верно ли утверждение что диагонали параллелограмма равны

Параллелограмм: свойства и признаки

верно ли утверждение что диагонали параллелограмма равны. Смотреть фото верно ли утверждение что диагонали параллелограмма равны. Смотреть картинку верно ли утверждение что диагонали параллелограмма равны. Картинка про верно ли утверждение что диагонали параллелограмма равны. Фото верно ли утверждение что диагонали параллелограмма равны

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Определение параллелограмма

Параллелограмм — это четырехугольник, у которого противоположные стороны попарно параллельны. Как выглядит параллелограмм:

Частные случаи параллелограмма: ромб, прямоугольник, квадрат.

Диагонали — отрезки, которые соединяют противоположные вершины.

Свойства диагоналей параллелограмма:

Биссектриса параллелограмма — это отрезок, который соединяет вершину с точкой на одной из двух противоположных сторон и делит угол при вершине пополам.

Свойства биссектрисы параллелограмма:

Как найти площадь параллелограмма:

Периметр параллелограмма — сумма длины и ширины, умноженная на два.

P = 2 × (a + b), где a — ширина, b — высота.

У нас есть отличные дополнительные курсы по математике для учеников с 1 по 11 классы!

Свойства параллелограмма

Геометрическая фигура — это любое множество точек. У каждой фигуры есть свои свойства, которые отличают их между собой и помогают решать задачи по геометрии в 8 классе.

Рассмотрим основные свойства диагоналей и углов параллелограмма, узнаем чему равна сумма углов параллелограмма и другие особенности этой фигуры. Вот они:

А сейчас докажем теорему, которая основана на первых двух свойствах.

Теорема 1. В параллелограмме противоположные стороны и противоположные углы равны.

верно ли утверждение что диагонали параллелограмма равны. Смотреть фото верно ли утверждение что диагонали параллелограмма равны. Смотреть картинку верно ли утверждение что диагонали параллелограмма равны. Картинка про верно ли утверждение что диагонали параллелограмма равны. Фото верно ли утверждение что диагонали параллелограмма равны

В любом выпуклом четырехугольнике диагонали пересекаются. Все, что мы знаем о точке их пересечения — это то, что она лежит внутри четырехугольника.

Если мы проведем обе диагонали в параллелограмме, точка пересечения разделит их пополам. Убедимся, так ли это:

Теорема доказана. Наше предположение верно.

Признаки параллелограмма

Признаки параллелограмма помогают распознать эту фигуру среди других четырехугольников. Сформулируем три основных признака.

Первый признак параллелограмма. Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.

Докажем 1 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

Чтобы назвать этот четырехугольник параллелограммом, нужно внимательно рассмотреть его стороны.

Сейчас мы видим одну пару параллельных сторон. Нужно доказать, что вторая пара сторон тоже параллельна.

Шаг 2. Проведем диагональ. Получились два треугольника ABC и CDA, которые равны по первому признаку равенства, то есть по по двум сторонам и углу между ними:

Шаг 3. Из равенства треугольников также следует:

верно ли утверждение что диагонали параллелограмма равны. Смотреть фото верно ли утверждение что диагонали параллелограмма равны. Смотреть картинку верно ли утверждение что диагонали параллелограмма равны. Картинка про верно ли утверждение что диагонали параллелограмма равны. Фото верно ли утверждение что диагонали параллелограмма равны

Эти углы тоже являются внутренними накрест лежащими для прямых CB и AD. А это как раз и есть признак параллельности прямых. Значит, CB || AD и ABCD — параллелограмм.

Вот так быстро мы доказали первый признак.

Второй признак параллелограмма. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.

Докажем 2 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

Шаг 2. Проведем диагональ AC и рассмотрим треугольники ABC и CDA:

Из этого следует, что треугольники ABC и CDA равны по третьему признаку, а именно по трем сторонам.

Шаг 3. Из равенства треугольников следует:

А так как эти углы — накрест лежащие при сторонах BC и AD и диагонали AC, значит, стороны BC и AD параллельны.

Эти углы — накрест лежащие при сторонах AB и CD и секущей AC. Поэтому стороны AB и CD тоже параллельны. Значит, четырехугольник ABCD — параллелограмм, ЧТД.

Доказали второй признак.

Третий признак параллелограмма. Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

Докажем 3 признак параллелограмма:

Шаг 1. Если диагонали четырехугольника ABCD делятся пополам точкой O, то треугольник AOB равен треугольнику COD по двум сторонам и углу между ними:

Шаг 2. Из равенства треугольников следует, что CD = AB.

Эти стороны параллельны CD || AB, по равенству накрест лежащих углов: ∠1 = ∠2 (следует из равенства треугольников AOB и COD).

верно ли утверждение что диагонали параллелограмма равны. Смотреть фото верно ли утверждение что диагонали параллелограмма равны. Смотреть картинку верно ли утверждение что диагонали параллелограмма равны. Картинка про верно ли утверждение что диагонали параллелограмма равны. Фото верно ли утверждение что диагонали параллелограмма равны

Значит, ABCD является параллелограммом по первому признаку, который мы доказали ранее. Что и требовалось доказать.

Теперь мы знаем свойства параллелограмма и то, что выделяет его среди других четырехугольников — признаки. Так как они совпадают, эти формулировки можно использовать для определения параллелограмма. Но самое распространенное определение все-таки связано с параллельностью противоположных сторон.

Источник

Верно ли утверждение что диагонали параллелограмма равны

Какие из следующих утверждений верны?

1) Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.

2) Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.

3) Если один из углов, прилежащих к стороне параллелограмма, равен 50°, то другой угол, прилежащий к той же стороне, равен 50°.

4) Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 160°.

Если утверждений несколько, запишите их номера в порядке возрастания.

Проверим каждое из утверждений.

1) «Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.» — верно, если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.

2) «Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.» — верно, если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.

3) «Если один из углов, прилежащих к стороне параллелограмма, равен 50°, то другой угол, прилежащий к той же стороне, равен 50°.» — неверно, стороны параллелограмма параллельны и образуют односторонние углы, а сумма односторонних углов равна 180°.

4) «Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 160°.» — верно, сумма углов выпуклого четырехугольника равна 360°.

Какое из следующих утверждений верно?

1) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.

2) Смежные углы равны.

3) Каждая из биссектрис равнобедренного треугольника является его высотой.

Проверим каждое из утверждений.

1) «Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.» — верно, если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.

2) «Смежные углы равны.» — неверно, сумма смежных углов равна 180°.

3) «Каждая из биссектрис равнобедренного треугольника является его высотой.» — неверно, только одна биссектриса равнобедренного треугольника является его высотой.

Какие из данных утверждений верны? Запишите их номера.

1) Вокруг любого треугольника можно описать окружность.

2) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.

3) Площадь трапеции равна произведению средней линии на высоту.

Если утверждений несколько, запишите их номера в порядке возрастания.

Проверим каждое из утверждений.

1) «Вокруг любого треугольника можно описать окружность» — верно, по свойству треугольника.

2) «Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат» — верно; из всех параллелограммов только в квадрате диагонали равны и перпендикулярны одновременно.

3) «Площадь трапеции равна произведению средней линии на высоту» — верно, по свойству трапеции.

Какие из данных утверждений верны? Запишите их номера.

1) У равнобедренного треугольника есть ось симметрии.

2) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.

3) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.

Проверим каждое из утверждений.

1) «У равнобедренного треугольника есть ось симметрии» — верно, эта ось совпадает с биссектрисой, проведённой к основанию.

2) «Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат» — верно, т. к. среди всех параллелограммов только в квадрате диагонали равны и перпендикулярны.

3) «Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности» — неверно, т. к. для того, чтобы сказать пересекаются окружности или нет, нужно знать взаимное положение их центров.

Укажите номера верных утверждений.

1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.

2) Треугольник со сторонами 1, 2, 4 существует.

3) Если в ромбе один из углов равен 90°, то такой ромб — квадрат.

4) В любом параллелограмме диагонали равны.

1) «Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой» — верно, это аксиома планиметрии.

2) Треугольник со сторонами 1, 2, 4 существует» — неверно: для того, чтобы существовал треугольник, сумма длин любых его двух сторон должна быть больше длины третьей стороны.

3) «Если в ромбе один из углов равен 90°, то такой ромб — квадрат» — верно, в этом случае противоположный угол тоже будет равен 90°, а значит и два других (равных) угла будут равны по 90°.

4) «В любом параллелограмме диагонали равны» — не верно, диагонали в произвольном параллелограмме не равны.

Укажите номера верных утверждений.

1) В тупоугольном треугольнике все углы тупые.

2) В любом параллелограмме диагонали точкой пересечения делятся пополам.

3) Точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от концов этого отрезка.

Проверим каждое из утверждений.

1) «В тупоугольном треугольнике все углы тупые» — неверно, так как в тупоугольном треугольнике только один угол — тупой.

2) «В любом параллелограмме диагонали точкой пересечения делятся пополам» — верно; это свойство параллелограмма.

3) «Точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от концов этого отрезка» — верно по свойству серединного перпендикуляра.

Какое из следующих утверждений верно?

1) Диагонали параллелограмма равны.

2) Площадь ромба равна произведению его стороны на высоту, проведённую к этой стороне.

3) Если две стороны и угол одного треугольника равны соответственно двум сторонам и углу другого треугольника, то такие треугольники равны.

Если утверждений несколько, запишите их номера в порядке возрастания.

Проверим каждое из утверждений.

1) «Диагонали параллелограмма равны» — неверно, если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник, т. е. не у каждого параллелограмма диагонали равны.

2) «Площадь ромба равна произведению его стороны на высоту, проведённую к этой стороне» — верно, ромб — частный случай параллелограмма, а площадь параллелограмма равна a · h.

3) «Если две стороны и угол одного треугольника равны соответственно двум сторонам и углу другого треугольника, то такие треугольники равны» — неверно, нет такого признака равенства треугольников. Признак равенства треугольников звучит так: «Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны».

Какие из данных утверждений верны? Запишите их номера.

1) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.

2) Площадь круга меньше квадрата длины его диаметра.

3) Если в четырёхугольнике диагонали перпендикулярны, то этот четырёхугольник — ромб.

Проверим каждое из утверждений.

1) «Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны» — неверно; верным будет утверждение: «Если две стороны одного треугольника и угол между ними соответственно равны двум сторонам и углу другого треугольника, то такие треугольники равны».

2) «Площадь круга меньше квадрата длины его диаметра» — верно, поскольку площадь круга равна верно ли утверждение что диагонали параллелограмма равны. Смотреть фото верно ли утверждение что диагонали параллелограмма равны. Смотреть картинку верно ли утверждение что диагонали параллелограмма равны. Картинка про верно ли утверждение что диагонали параллелограмма равны. Фото верно ли утверждение что диагонали параллелограмма равны, а верно ли утверждение что диагонали параллелограмма равны. Смотреть фото верно ли утверждение что диагонали параллелограмма равны. Смотреть картинку верно ли утверждение что диагонали параллелограмма равны. Картинка про верно ли утверждение что диагонали параллелограмма равны. Фото верно ли утверждение что диагонали параллелограмма равны.

3) «Если в четырёхугольнике диагонали перпендикулярны, то этот четырёхугольник — ромб» — неверно; верным являлось бы утверждение «Если в параллелограмме диагонали перпендикулярны, то такой параллелограмм — ромб», но не любой четырёхугольник — параллелограмм.

Диагонали AC и BD параллелограмма ABCD пересекаются в точке O, AC = 12, BD = 20, AB = 7. Найдите DO.

В параллелограмме диагонали точкой пересечения делятся пополам, поэтому DO = 10.

Диагонали AC и BD параллелограмма ABCD пересекаются в точке O, AC = 10, BD = 22, AB = 9. Найдите DO.

В параллелограмме диагонали точкой пересечения делятся пополам. Таким образом, DO = 11.

Какие из следующих утверждений верны?

1) Сумма углов выпуклого четырехугольника равна 180°.

2) Если один из углов параллелограмма равен 60°, то противоположный ему угол равен 120°.

3) Диагонали квадрата делят его углы пополам.

4) Если в четырехугольнике две противоположные стороны равны, то этот четырехугольник — параллелограмм.

Если утверждений несколько, запишите их номера в порядке возрастания.

Проверим каждое из утверждений.

1) «Сумма углов выпуклого четырехугольника равна 180°.» — неверно, сумма углов выпуклого n — угольника равна (n – 2)·180°.

2) «Если один из углов параллелограмма равен 60°, то противоположный ему угол равен 120°.» — неверно, в параллелограмме противоположные стороны и противоположные углы равны.

3) «Диагонали квадрата делят его углы пополам.» — верно, Диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам, делят углы квадрата пополам. Таким образом, прямоугольные треугольники равны.

4) «Если в четырехугольнике две противоположные стороны равны, то этот четырехугольник — параллелограмм.» — неверно, если в четырёхугольнике две стороны равны и параллельны, то этот четырёхугольник – параллелограмм.

Какие из следующих утверждений верны?

1. Длина гипотенузы прямоугольного треугольника меньше суммы длин его катетов.

2. Если точка лежит на биссектрисе угла, то она равноудалена от сторон этого угла.

3. Если диагонали параллелограмма равны, то этот параллелограмм является ромбом.

В ответ запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.

Рассмотрим каждое из утверждений:

Какое из следующих утверждений верно?

1. Если диагонали параллелограмма равны, то этот параллелограмм является ромбом.

2. Тангенс любого острого угла меньше единицы.

3. Сумма углов равнобедренного треугольника равна 180 градусам.

В ответ запишите номер выбранного утверждения.

Рассмотрим каждое из утверждений:

В параллелограмме ABCD диагонали AC и BD пересекаются в точке M. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника BMC.

Проведём высоту LN так, чтобы она проходила через точку верно ли утверждение что диагонали параллелограмма равны. Смотреть фото верно ли утверждение что диагонали параллелограмма равны. Смотреть картинку верно ли утверждение что диагонали параллелограмма равны. Картинка про верно ли утверждение что диагонали параллелограмма равны. Фото верно ли утверждение что диагонали параллелограмма равныУглы BML и NMD равны друг другу как вертикальные. Диагонали параллелограмма делятся точкой пересечения пополам, следовательно, верно ли утверждение что диагонали параллелограмма равны. Смотреть фото верно ли утверждение что диагонали параллелограмма равны. Смотреть картинку верно ли утверждение что диагонали параллелограмма равны. Картинка про верно ли утверждение что диагонали параллелограмма равны. Фото верно ли утверждение что диагонали параллелограмма равныРассмотрим треугольники BML и NMD, они прямоугольные, имеют равные углы и равные гипотенузы, следовательно, эти треугольники равны, а значит равны отрезки LM и MN. Таким образом, верно ли утверждение что диагонали параллелограмма равны. Смотреть фото верно ли утверждение что диагонали параллелограмма равны. Смотреть картинку верно ли утверждение что диагонали параллелограмма равны. Картинка про верно ли утверждение что диагонали параллелограмма равны. Фото верно ли утверждение что диагонали параллелограмма равны

Площадь параллелограмм равна верно ли утверждение что диагонали параллелограмма равны. Смотреть фото верно ли утверждение что диагонали параллелограмма равны. Смотреть картинку верно ли утверждение что диагонали параллелограмма равны. Картинка про верно ли утверждение что диагонали параллелограмма равны. Фото верно ли утверждение что диагонали параллелограмма равныа площадь треугольника верно ли утверждение что диагонали параллелограмма равны. Смотреть фото верно ли утверждение что диагонали параллелограмма равны. Смотреть картинку верно ли утверждение что диагонали параллелограмма равны. Картинка про верно ли утверждение что диагонали параллелограмма равны. Фото верно ли утверждение что диагонали параллелограмма равны

верно ли утверждение что диагонали параллелограмма равны. Смотреть фото верно ли утверждение что диагонали параллелограмма равны. Смотреть картинку верно ли утверждение что диагонали параллелограмма равны. Картинка про верно ли утверждение что диагонали параллелограмма равны. Фото верно ли утверждение что диагонали параллелограмма равны

Приведем другое решение.

Площади треугольников ABM и CBM равны, так как у них общая высота и равные стороны AM и MC. Поэтому площадь треугольника АВС равна двум площадям треугольника BMC. Треугольники АВС и ADC равны по трем сторонам, поэтому их площади равны. Следовательно, площадь параллелограмма равна двум площадям треугольника АВС, а значит, четырем площадям треугольника BMC.

Источник

Верно ли утверждение что диагонали параллелограмма равны

Какие из следующих утверждений верны?

1) Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.

2) Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.

3) Если один из углов, прилежащих к стороне параллелограмма, равен 50°, то другой угол, прилежащий к той же стороне, равен 50°.

4) Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 160°.

Если утверждений несколько, запишите их номера в порядке возрастания.

Проверим каждое из утверждений.

1) «Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.» — верно, если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.

2) «Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.» — верно, если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.

3) «Если один из углов, прилежащих к стороне параллелограмма, равен 50°, то другой угол, прилежащий к той же стороне, равен 50°.» — неверно, стороны параллелограмма параллельны и образуют односторонние углы, а сумма односторонних углов равна 180°.

4) «Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 160°.» — верно, сумма углов выпуклого четырехугольника равна 360°.

Какое из следующих утверждений верно?

1) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.

2) Смежные углы равны.

3) Каждая из биссектрис равнобедренного треугольника является его высотой.

Проверим каждое из утверждений.

1) «Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.» — верно, если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.

2) «Смежные углы равны.» — неверно, сумма смежных углов равна 180°.

3) «Каждая из биссектрис равнобедренного треугольника является его высотой.» — неверно, только одна биссектриса равнобедренного треугольника является его высотой.

Какие из данных утверждений верны? Запишите их номера.

1) Вокруг любого треугольника можно описать окружность.

2) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.

3) Площадь трапеции равна произведению средней линии на высоту.

Если утверждений несколько, запишите их номера в порядке возрастания.

Проверим каждое из утверждений.

1) «Вокруг любого треугольника можно описать окружность» — верно, по свойству треугольника.

2) «Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат» — верно; из всех параллелограммов только в квадрате диагонали равны и перпендикулярны одновременно.

3) «Площадь трапеции равна произведению средней линии на высоту» — верно, по свойству трапеции.

Какие из данных утверждений верны? Запишите их номера.

1) У равнобедренного треугольника есть ось симметрии.

2) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.

3) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.

Проверим каждое из утверждений.

1) «У равнобедренного треугольника есть ось симметрии» — верно, эта ось совпадает с биссектрисой, проведённой к основанию.

2) «Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат» — верно, т. к. среди всех параллелограммов только в квадрате диагонали равны и перпендикулярны.

3) «Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности» — неверно, т. к. для того, чтобы сказать пересекаются окружности или нет, нужно знать взаимное положение их центров.

Укажите номера верных утверждений.

1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.

2) Треугольник со сторонами 1, 2, 4 существует.

3) Если в ромбе один из углов равен 90°, то такой ромб — квадрат.

4) В любом параллелограмме диагонали равны.

1) «Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой» — верно, это аксиома планиметрии.

2) Треугольник со сторонами 1, 2, 4 существует» — неверно: для того, чтобы существовал треугольник, сумма длин любых его двух сторон должна быть больше длины третьей стороны.

3) «Если в ромбе один из углов равен 90°, то такой ромб — квадрат» — верно, в этом случае противоположный угол тоже будет равен 90°, а значит и два других (равных) угла будут равны по 90°.

4) «В любом параллелограмме диагонали равны» — не верно, диагонали в произвольном параллелограмме не равны.

Укажите номера верных утверждений.

1) В тупоугольном треугольнике все углы тупые.

2) В любом параллелограмме диагонали точкой пересечения делятся пополам.

3) Точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от концов этого отрезка.

Проверим каждое из утверждений.

1) «В тупоугольном треугольнике все углы тупые» — неверно, так как в тупоугольном треугольнике только один угол — тупой.

2) «В любом параллелограмме диагонали точкой пересечения делятся пополам» — верно; это свойство параллелограмма.

3) «Точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от концов этого отрезка» — верно по свойству серединного перпендикуляра.

Какое из следующих утверждений верно?

1) Диагонали параллелограмма равны.

2) Площадь ромба равна произведению его стороны на высоту, проведённую к этой стороне.

3) Если две стороны и угол одного треугольника равны соответственно двум сторонам и углу другого треугольника, то такие треугольники равны.

Если утверждений несколько, запишите их номера в порядке возрастания.

Проверим каждое из утверждений.

1) «Диагонали параллелограмма равны» — неверно, если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник, т. е. не у каждого параллелограмма диагонали равны.

2) «Площадь ромба равна произведению его стороны на высоту, проведённую к этой стороне» — верно, ромб — частный случай параллелограмма, а площадь параллелограмма равна a · h.

3) «Если две стороны и угол одного треугольника равны соответственно двум сторонам и углу другого треугольника, то такие треугольники равны» — неверно, нет такого признака равенства треугольников. Признак равенства треугольников звучит так: «Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны».

Какие из данных утверждений верны? Запишите их номера.

1) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.

2) Площадь круга меньше квадрата длины его диаметра.

3) Если в четырёхугольнике диагонали перпендикулярны, то этот четырёхугольник — ромб.

Проверим каждое из утверждений.

1) «Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны» — неверно; верным будет утверждение: «Если две стороны одного треугольника и угол между ними соответственно равны двум сторонам и углу другого треугольника, то такие треугольники равны».

2) «Площадь круга меньше квадрата длины его диаметра» — верно, поскольку площадь круга равна верно ли утверждение что диагонали параллелограмма равны. Смотреть фото верно ли утверждение что диагонали параллелограмма равны. Смотреть картинку верно ли утверждение что диагонали параллелограмма равны. Картинка про верно ли утверждение что диагонали параллелограмма равны. Фото верно ли утверждение что диагонали параллелограмма равны, а верно ли утверждение что диагонали параллелограмма равны. Смотреть фото верно ли утверждение что диагонали параллелограмма равны. Смотреть картинку верно ли утверждение что диагонали параллелограмма равны. Картинка про верно ли утверждение что диагонали параллелограмма равны. Фото верно ли утверждение что диагонали параллелограмма равны.

3) «Если в четырёхугольнике диагонали перпендикулярны, то этот четырёхугольник — ромб» — неверно; верным являлось бы утверждение «Если в параллелограмме диагонали перпендикулярны, то такой параллелограмм — ромб», но не любой четырёхугольник — параллелограмм.

Диагонали AC и BD параллелограмма ABCD пересекаются в точке O, AC = 12, BD = 20, AB = 7. Найдите DO.

В параллелограмме диагонали точкой пересечения делятся пополам, поэтому DO = 10.

Диагонали AC и BD параллелограмма ABCD пересекаются в точке O, AC = 10, BD = 22, AB = 9. Найдите DO.

В параллелограмме диагонали точкой пересечения делятся пополам. Таким образом, DO = 11.

Какие из следующих утверждений верны?

1) Сумма углов выпуклого четырехугольника равна 180°.

2) Если один из углов параллелограмма равен 60°, то противоположный ему угол равен 120°.

3) Диагонали квадрата делят его углы пополам.

4) Если в четырехугольнике две противоположные стороны равны, то этот четырехугольник — параллелограмм.

Если утверждений несколько, запишите их номера в порядке возрастания.

Проверим каждое из утверждений.

1) «Сумма углов выпуклого четырехугольника равна 180°.» — неверно, сумма углов выпуклого n — угольника равна (n – 2)·180°.

2) «Если один из углов параллелограмма равен 60°, то противоположный ему угол равен 120°.» — неверно, в параллелограмме противоположные стороны и противоположные углы равны.

3) «Диагонали квадрата делят его углы пополам.» — верно, Диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам, делят углы квадрата пополам. Таким образом, прямоугольные треугольники равны.

4) «Если в четырехугольнике две противоположные стороны равны, то этот четырехугольник — параллелограмм.» — неверно, если в четырёхугольнике две стороны равны и параллельны, то этот четырёхугольник – параллелограмм.

Какие из следующих утверждений верны?

1. Длина гипотенузы прямоугольного треугольника меньше суммы длин его катетов.

2. Если точка лежит на биссектрисе угла, то она равноудалена от сторон этого угла.

3. Если диагонали параллелограмма равны, то этот параллелограмм является ромбом.

В ответ запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.

Рассмотрим каждое из утверждений:

Какое из следующих утверждений верно?

1. Если диагонали параллелограмма равны, то этот параллелограмм является ромбом.

2. Тангенс любого острого угла меньше единицы.

3. Сумма углов равнобедренного треугольника равна 180 градусам.

В ответ запишите номер выбранного утверждения.

Рассмотрим каждое из утверждений:

В параллелограмме ABCD диагонали AC и BD пересекаются в точке M. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника BMC.

Проведём высоту LN так, чтобы она проходила через точку верно ли утверждение что диагонали параллелограмма равны. Смотреть фото верно ли утверждение что диагонали параллелограмма равны. Смотреть картинку верно ли утверждение что диагонали параллелограмма равны. Картинка про верно ли утверждение что диагонали параллелограмма равны. Фото верно ли утверждение что диагонали параллелограмма равныУглы BML и NMD равны друг другу как вертикальные. Диагонали параллелограмма делятся точкой пересечения пополам, следовательно, верно ли утверждение что диагонали параллелограмма равны. Смотреть фото верно ли утверждение что диагонали параллелограмма равны. Смотреть картинку верно ли утверждение что диагонали параллелограмма равны. Картинка про верно ли утверждение что диагонали параллелограмма равны. Фото верно ли утверждение что диагонали параллелограмма равныРассмотрим треугольники BML и NMD, они прямоугольные, имеют равные углы и равные гипотенузы, следовательно, эти треугольники равны, а значит равны отрезки LM и MN. Таким образом, верно ли утверждение что диагонали параллелограмма равны. Смотреть фото верно ли утверждение что диагонали параллелограмма равны. Смотреть картинку верно ли утверждение что диагонали параллелограмма равны. Картинка про верно ли утверждение что диагонали параллелограмма равны. Фото верно ли утверждение что диагонали параллелограмма равны

Площадь параллелограмм равна верно ли утверждение что диагонали параллелограмма равны. Смотреть фото верно ли утверждение что диагонали параллелограмма равны. Смотреть картинку верно ли утверждение что диагонали параллелограмма равны. Картинка про верно ли утверждение что диагонали параллелограмма равны. Фото верно ли утверждение что диагонали параллелограмма равныа площадь треугольника верно ли утверждение что диагонали параллелограмма равны. Смотреть фото верно ли утверждение что диагонали параллелограмма равны. Смотреть картинку верно ли утверждение что диагонали параллелограмма равны. Картинка про верно ли утверждение что диагонали параллелограмма равны. Фото верно ли утверждение что диагонали параллелограмма равны

верно ли утверждение что диагонали параллелограмма равны. Смотреть фото верно ли утверждение что диагонали параллелограмма равны. Смотреть картинку верно ли утверждение что диагонали параллелограмма равны. Картинка про верно ли утверждение что диагонали параллелограмма равны. Фото верно ли утверждение что диагонали параллелограмма равны

Приведем другое решение.

Площади треугольников ABM и CBM равны, так как у них общая высота и равные стороны AM и MC. Поэтому площадь треугольника АВС равна двум площадям треугольника BMC. Треугольники АВС и ADC равны по трем сторонам, поэтому их площади равны. Следовательно, площадь параллелограмма равна двум площадям треугольника АВС, а значит, четырем площадям треугольника BMC.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *