вероятность того что одна случайная величина больше другой
Случайные величины. Дискретная случайная величина.
Математическое ожидание
Второй раздел по теории вероятностей посвящён случайным величинам, которые незримо сопровождали нас буквально в каждой статье по теме. И настал момент чётко сформулировать, что же это такое:
Случайной называют величину, которая в результате испытания примет одно и только одно числовое значение, зависящее от случайных факторов и заранее непредсказуемое.
Случайные величины, как правило, обозначают через *, а их значения – соответствующими маленькими буквами с подстрочными индексами, например, .
* Иногда используют , а также греческие буквы
Пример встретился нам на первом же уроке по теории вероятностей, где мы фактически рассмотрели следующую случайную величину:
– количество очков, которое выпадет после броска игрального кубика.
В результате данного испытания выпадет одна и только грань, какая именно – не предсказать (фокусы не рассматриваем); при этом случайная величина может принять одно из следующий значений:
.
– количество мальчиков среди 10 новорождённых.
Совершенно понятно, что это количество заранее не известно, и в очередном десятке родившихся детей может оказаться:
, либо мальчиков – один и только один из перечисленных вариантов.
И, дабы соблюсти форму, немного физкультуры:
– дальность прыжка в длину (в некоторых единицах).
Её не в состоянии предугадать даже мастер спорта 🙂
Тем не менее, ваши гипотезы?
Коль скоро речь идёт о множестве действительных чисел, то случайная величина может принять несчётно много значений из некоторого числового промежутка. И в этом состоит её принципиальное отличие от предыдущих примеров.
Таким образом, случайные величины целесообразно разделить на 2 большие группы:
1) Дискретная (прерывная) случайная величина – принимает отдельно взятые, изолированные значения. Количество этих значений конечно либо бесконечно, но счётно.
…нарисовались непонятные термины? Срочно повторяем основы алгебры!
2) Непрерывная случайная величина – принимает все числовые значения из некоторого конечного или бесконечного промежутка.
Примечание: в учебной литературе популярны аббревиатуры ДСВ и НСВ
Сначала разберём дискретную случайную величину, затем – непрерывную.
Закон распределения дискретной случайной величины
– это соответствие между возможными значениями этой величины и их вероятностями. Чаще всего закон записывают таблицей:
Довольно часто встречается термин ряд распределения, но в некоторых ситуациях он звучит двусмысленно, и поэтому я буду придерживаться «закона».
А теперь очень важный момент: поскольку случайная величина обязательно примет одно из значений , то соответствующие события образуют полную группу и сумма вероятностей их наступления равна единице:
или, если записать свёрнуто:
Так, например, закон распределения вероятностей выпавших на кубике очков имеет следующий вид:
Возможно, у вас сложилось впечатление, что дискретная случайная величина может принимать только «хорошие» целые значения. Развеем иллюзию – они могут быть любыми:
Некоторая игра имеет следующий закон распределения выигрыша:
Найти
…наверное, вы давно мечтали о таких задачах 🙂 Открою секрет – я тоже. В особенности после того, как завершил работу над теорией поля.
Решение: так как случайная величина может принять только одно из трёх значений, то соответствующие события образуют полную группу, а значит, сумма их вероятностей равна единице:
Разоблачаем «партизана»:
– таким образом, вероятность выигрыша условных единиц составляет 0,4.
Контроль: , в чём и требовалось убедиться.
Ответ:
Не редкость, когда закон распределения требуется составить самостоятельно. Для этого используют классическое определение вероятности, теоремы умножения / сложения вероятностей событий и другие фишки тервера:
В коробке находятся 50 лотерейных билетов, среди которых 12 выигрышных, причём 2 из них выигрывают по 1000 рублей, а остальные – по 100 рублей. Составить закон распределения случайной величины – размера выигрыша, если из коробки наугад извлекается один билет.
Решение: как вы заметили, значения случайной величины принято располагать в порядке их возрастания. Поэтому мы начинаем с самого маленького выигрыша, и именно рублей.
Всего таковых билетов 50 – 12 = 38, и по классическому определению:
– вероятность того, что наудачу извлечённый билет окажется безвыигрышным.
С остальными случаями всё просто. Вероятность выигрыша рублей составляет:
И для :
Проверка: – и это особенно приятный момент таких заданий!
Ответ: искомый закон распределения выигрыша:
Следующее задание для самостоятельного решения:
Вероятность того, что стрелок поразит мишень, равна . Составить закон распределения случайной величины – количества попаданий после 2 выстрелов.
…я знал, что вы по нему соскучились 🙂 Вспоминаем теоремы умножения и сложения. Решение и ответ в конце урока.
Закон распределения полностью описывает случайную величину, однако на практике бывает полезно (а иногда и полезнее) знать лишь некоторые её числовые характеристики.
Математическое ожидание дискретной случайной величины
Говоря простым языком, это среднеожидаемое значение при многократном повторении испытаний. Пусть случайная величина принимает значения с вероятностями соответственно. Тогда математическое ожидание данной случайной величины равно сумме произведений всех её значений на соответствующие вероятности:
или в свёрнутом виде:
Вычислим, например, математическое ожидание случайной величины – количества выпавших на игральном кубике очков:
очка
В чём состоит вероятностный смысл полученного результата? Если подбросить кубик достаточно много раз, то среднее значение выпавших очков будет близкО к 3,5 – и чем больше провести испытаний, тем ближе. Собственно, об этом эффекте я уже подробно рассказывал на уроке о статистической вероятности.
Теперь вспомним нашу гипотетическую игру:
Возникает вопрос: а выгодно ли вообще играть в эту игру? …у кого какие впечатления? Так ведь «навскидку» и не скажешь! Но на этот вопрос можно легко ответить, вычислив математическое ожидание, по сути – средневзвешенный по вероятностям выигрыш:
, таким образом, математическое ожидание данной игры проигрышно.
Не верь впечатлениям – верь цифрам!
Да, здесь можно выиграть 10 и даже 20-30 раз подряд, но на длинной дистанции нас ждёт неминуемое разорение. И я бы не советовал вам играть в такие игры 🙂 Ну, может, только ради развлечения.
Из всего вышесказанного следует, что математическое ожидание – это уже НЕ СЛУЧАЙНАЯ величина.
Творческое задание для самостоятельного исследования:
Мистер Х играет в европейскую рулетку по следующей системе: постоянно ставит 100 рублей на «красное». Составить закон распределения случайной величины – его выигрыша. Вычислить математическое ожидание выигрыша и округлить его до копеек. Сколько в среднем проигрывает игрок с каждой поставленной сотни?
Справка: европейская рулетка содержит 18 красных, 18 чёрных и 1 зелёный сектор («зеро»). В случае выпадения «красного» игроку выплачивается удвоенная ставка, в противном случае она уходит в доход казино
Существует много других систем игры в рулетку, для которых можно составить свои таблицы вероятностей. Но это тот случай, когда нам не нужны никакие законы распределения и таблицы, ибо доподлинно установлено, что математическое ожидание игрока будет точно таким же. От системы к системе меняется лишь дисперсия, о которой мы узнаем во 2-й части урока.
Но прежде будет полезно размять пальцы на клавишах калькулятора:
Случайная величина задана своим законом распределения вероятностей:
Найти , если известно, что . Выполнить проверку.
Тогда переходим к изучению дисперсии дискретной случайной величины, и по возможности, ПРЯМО СЕЙЧАС!! – чтобы не потерять нить темы.
Пример 3. Решение: по условию – вероятность попадания в мишень. Тогда:
– вероятность промаха.
Составим – закон распределения попаданий при двух выстрелах:
– ни одного попадания. По теореме умножения вероятностей независимых событий:
– одно попадание. По теоремам сложения вероятностей несовместных и умножения независимых событий:
– два попадания. По теореме умножения вероятностей независимых событий:
Проверка: 0,09 + 0,42 + 0,49 = 1
Ответ:
Примечание: можно было использовать обозначения – это не принципиально.
Пример 4. Решение: игрок выигрывает 100 рублей в 18 случаях из 37, и поэтому закон распределения его выигрыша имеет следующий вид:
Вычислим математическое ожидание:
Таким образом, с каждой поставленной сотни игрок в среднем проигрывает 2,7 рубля.
Пример 5. Решение: по определению математического ожидания:
поменяем части местами и проведём упрощения:
таким образом:
Выполним проверку:
, что и требовалось проверить.
Ответ:
Автор: Емелин Александр
(Переход на главную страницу)
Zaochnik.com – профессиональная помощь студентам
cкидкa 15% на первый зaкaз, прoмoкoд: 5530-hihi5
Tutoronline.ru – онлайн репетиторы по математике и другим предметам
Равномерное распределение вероятностей
Простейшее из непрерывных распределений, с помощью которого моделируются многие реальные процессы. И самый такой распространённый пример – это график движения общественного транспорта. Предположим, что некий автобус (троллейбус / трамвай) ходит с интервалом в 10 минут, и вы в случайный момент времени подошли к остановке. Какова вероятность того, что автобус подойдёт в течение 1 минуты? Очевидно, 1/10-я. А вероятность того, что придётся ждать 4-5 минут? Тоже . А вероятность того, что автобус придётся ждать более 9 минут? Одна десятая!
Рассмотрим некоторый конечный промежуток, пусть для определённости это будет отрезок . Если случайная величина обладает постоянной плотностью распределения вероятностей на данном отрезке и нулевой плотностью вне него, то говорят, что она распределена равномерно. При этом функция плотности будет строго определённой:
И в самом деле, если длина отрезка (см. чертёж) составляет , то значение неизбежно равно – дабы получилась единичная площадь прямоугольника, и было соблюдено известное свойство:
Проверим его формально:
, ч.т.п. С вероятностной точки зрения это означает, что случайная величина достоверно примет одно из значений отрезка …, эх, становлюсь потихоньку занудным старикашкой =)
Суть равномерности состоит в том, что какой бы внутренний промежуток фиксированной длины мы ни рассмотрели (вспоминаем «автобусные» минуты) – вероятность того, что случайная величина примет значение из этого промежутка будет одной и той же. На чертеже я заштриховал троечку таких вероятностей – ещё раз заостряю внимание, что они определяются площадями, а не значениями функции !
Рассмотрим типовое задание:
Непрерывная случайная величина задана своей плотностью распределения:
Найти константу , вычислить и составить функцию распределения. Построить графики . Найти
Иными словами, всё, о чём только можно было мечтать 🙂
Решение: так как на интервале (конечном промежутке) , то случайная величина имеет равномерное распределение, и значение «цэ» можно отыскать по прямой формуле . Но лучше общим способом – с помощью свойства:
…почему лучше? Чтобы не было лишних вопросов 😉
Таким образом, функция плотности:
Выполним чертёж. Значения невозможны, и поэтому жирные точки ставятся внизу:
В качестве экспресс-проверки вычислим площадь прямоугольника:
, ч.т.п.
Найдём математическое ожидание, и, наверное, вы уже догадываетесь, чему оно равно. Вспоминаем «10-минутный» автобус: если случайным образом подходить к остановке много-много дней упаси, то в среднем его придётся ждать 5 минут.
Да, именно так – матожидание должно находиться ровно посерединке «событийного» промежутка:
, как и предполагалось.
Дисперсию вычислим по формуле . И вот тут нужен глаз да глаз при вычислении интеграла:
Таким образом, дисперсия:
Составим функцию распределения . Здесь ничего нового:
1) если , то и ;
2) если , то и:
3) и, наконец, при , поэтому:
В результате:
Выполним чертёж:
На «живом» промежутке функция распределения растёт линейно, и это ещё один признак, что перед нами равномерно распределённая случайная величина. Ну, ещё бы, ведь производная линейной функции – есть константа.
Требуемую вероятность можно вычислить двумя способами, с помощью найденной функции распределения:
либо с помощью определённого интеграла от плотности:
Кому как нравится.
И здесь ещё можно записать ответ: ,
, графики построены по ходу решения.
…«можно», потому что за его отсутствие обычно не карают. Обычно 😉
Для вычисления и равномерной случайной величины существуют специальные формулы, которые я предлагаю вам вывести самостоятельно:
Непрерывная случайная величина задана плотностью .
Вычислить математическое ожидание и дисперсию. Результаты максимально упростить (формулы сокращённого умножения в помощь).
Полученные формулы удобно использовать для проверки, в частности, проверьте только что прорешанную задачу, подставив в них конкретные значения «а» и «б». Краткое решение внизу страницы.
И в заключение урока мы разберём парочку «текстовых» задач:
Цена деления шкалы измерительного прибора равна 0,2. Показания прибора округляются до ближайшего целого деления. Считая, что погрешности округлений распределены равномерно, найти вероятность того, что при очередном измерении она не превзойдёт 0,04.
Для лучшего понимания решения представим, что это какой-нибудь механический прибор со стрелкой, например, весы с ценой деления 0,2 кг, и нам предстоит взвесить кота в мешке. Но не в целях выяснить его упитанность – сейчас будет важно, ГДЕ между двумя соседними делениями остановится стрелка.
Рассмотрим случайную величину – расстояние стрелки от ближайшего левого деления. Или от ближайшего правого, это не принципиально.
Составим функцию плотности распределения вероятностей:
1) Так как расстояние не может быть отрицательным, то на интервале . Логично.
2) Из условия следует, что стрелка весов с равной вероятностью может остановиться в любом месте между делениями*, включая сами деления, и поэтому на промежутке :
* Это существенное условие. Так, например, при взвешивании кусков ваты или килограммовых пачек соли равномерность будет соблюдаться на куда более узких промежутках.
3) И поскольку расстояние от БЛИЖАЙШЕГО левого деления не может быть больше, чем 0,2, то при тоже равна нулю.
Таким образом:
Следует отметить, что о функции плотности нас никто не спрашивал, и её полное построения я привёл исключительно в познавательных цепях. При чистовом оформлении задачи достаточно записать только 2-й пункт.
Теперь ответим на вопрос задачи. Когда погрешность округления до ближайшего деления не превзойдёт 0,04? Это произойдёт тогда, когда стрелка остановится не далее чем на 0,04 от левого деления справа или не далее чем на 0,04 от правого деления слева. На чертеже я заштриховал соответствующие площади:
Осталось найти эти площади с помощью интегралов. В принципе, их можно вычислить и «по-школьному» (как площади прямоугольников), но простота не всегда находит понимание 😉
По теореме сложения вероятностей несовместных событий:
– вероятность того, что ошибка округления не превзойдёт 0,04 (40 грамм для нашего примера)
Легко понять, что максимально возможная погрешность округления составляет 0,1 (100 грамм) и поэтому вероятность того, что ошибка округления не превзойдёт 0,1 равна единице. И из этого, кстати, следует другой, более лёгкий способ решения, в котором нужно рассмотреть случайную величину – погрешность округления до ближайшего деления. Но первый способ мне пришёл в голову первым 🙂
Ответ: 0,4
И ещё один момент по задаче. В условии речь может идти о погрешностях не округлений, а о случайных погрешностях самих измерений, которые, как правило (но не всегда), распределены по нормальному закону. Таким образом, всего лишь одно слово может в корне изменить решение! Будьте начеку и вникайте в смысл задач!
И коль скоро всё идёт по кругу, то ноги нас приносят на ту же остановку:
Автобусы некоторого маршрута идут строго по расписанию и интервалом 7 минут. Составить функцию плотности случайной величины – времени ожидании очередного автобуса пассажиром, который наудачу подошёл к остановке. Найти вероятность того, что он будет ждать автобус не более трёх минут. Найти функцию распределения и пояснить её содержательный смысл.
Несмотря на то, что время не может быть отрицательным, интервал не имеет особого смысла исключать из рассмотрения, ибо противоречия тут нет – вероятность того, что случайная величина примет невозможное значение, равна нулю.
Краткое решение и ответ в конце урока. Дополнительные задачи с равномерным распределением можно найти в тематическом решебнике.
И не успел никто опомниться, как подошёл очередной автобус, который отвезёт нас до остановки Показательное распределение и конечной под названием Нормальное распределение вероятностей.
Пример 2. Решение: вычислим математическое ожидание:
Дисперсию вычислим по формуле .
Таким образом:
Ответ:
Пример 4. Решение: случайная величина имеет равномерное распределение с плотностью:
Вычислим вероятность того, что пассажир будет ожидать автобус не более 3 минут:
Составим функцию распределения :
1) если , то и ;
2) если , то и ;
3) если , то , и .
Таким образом:
Функция описывает вероятность того, что пассажир дождётся очередной автобус за время, МЕНЬШЕЕ, чем . При увеличении от 0 до 7 эта вероятность линейно возрастает на в минуту и по достижению достоверным становится тот факт, что пассажир автобуса дождался (форс-мажор исключаем).
Автор: Емелин Александр
(Переход на главную страницу)
Zaochnik.com – профессиональная помощь студентам
cкидкa 15% на первый зaкaз, прoмoкoд: 5530-hihi5
Tutoronline.ru – онлайн репетиторы по математике и другим предметам