации, можно дать более общее определение: это устройство, преобразующее внутреннюю энергию рабочего тела (в нашем случае рабочее тело — это газ) в механическую работу на валу. Как вы могли понять, турбина и компрессор находятся на одном валу и жестко связаны между собой. Если в компрессоре происходит повышение давления газа, то в турбине, наоборот, понижение, то есть газ расширяется.
Сопло — суживающийся канал, в котором происходит преобразование потенциальной энергии газа в кинетическую (оставшийся запас энергии газа после турбины). Как и в турбине, в сопле происходит расширение газа. Образуется струя, которая, вытекая из сопла, движет самолёт.
С основными элементами разобрались. Но все равно не очень понятно как оно работает? Тогда давайте ещё раз и коротко.
Воздух из атмосферы попадает во входное устройство, где немного сжимается и поступает в компрессор. В компрессоре давление воздуха растёт ещё сильнее, растёт и температура. После компрессора воздух поступает в камеру сгорания и, смешиваясь там с топливом, воспламеняется, что приводит к сильному возрастанию температуры, при, можно сказать, постоянном давлении. После камеры сгорания горячий сжатый газ попадает в турбину. Часть энергии газа расходуется на вращение компрессора турбиной (чтобы он мог выполнять свою функцию, описанную выше), другая часть энергии расходуется на, нужное нам, движение самолёта, из-за того, что газ, пройдя турбину, превращается в реактивную струю в сопле и вырывается из него (сопла) в атмосферу. На этом цикл завершается. Конечно, в реальности все процессы цикла проходят непрерывно.
Такой цикл называется циклом Брайтона, или термодинамическим циклом с непрерывным характером рабочего процесса и подводом тепла при постоянном давлении. По такому циклу работают все ГТД.
Цикл Брайтона в P-V координатах
Н-В — процесс сжатия во входном устройстве
В-К — процесс сжатия в компрессоре
К-Г — изобарический подвод тепла
Г-Т — процесс расширения газа в турбине
Г-С — процесс расширения газа в сопле
С-Н — изобарический отвод тепла в атмосферу
Схематичная конструкция турбореактивного двигателя, где 0-0 — ось двигателя
ТРД может иметь и два вала. В таком случае компрессор состоит из компрессора низкого давления (КНД) и компрессора высокого давления (КВД), а подвод работы будут осуществлять турбина низкого давления (ТНД) и турбина высокого давления (ТВД) соответственно. Такая схема более выгодная газодинамически.
Реальный двигатель такого вида в разрезе
Мы рассмотрели принцип работы самой простой схемы авиационного газотурбинного двигателя. Естественно, на современных «Эйрбасах и Боингах» устанавливаются ТРДД, конструкция которых заметно сложнее, но работает все по таким же законам. Давайте рассмотрим их.
Двухконтурный турбореактивный двигатель
ТРДД, прежде всего, отличается от ТРД тем, что имеет два контура: внешний и внутренний. Внутренний контур содержит в себе то же самое, что и ТРД: компрессор (разделенный на КНД и КВД), камеру сгорания, турбину (разделенную на ТВД и ТНД) и сопло. Внешний контур представляет собой канал, с соплом в конце. В нем нет ни камеры сгорания, ни турбины. Перед обоими контурами (сразу после входного устройства двигателя) стоит ступень компрессора, работающая на оба контура.
Не очень понятная картина выходит, да? Давайте разберемся как оно работает.
Схематичная конструкция двухвального двухконтурного турбореактивного двигателя
Воздух, попадающий в двигатель, пройдя через первую ступень компрессора низкого давления, разбивается на два потока. Одна часть воздуха идет по внутреннему контуру, где происходят те же процессы, которые были описаны, когда мы разбирали ТРД. Вторая часть воздуха попадает во внешний контур, получив энергию от первой ступени КНД (та, которая работает на два контура). Во внешнем контуре энергия воздуха тратится только на преодоление гидравлических потерь (за счёт трения). В конце этот воздух попадает в сопло внешнего контура, создавая огромную тягу. Тяга, созданная внешним контуром, может составлять 80% тяги всего двигателя.
Одной из важнейших характеристик ТРДД является степень двухконтурности. Степень двухконтурности — это отношение расхода воздуха во внешнем контуре, к расходу воздуха во внутреннем контуре. Это число может быть как больше, так и меньше единицы. На современных двигателях это число переступает за значение в 12 единиц.
Двигатели, степень двухконтурности которых больше двух, принято называть турбовентиляторными, а первую ступень компрессора (ту, что работает на оба контура) вентилятором.
ТРДД самолета Boeing 757-200. На переднем плане видно входное устройство и вентилятор
На некоторых двигателях вентилятор приводится в движение отдельной турбиной, которая ставится ближе всего к соплу внутреннего контура. Тогда двигатель получается трехвальным. Например, по такой схеме выполнены двигатели Rolls Royce RB211 (устанавливались на L1011, B747, B757, B767), Д-18Т (Ан-124), Д-36 (Як-42)
Д-18Т в разрезе изнутри
Главное достоинство ТРДД заключается в возможности создания большой тяги и хорошей экономичности, по сравнению с ТРД.
На этом я хотел бы закончить про ТРДД и перейти к следующему виду двигателей — ТВД.
Турбовинтовые двигатели
Турбовинтовой двигатель, как и турбореактивный, относится к газотурбинным двигателям. И работает он почти как турбореактивный. Элементарный турбовинтовой двигатель состоит из уже знакомых нам элементов: компрессора, камеры сгорания, турбины и сопла. К ним добавляются редуктор и винт.
Принцип работы работы такой же, как у турбореактивного, с разницей в том, что практически вся энергия газа расходуется на турбине на вращение компрессора и на вращение винта через редуктор (здесь винт и редуктор находятся на одном валу с компрессором). Винт создаёт основную долю тяги. Оставшаяся, после турбины, часть энергии направляется в сопло, образуя реактивную тягу, но она мала, может составлять десятую часть от общей. Редуктор в этой схеме нужен для того, чтобы понизить обороты и передать момент, так как турбина может вращаться с очень высокой частотой, например, 10000 оборотов в минуту, а винту нужно только 1500. И винт достаточно тяжелый.
Схематичная конструкция ТВД
Но бывает и другая схема турбовинтовых двигателей: со свободной турбиной.
Её суть в том, что за обычной турбиной компрессора ставится отдельная турбина, которая механически не связана с турбиной компрессора. Такая турбина называется свободной. Связь между турбиной компрессора и свободной турбиной только газодинамическая. От свободной турбины идёт отдельный вал, на который устанавливаются редуктор с винтом. Все остальное работает так же, как и в первом случае. Большинство современных двигателей выполняют именно по такой схеме. Одним из плюсов такой схемы является возможность использования двигателя на земле, как вспомогательную силовую установку (ВСУ), не приводя винт в движение.
Схематичная конструкция ТВД со свободной турбиной
Хочу отметить, что не нужно смотреть на турбовинтовые двигатели как на малоэффективный пережиток прошлого. Я несколько раз слышал такие высказывания, но они неверны.
Турбовинтовой двигатель в некоторых случаях обладает наивысшим КПД, как правило, на самолетах с не очень большими скоростями (например, на 500 км/ч), притом, самолет может быть внушительных размеров. В таком случае, турбовинтовой двигатель может быть в разы выгоднее, рассмотренного ранее, турбореактивного двигателя.
На этом про турбовинтовые двигатели можно заканчивать. Мы потихоньку подошли к понятию турбовального двигателя.
Турбовальный двигатель
Должно быть, большинство читателей здесь вообще впервые слышат такое название. Такой тип двигателей устанавливается на вертолёты.
Турбовальный двигатель очень схож с турбовинтовым двигателем со свободной турбиной. Он также состоит из компрессора, камеры сгорания, турбины компрессора, далее идёт свободная турбина, связанная со всем предыдущем только газодинамически. А вот реактивную тягу такой двигатель не создаёт, реактивного сопла у него нет, только выхлоп. Свободная турбина имеет свой вал, который соединяется к главному редуктору вертолёта (несущего винта). Да, у всех известных мне вертолетов есть такой редуктор, и, как правило, он внушительных размеров. Дело в том, что обороты несущего винта вертолёта очень низкие. Если у самолета, как я писал выше, они могут достигать 1500 об/мин, то у вертолёта, например у Ми-8, всего 193 об/мин.
А обороты двигателя у вертолёта зачастую очень высокие (из-за небольших размеров), и понижать их приходится в сотню и более раз. Бывает такое, что редуктор стоит и на двигателе, и на самом вертолете, например, у Ми-2 и его двигателя ГТД-350.
Схематичная конструкция турбовального двигателя
Двигатель ТВ3-117 от вертолета Ми-8. Справа видны выхлопная труба и приводной вал
Итак, мы рассмотрели четыре типа газотурбинных двигателей. Надеюсь, мой текст был понятен и полезен для вас. Все вопросы и замечания можете писать в комментариях.
Что такое помпаж двигателя самолета
Если коротко, помпаж (pompage —фр.) двигателя — это нарушение правильного течения воздушного потока через турбину турбореактивного двигателя. По различным причинам поток меняет своё направление, встречные потоки создают в двигателе турбулентные завихрения, давление на входе становится равным или даже превышает давление на выходе. Проявляется он сильной вибрацией, хлопками, появлением дыма и падением тяги.
Специалисты различают три вида нарушения воздушного потока в турбореактивном двигателе:
Впервые этот термин стал применяться в 1946 году.
Возможные последствия
Вибрация, возникающая при помпаже, способна разрушить двигатель. Кроме того, при возникновении помпажа в двигателе стремительно поднимается температура, на сотни градусов в секунду, поэтому, если не принимаются срочные меры, может произойти возгорание двигателя.
Очень опасно возникновение помпажа на земле, во время разбега самолёта перед взлётом.
Бывают ситуации, когда скорость ещё недостаточна для отрыва, но уже слишком велика, чтобы самолёт успел остановиться в пределах полосы. Катастрофа в этом случае практически неизбежна.
Причины
Чтобы понять из-за чего возникает помпаж, нужно разобраться, как устроен турбореактивный двигатель. Ну, хотя бы в общих чертах.
Устройство турбореактивного двигателя
Двигатель подвешен под крылом самолёта или прикрепляется к фюзеляжу. Состоит он из трёх частей — компрессора, камеры сгорания и турбины.
Работает он приблизительно так:
Из-за чего возникает помпаж
Причин возникновения помпажа может быть несколько:
Например, при попадании в двигатель птицы, события развиваются следующим образом:
Если не принять меры, процесс принимает циклический характер, что выглядит как череда непрерывных взрывов, и может привести к повреждению жизненно важных узлов и магистралей.
Не всегда причины, вызывающие помпаж можно предвидеть, поэтому особую важность имеют меры по предотвращению этого опасного явления и борьбе с ним.
Предупреждение
Чтобы не допустить помпажа, в современных двигателях предусмотрено несколько, обычно три, независимых валов турбины. Поэтому при выходе одного вала из строя, остальные в состоянии обеспечить устойчивую работу двигателя. Компрессоры также имеют конструктивные особенности, позволяющие контролировать направление и давление создаваемого потока.
Антипомпажная автоматика без участия экипажа предотвращает возникновение помпажа, выявляя с помощью датчиков, установленных на всём протяжении воздушного тракта, помпажные явления и мгновенно реагируя изменением подачи топлива и настроек компрессора.
Устранение во время полёта
При возникновении помпажа летчик немедленно уменьшает тягу в двигателе или даже на время глушит его. При падении давления, создаваемого компрессором, помпаж пропадает сам собой, нормальная работа двигателя восстанавливается. Современные двигатели оснащены противопожарной автоматикой, которая при пожаре в двигателе прекращает подачу топлива и устраняет возгорание.
Самолёт снижается для набора скорости и производится «холодная продувка двигателя», во время которой он освобождается от паров топлива. Затем подача топлива возобновляется, либо самолёт продолжает полёт на оставшихся в строю двигателях.
Помпаж двигателя может представлять серьёзную угрозу во время полёта, но оснащение современных самолётов средствами контроля и диагностики работы двигателя и наличие дублирующих систем позволяют свести риск к минимуму и сделать полёты безопасными.