верно ли что плоскости параллельны если прямая
Параллельность плоскостей 10 класс
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
Описание презентации по отдельным слайдам:
Описание слайда:
Урок геометрии в 10 классе
по теме «Параллельность плоскостей»
Учитель математики
ГОУ Гимназии № 1579
Ягодкина Е.Б.
Описание слайда:
Помню снов тоску.
Тогда перед зеркалом стоял
и взгляд находил,
растворял.
Мысли бились друг о друга.
Так, бильярдные шары у вечерней пустоты
откалывают штукатурку звуков.
Так, будильник-сфинкс равнодушно и угрюмо
кожу чувств царапает, глотает.
Но в молчанье свой предел.
Всполохнутся мошки бликов,
солнце-сердце растопит все снега.
Это прошлое взбунтует
и вздохнет уснувшая мечта.
Анатолий Кудрявцев
Описание слайда:
Две плоскости называются параллельными, если они не пересекаются.
Плоскости
Пересекаются
Параллельны
α
β
β
α
α || β
α ∩ β
Описание слайда:
Параллельные плоскости в природе
Если стоять спиной к водопаду, скалы образуют геометрически правильные параллельные плоскости
Описание слайда:
Параллельные плоскости в технике
Параллельные плоскости «летают»
Описание слайда:
Параллельные плоскости в быту
В своей сущности и основе геометрия –это пространственное воображение, пронизанное и организованное строгой логикой
В ней всегда присутствуют эти два неразрывно связанных элемента: наглядная картина и точная формулировка, строгий логический вывод.
Там, где нет одной из этих сторон, нет и подлинной геометрии.
Описание слайда:
Параллельные плоскости в искусстве
Д.Грин
«Мечты»
Силуэты мальчика расположены в параллельных плоскостях
Описание слайда:
Невозможные структуры
Жос Де Мей.(Jos de Mey)
Жос де Мей (Jos de Mey) родился в 1928 году в Бельгии. Первые его работы были основаны на использовании различных математических законов и последовательностей, таких как ряд Фибоначчи и золотое сечение, но с 1976 года он с особой выразительностью стал использовать обман зрения, наряду с точным воспроизведением материалов и эффекта света и тени. Изображение невозможных фигур как таковых только увеличивает кажущуюся реалистичность.
Описание слайда:
Невозможные структуры
Жос Де Мей.(Jos de Mey)
Часто на картинах Жоса де Мея изображена сова.
Эта птица в Голландии имеет двоякое значение, с одной стороны – она является символом теоретических знаний, а с другой стороны – совой голландцы называют человека, которые выглядит глупо.
Описание слайда:
Невозможные фигуры возможны!
Речной вокзал в Твери. Кстати, это место, где снимали несколько сцен фильма «Чучело». От этой пристани в финале фильма отходит пароход.
Неправильно направленный на объект фотоаппарат сделал параллельные плоскости непараллельными
Описание слайда:
Две плоскости называются параллельными, если они не пересекаются.
Плоскости
Пересекаются
Параллельны
α
β
β
α
α || β
α ∩ β
Описание слайда:
Признак параллельности плоскостей
Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.
Дано:
а α; вα; а∩в=М;
а1 β; в1 β;
а║а1; в║в1
Доказать,
что α || β
α
β
а
b
М
b1
а1
М1
Описание слайда:
Доказательство от противного
Пусть α ∩ β = с
Тогда
а || β, α ∩ β = с а || с.
b || β, α ∩ β = сb || с.
Описание слайда:
Какие теоремы мы использовали при доказательстве признака?
Описание слайда:
Задача № 51.
(еще один признак параллельности)
Дано: т ∩ п = К, т Є α, п Є α,
т || β, п || β.
Доказать: α || β.
α
β
т
п
К
с
1) Допустим, что ___________
2) Так как __________________,
то ______________________.
Получаем, что
______________________________________________________.
Вывод:
α ∩ β = с
п || β, т || β
т || с и п || с
через точку К проходят две прямые параллельные прямой с.
α || β
Описание слайда:
Задача № 53.
Дано: отрезки А1А2; В1В2; С1С2
О Є А1А2; О Є В1В2; О Є С1С2
А1О = ОА2; В1О = ОВ2; С1О = ОС2
Доказать: А1В1С1 || А2В2С2
А1
В1
А2
В2
С2
С1
О
Описание слайда:
Описание слайда:
Описание слайда:
Отвечаем на вопросы
Могут ли прямая и плоскость не иметь общих точек?
Верно ли, что если две прямые не пересекаются, то они параллельны?
Плоскости и β параллельны, прямая m не лежит в плоскости . Верно ли, что прямая m параллельна плоскости β?
Верно ли, что если прямая а параллельна одной из двух параллельных плоскостей, с другой плоскостью прямая а имеет одну общую точку?
Боковые стороны трапеции параллельны плоскости . Верно ли, что плоскость трапеции параллельна плоскости ?
Две стороны трапеции лежат в параллельных плоскостях. Могут ли эти стороны быть боковыми сторонами трапеции?
Верно ли, что плоскости параллельны, если прямая, лежащая в одной плоскости, параллельна другой плоскости?
Верно ли, что линия пересечения двух плоскостей параллельна одной из этих плоскостей?
Верно ли, что любые четыре точки лежат в одной плоскости?
Верно ли, что если две стороны треугольника параллельны плоскости , то и третья сторона параллельна плоскости ?
Описание слайда:
Проверяем свою работу
Могут ли прямая и плоскость не иметь общих точек? Да
Верно ли, что если две прямые не пересекаются, то они параллельны? Нет
Плоскости и β параллельны, прямая m не лежит в плоскости . Верно ли, что прямая m параллельна плоскости β? Да
Верно ли, что если прямая а параллельна одной из двух параллельных плоскостей, с другой плоскостью прямая а имеет одну общую точку? Нет
Боковые стороны трапеции параллельны плоскости . Верно ли, что плоскость трапеции параллельна плоскости ? Да
Две стороны трапеции лежат в параллельных плоскостях. Могут ли эти стороны быть боковыми сторонами трапеции? Нет
Верно ли, что плоскости параллельны, если прямая, лежащая в одной плоскости, параллельна другой плоскости? Нет
Верно ли, что линия пересечения двух плоскостей параллельна одной из этих плоскостей? Нет
Верно ли, что любые четыре точки лежат в одной плоскости? Нет
Верно ли, что если две стороны треугольника параллельны плоскости , то и третья сторона параллельна плоскости ? Да
Описание слайда:
Домашнее задание
П. 10, № 55, 56, 57.
Пояснения к домашнему заданию:
В № 55 запишите в тетрадь и разберите решение задачи, приведенное в учебнике.
Дополнительная задача:
Прямая а параллельна плоскости . Существует ли плоскость, проходящая через прямую а и параллельная плоскости . Если существует, то сколько таких плоскостей? Ответ обоснуйте.
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Параллельные прямая и плоскость, признак и условия параллельности прямой и плоскости
Статья рассматривает понятия параллельность прямой и плоскости. Будут рассмотрены основные определения и приведены примеры. Рассмотрим признак параллельности прямой к плоскости с необходимыми и достаточными условиями параллельности, подробно решим примеры заданий.
Параллельные прямые и плоскость – основные сведения
Прямая и плоскость называются параллельными, если не имеют общих точек, то есть не пересекаются.
Параллельность прямой и плоскости – признак и условия параллельности
Не всегда очевидно, что прямая и плоскость параллельны. Зачастую это нужно доказать. Необходимо использовать достаточное условие, которое даст гарантию на параллельность. Такой признак имеет название признака параллельности прямой и плоскости. Предварительно рекомендуется изучить определение параллельных прямых.
Рассмотрим теорему, используемую для установки параллельности прямой с плоскостью.
Если одна из двух параллельных прямых параллельна плоскости, то другая прямая лежит в этой плоскости либо параллельна ей.
Условие применимо, когда необходимо доказать параллельность в прямоугольной системе координат трехмерного пространства. Рассмотрим подробное доказательство.
Значит, перпендикулярность векторов a → и n → очевидна. Отсюда следует, что прямая с плоскостью являются параллельными.
Ответ: прямая с плоскостью параллельны.
Отсюда следует, что прямая А В с координатной плоскостью О y z не являются параллельными.
Ответ: не параллельны.
Из определения следует, что прямая a с плоскостью α не должна иметь общих точек, то есть не пересекаться, только в этом случае они будут считаться параллельными. Значит, система координат О х у z не должна иметь точек, принадлежащих ей и удовлетворяющих всем уравнениям:
Система уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A x + B y + C z + D = 0 не имеет решения, когда ранг основной матрицы меньше ранга расширенной. Это проверяется теоремой Кронекера-Капелли для решения линейных уравнений. Можно применять метод Гаусса для определения ее несовместимости.
Для решения данного примера следует переходить от канонического уравнения прямой к виду уравнения двух пересекающихся плоскостей. Запишем это так:
Видим, что она не решаема, значит прибегнем к методу Гаусса.
Отсюда делаем вывод, что система уравнений является несовместной, так как прямая и плоскость не пересекаются, то есть не имеют общих точек.
Ответ: прямая и плоскость параллельны.
Геометрия. 10 класс
Конспект урока
Геометрия, 10 класс
Урок №6. Параллельность плоскостей
Перечень вопросов, рассматриваемых в теме
Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.
Определение. Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости.
Определение. Два отрезка называются параллельными, если они лежат на паралельных прямых.
Определение. Плоскости, которые не пересекаются, называются параллельными.
Глазков Ю. А., Юдина И. И., Бутузов В. Ф. Рабочая тетрадь по геометрии 10 Москва «Просвещение» 2013 год. С. 1-4.
Зив Б. Г. Геометрия 10 класс Дидактические материалы Москва «Просвещение» 2013 год. С.4, 14, 24
Теоретический материал для самостоятельного изучения
Как известно из аксиом стереометрии, если плоскости имеют одну общую точку, то они пересекаются по прямой, проходящей через эту точку. Значит две плоскости или пересекаются, или не пересекаются.
Определение. Плоскости, которые не пересекаются, называются параллельными.
Параллельные плоскости α и β обозначаются α∥β.
Признак параллельности плоскостей. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны.
Допустим, что плоскости α и β не параллельны, то есть они пересекаются по некоторой прямой c.
Прямая a1 параллельна прямой b1, значит она параллельна и самой плоскости β.
Прямая a2 параллельна прямой b2, значит она параллельна и самой плоскости β (признак параллельности прямой и плоскости).
Прямая c принадлежит плоскости α, значит хотя бы одна из прямых a1 или a2 пересекает прямую c, то есть имеет с ней общую точку. Но прямая c также принадлежит и плоскости β, значит, пересекая прямую c, прямая a1 или a2 пересекает плоскость β, чего быть не может, так как прямые a1 и a2 параллельны плоскости β.
Из этого следует, что плоскости α и β не пересекаются, то есть они параллельны.
Свойства параллельных плоскостей.
Теорема 1. Если две параллельные плоскости пересекаются третьей, то линии их пересечения параллельны.
Плоскость α пересекается с плоскостью γ по прямой a.
Плоскость β пересекается с плоскостью γ по прямой b.
Линии пересечения a и b лежат в одной плоскости γ и потому могут быть либо пересекающимися, либо параллельными прямыми. Но, принадлежа двум параллельным плоскостям, они не могут иметь общих точек. Следовательно, они параллельны.
Теорема 2. Отрезки параллельных прямых, заключенных между двумя параллельными плоскостями, равны.
Проведённая плоскость пересекается с плоскостью α по прямой AB, а с плоскостью β по прямой CD.
По предыдущей теореме прямые AB и CD параллельны. Четырехугольник ABCD есть параллелограмм (у него противоположные стороны параллельны). А раз это параллелограмм, то противоположные стороны у него равны, то есть BC=AD.
Теорема 3. Если прямая пересекает одну из двух параллельных плоскостей, то она пересекает и другую.
Пусть α||β, a пересекает α в точке А.
Выберем в плоскости любую точку C. Через эту точку и прямую a проведём плоскость.
Так как плоскость имеет с плоскостями α и β общие точки A и C соответственно, то она пересекает эти плоскости по некоторым прямым b и c, которые проходят соответственно через точки A и C. По предыдущей теореме прямые b и c параллельны. Тогда в плоскости прямая a пересекает (в точке A) прямую b, которая параллельна прямой c. Значит, прямая a пересекает и прямую c в некоторой точке B. Так как прямая c лежит в плоскости, то точка B является точкой пересечения прямой a и плоскости. Теорема доказана.
Теорема 4. Если плоскость пересекает одну из двух параллельных плоскостей, то она пересекает и другую плоскость.
Пусть α||β, α и γ пересекаются.
Докажем, что плоскости β и γ пересекаются.
Проведём в плоскости γ прямую a, пересекающую плоскость α в некоторой точке B. Тогда по теореме 3 прямая a пересекает и плоскость β в некоторой точке A. Следовательно, плоскости β и γ имеют общую точку A, т. е. пересекаются. Теорема доказана.
Теорема 5. Через точку, не лежащую в данной плоскости, можно провести плоскость, параллельную данной, и притом только одну.
Пусть нам даны плоскость α и точка М, ей не принадлежащая.
Докажем, что существует плоскость β, которой принадлежит точка М, параллельная плоскости α.
В данной плоскости α проведём две произвольные пересекающиеся прямые a и b. Через точку M проведём прямые a1 и b1, параллельные соответственно a и b. Плоскость, проходящую через пересекающиеся прямые a1 и b1, обозначим β. На основании признака параллельности плоскостей плоскость β параллельна плоскости α.
Докажем методом от противного, что β — единственная плоскость, удовлетворяющая условию теоремы.
Допустим, что через точку M проходит другая плоскость, например β1, параллельная α.
Так как β1 пересекает плоскость β (они имеют общую точку M), то по теореме 4 плоскость β1 пересекает и плоскость α (β ‖ α). Мы пришли к противоречию. Таким образом, предположение о том, что через точку M можно провести плоскость, отличную от плоскости β и параллельную плоскости α, неверно. Значит, плоскость β — единственна. Теорема доказана.
Рассмотрим несколько примеров на применение данных свойств.
Даны две пересекающиеся прямые a и b точка А, не лежащая в плоскости этих прямых. Докажите, что через точку А проходит плоскость, параллельная прямым a и b, и притом только одна.
Прямые a и b пересекаются по условию, следовательно, по следствию из аксиомы А1, эти прямые единственным образом определяют плоскость α.
Известно, что через точку А, не принадлежащую плоскости α, проходит единственная плоскость, параллельная α, т.е. параллельная прямым a и b (по теореме 5) .
Плоскости α и β параллельны, прямая m лежит в плоскости α. Докажите, что прямая m параллельна плоскости β.
Предположим, что прямая m пересекает плоскость β в точке М. Тогда точка М принадлежит плоскости α (т.к. прямая m лежит в плоскости α) и М принадлежит плоскости β, значит, α и β пересекаются, но они параллельны по условию. Очевидно, m не пересекает плоскость α, т.е. параллельна ей.
Примеры и разбор решения заданий тренировочного модуля
№1. Тип задания: ввод с клавиатуры пропущенных элементов в тексте
Три отрезка А1А2, В1В2 и С1С2, не лежащие в одной плоскости, имеют общую середину. Докажите, что плоскости А1В1С1 и А2В2С2 параллельны.
Рассмотрим плоскость, проходящую через прямые А1А2 и В1В2
(она существует и единственная, т.к. прямые пересекаются).
В этой плоскости лежит четырехугольник А1В1А2В2, диагонали которого точкой пересечения делятся пополам. Следовательно, данный четырехугольник является параллелограммом (признак параллелограмма), значит, А1В1 и А2В2 параллельны.
Аналогично доказывается параллельность В1С1 и В2С2. Из вышеперечисленного следует, что плоскости А1В1С1 и А2В2С2 параллельны по признаку параллельности плоскостей.
Рассмотрим плоскость, проходящую через прямые А1А2 и В1В2
(она существует и единственная, т.к. прямые пересекаются).
В этой плоскости лежит четырехугольник А1В1А2В2, диагонали которого точкой пересечения делятся пополам. Следовательно, данный четырехугольник является параллелограммом (признак параллелограмма), значит, А1В1 и А2В2 параллельны.
Аналогично доказывается параллельность В1С1 и В2С2. Из вышеперечисленного следует, что плоскости А1В1С1 и А2В2С2 параллельны по признаку параллельности плоскостей.
Тип задания: выделение цветом
Два равнобедренных треугольника FKС и FKD с общим основанием FK расположены так, что точка С не лежит в плоскости FKD. Определите взаимное расположение прямых, содержащих медианы треугольников, проведенных к сторонам KС и KD.
Прямые, которые содержат медианы треугольников к KC и KD- выходят из одной точки F. Соответственно, можно сделать вывод, что данные прямые пересекаются.