варистор что это для чего нужен простыми словами
Варистор. Принцип работы и применение
Варистор является пассивным двухвыводным, твердотельным полупроводниковым прибором, который используется для обеспечения защиты электрических и электронных схем. В отличие от плавкого предохранителя или автоматического выключателя, которые обеспечивают защиту по току, варистор обеспечивает защиту от перенапряжения с помощью стабилизации напряжения подобно стабилитрону.
Слово «Варистор» является аббревиатурой и сочетанием слов «Varistor — variable resistor», резистор, имеющий переменное сопротивление, что в свою очередь описывает режим его работы. Его буквальный перевод с английского (Переменный Резистор) может немного ввести в заблуждения — сравнивая его с потенциометром или реостатом.
Но, в отличие от потенциометра, сопротивление которого может быть изменено вручную, варистор меняет свое сопротивления автоматически с изменением напряжения на его контактах, что делает его сопротивление зависимым от напряжения, другими словами его можно охарактеризовать как нелинейный резистор.
В настоящее время резистивный элемент варистора изготавливают из полупроводникового материала. Это позволяет использовать его как в цепях переменного, так и постоянного тока.
Варистор во многом похож по размеру и внешнему виду на конденсатор и его часто путают с ним. Тем не менее, конденсатор не может подавлять скачки напряжения таким же образом, как варистор.
Не секрет, что когда в цепи электропитания схемы какого-либо устройства возникает импульс высокого напряжения, то исход зачастую бывает плачевным. Поэтому применение варистора играет важную роль в системе защиты чувствительных электронных схем от скачков напряжения и высоковольтных переходных процессов.
Всплески напряжения возникают в различных электрических схемах независимо от того, работают они от сети переменного или постоянного тока. Они часто возникают в самой схеме или поступают в нее от внешних источников. Высоковольтные всплески напряжения могут быстро нарастать и доходить до нескольких тысяч вольт, и именно от этих импульсов напряжения необходимо защищать электронные компоненты схемы.
Один из самых распространенных источников подобных импульсов – индуктивный выброс, вызванный переключением катушек индуктивности, выпрямительных трансформаторов, двигателей постоянного тока, скачки напряжения от включения люминесцентных ламп и так далее.
Форма волны переменного тока в переходном процессе
Варисторы подключаются непосредственно к цепям электропитания (фаза — нейтраль, фаза-фаза) при работе на переменном токе, либо плюс и минус питания при работе на постоянном токе и должны быть рассчитаны на соответствующее напряжение. Варисторы также могут быть использованы для стабилизации постоянного напряжения и главным образом для защиты электронной схемы от высоких импульсов напряжения.
Статическое сопротивление варистора
При нормальной работе, варистор имеет очень высокое сопротивление, поэтому его работа схожа с работой стабилитрона. Однако, когда на варисторе напряжение превышает номинальное значение, его эффективное сопротивление сильно уменьшается, как показано на рисунке выше.
Мы знаем из закона Ома, что ток и напряжение имеют прямую зависимость при постоянном сопротивлении. Отсюда следует, что ток прямо пропорционален разности потенциалов на концах резистора.
Но ВАХ (вольт-амперная характеристика) варистора не является прямолинейной, поэтому в результате небольшого изменения напряжения происходит значительное изменение тока. Ниже приведена кривая зависимости тока от напряжения для типичного варистора:
Мы можем видеть сверху, что варистор имеет симметричную двунаправленную характеристику, то есть варистор работает в обоих направлениях (квадрант Ι и ΙΙΙ) синусоиды, подобно работе стабилитрона.
Когда нет всплесков напряжения, в квадранте IV наблюдается постоянное значение тока, это ток утечки, составляющий всего несколько мкА, протекающий через варистор.
Из-за своего высокого сопротивления, варистор не оказывает влияние на цепь питания, пока напряжение находится на номинальном уровне. Номинальный уровень напряжения (классификационное напряжение) — это такое напряжение, которое необходимо приложить на выводы варистора, чтобы через него проходил ток в 1 мА. В свою очередь величина этого напряжения будет отличаться в зависимости от материала, из которого изготовлен варистор.
При превышении классификационного уровня напряжения, варистор совершает переход от изолирующего состояния в электропроводящее состояние. Когда импульсное напряжение, поступающее на варистор, становится больше, чем номинальное значение, его сопротивление резко снижается за счет лавинного эффекта в полупроводниковом материале. При этом малый ток утечки, протекающий через варистор, быстро возрастает, но в тоже время напряжение на нем остается на уровне чуть выше напряжения самого варистора. Другими словами, варистор стабилизирует напряжение на самом себе путем пропускания через себя повышенного значения тока, которое может достигать не одну сотню ампер.
Емкость варистора
Поскольку варистор, подключаясь к обоим контактам питания, ведет себя как диэлектрик, то при нормальном напряжении он работает скорее как конденсатор, а не как резистор. Каждый полупроводниковый варистор имеет определенную емкость, которая прямо пропорциональна его площади и обратно пропорциональна его толщине.
При применении в цепях постоянного тока, емкость варистора остается более-менее постоянной при условии, что приложенное напряжение не больше номинального, и его емкость резко снижается при превышении номинального значения напряжения. Что касается схем на переменном токе, то его емкость может влиять на стабильность работы устройств.
Подбор варистора
Чтобы для конкретного устройства правильно подобрать варистор, желательно знать сопротивление источника и мощность импульсов переходных процессов. Варисторы на основе оксидов металлов имеют широкий диапазон рабочего напряжения, начиная от 10 вольт и заканчивая свыше 1000 вольт переменного или постоянного тока. В общем необходимо знать на каком уровне напряжения нужно защитить схему электроприбора и взять варистор с небольшим запасом, например для сети 230 вольт подойдет варистор на 260 вольт.
Максимальное значение тока (пиковый ток) на которое должен быть рассчитан варистор, определяется длительностью и количеством повторений всплесков напряжения. Если варистор установлен с малым пиковым током, то это может привести к его перегреву и выходу из строя. Таким образом, для безотказной работы, варистор должен быстро рассеивать поглощенную им энергию переходного импульса и безопасно возвращаться в исходное состояние.
Варианты подключения варистора
Подведем итог
В данной статье мы узнали, что варистор это тип полупроводникового резистора, имеющий нелинейную ВАХ. Он является надежным и простым средством обеспечения защиты от перегрузки и скачков напряжения. Варисторы применяются в основном в чувствительных электронных схемах. В случае если питающее напряжение неожиданно превышает нормальное значение, варистор защищает схему за счет резкого снижения собственного сопротивления, шунтируя цепь питания и пропуская через себя пиковый ток, доходящий порой до сотен ампер.
Классификационное напряжение варистора — это напряжение на самом варисторе при протекании через него тока в 1 мА. Эффективность работы варистора в электронной или электрической цепи зависит от правильного его выбора в отношении напряжения, тока и силы энергии всплесков.
Скачать справочные материалы по зарубежным варисторам (3,0 MiB, скачано: 5 380)
Назначение, характеристики и принцип работы варистора
Среди радиолюбителей большой популярностью пользуются варисторы. Они применяются практически во всех электронных устройствах и позволяют усовершенствовать некоторые приборы. Для использования в схемах следует понять принцип работы варистора, а также знать его основные характеристики. Кроме того он, как и любая деталь, обладает своими достоинствами и недостатками, которые нужно учитывать при построении и расчете электрических схем.
Общие сведения
Варистор (varistor) является полупроводниковым резистором, уменьшающим величину своего сопротивления при увеличении напряжения. Условное графическое обозначение (УГО) представлено на рисунке 1, на котором изображена зависимость сопротивления радиокомпонента от величины напряжения. На схемах обозначается znr. Если их больше одного, то обозначается в следующем виде: znr1, znr2 и т. д.
Рисунок 1 — УГО варистора.
Многие начинающие радиолюбители путают переменный резистор и варистор. Принцип действия, основные характеристики и параметры этого элемента отличаются от переменного резистора. Кроме того, распространенной ошибкой составления электрических принципиальных схем является неверное его УГО. Варистор выглядит как конденсатор и распознается только по маркировке.
Виды и принцип работы
Полупроводниковые резисторы классифицируются по напряжению, поскольку от этого зависит их сфера применения. Их всего 2 вида:
Все они применяются для защиты цепей от перегрузок: первые — для защиты электросетей, электрических машин и установок; вторые служат для защиты радиокомпонентов в низковольтных цепях. Принцип работы варисторов одинаков и не зависит от его вида.
В исходном состоянии он обладает высоким сопротивлением, но при превышении номинального значения напряжения оно падает. В результате этого, по закону Ома для участка цепи, значение силы тока возрастает при уменьшении величины сопротивления. Варистор при этом работает в режиме стабилитрона. При проектировании устройства и для корректной его работы следует учитывать емкость варистора, значение которой прямо пропорционально площади и обратно пропорционально его толщине.
Для того чтобы правильно подобрать элемент для защиты от перегрузок в цепях питания устройства, следует знать величину сопротивления источника на входе, а также мощность импульсов, образующихся при коммутации. Максимальное значение силы тока, пропускаемое варистором, определяет величину длительности и периода повторений выбросов амплитудных значений напряжения.
Маркировка и основные параметры
Маркировка варисторов отличается, поскольку каждый производитель этих радиокомпонентов имеет право устанавливать ее самостоятельно. Это, прежде всего, связано с его техническими характеристиками. Например, различия по напряжениям и необходимым уровням тока для его работы.
Среди отечественных наиболее распространенным является К275, а среди импортных — 7n471k, 14d471k, kl472m и ac472m. Наибольшей популярностью пользуется варистор, маркировка которого — CNR (бывают еще hel, vdr, jvr). Кроме того, к ней прикрепляется цифробуквенный индекс 14d471k, и расшифровывается этот вид обозначения следующим образом:
Существуют технические характеристики, необходимые для применения в схеме. Это связано с тем, что для защиты различных элементов цепи следует использовать различный тип полупроводникового сопротивления.
Их основные характеристики:
После описания принципа работы, особенностей маркировки и основных характеристик следует рассмотреть сферы применения варисторов.
Применение приборов
Варисторы применяются для защиты электронных устройств от скачкообразного напряжения, амплитуда которого превышает номинальное значение питания. Благодаря применению в блоках питания полупроводникового резистора, появляется возможность избежать множества поломок, которые могут вывести электронику из строя. Широкое применение варистор получил и в схеме балласта, который применяется в элементах освещения.
В некоторых стабилизаторах величин напряжения и тока также используются специализированные полупроводниковые резисторы, а варисторы-разрядники с напряжением более 20 кВ применяются для стабилизации питания в линиях электропередач. Его можно подключить также и в схему проводки (схема 1), защитив ее от перегрузок и недопустимых амплитудных значений тока и напряжения. При перегрузке проводки происходит ее нагрев, который может привести к пожару.
Схема 1 — Подключение варистора для сети 220В.
Низковольтные варисторы работают в диапазоне напряжения от 3 В до 200 В с силой тока от 0,1 до 1 А. Они применяются в различной аппаратуре и ставятся преимущественно на входе или выходе источника питания. Время их срабатывания составляет менее 25 нс, однако этой величины для некоторых приборов недостаточно и в этом случае применяются дополнительные схемы защиты.
Однако технология их изготовления не стоит на месте, поскольку фирма «S+М Eрсоs» создала радиоэлемент с временем срабатывания менее 0,5 нс. Этот полупроводниковый резистор изготовлен по smd-технологии. Конструкции дискового исполнения обладают более высоким временем срабатывания. Многослойные варисторы (CN) являются надежной защитой от статического электричества, которое может вывести из строя различную электронику. Примером использования является производство мобильных телефонов, которые подвержены воздействию статических разрядов. Этот тип варисторов также получили широкое применение в области компьютерной технике, а также в высокочувствительной аппаратуре.
Достоинства и недостатки
Для использования варистора следует ознакомиться с его положительными и отрицательными сторонами, поскольку от этого зависит защита электроники. К положительным качествам следует отнести следующие:
У варистора, кроме его достоинств, существуют серьезные недостатки, на которые следует обратить внимание при разработке какого-либо устройства. К ним относятся:
Емкость полупроводникового прибора находится в пределах от 70 до 3200 пФ и, следовательно, существенно влияет на работу схемы. Эта величина зависит от конструкции и типа прибора, а также от напряжения. Однако в некоторых случаях этот недостаток является достоинством при использовании его в фильтрах. Значение большей емкости ограничивает величину напряжения.
При максимальных значениях напряжения для рассеивания мощности следует применять варисторы-разрядники, поскольку обыкновенный полупроводниковый прибор перегреется и выйдет из строя. Каждому радиолюбителю следует знать алгоритм проверки варистора, поскольку при обращении в сервисные центры существует вероятность заплатить за ремонт больше, чем он стоит в действительности.
Проверка на исправность
Для поиска неисправностей необходима схема устройства. Для примера следует обратиться к схеме 2, в которой применяется варистор. В ней будет рассмотрен только вариант выхода из строя полупроводникового резистора. Основным этапом поиска неисправностей является подготовка рабочего места и инструмента, которая позволяет сосредоточиться на выполнении ремонта и произвести его качественно. Для ремонтных работ потребуется следующий инструмент:
После подготовки рабочего места и инструмента следует аккуратно разобрать сетевой фильтр, а затем при необходимости произвести очистку от пыли и мусора.
Схема 2 — Схема электрическая принципиальная сетевого фильтра на 220 вольт и его доработка.
Найти варистор и произвести его визуальный осмотр. Корпус должен быть целым и без трещин. Если было обнаружено нарушение целостности корпуса, то его необходимо выпаять и произвести замену на такой же или выбрать аналог. Необходимо отметить, что полярность подключения варистора в цепь не имеет значения. Если механические повреждения не обнаружены, то следует перейти к его диагностике, которая производится двумя способами:
В первом случае деталь выпаивается из платы и замеряется значение ее сопротивления при помощи мультиметра. Переключатель ставится в положение максимального диапазона измерений (2 МОм достаточно). При замере не следует касаться руками варистора, поскольку прибор покажет сопротивление тела. Если мультиметр показывает высокие значения, то радиокомпонент исправен, а при других значениях его следует заменить. После замены следует собрать корпус и произвести включение сетевого фильтра.
Существует и другой способ выявления неисправного варистора, основанный на анализе характеристик элемента. Его, как правило, используют в том случае, если замер величины сопротивления не дал необходимых результатов. Для этого следует обратиться к техническим характеристикам варистора, согласно которым можно выявить его неисправность.
Следует проверить силу тока, при которой он работает, поскольку ее значение может быть меньше необходимой. В этом случае он не будет работать. Также нужно проверить величину напряжения, на которую он рассчитан. Если по каким-либо причинам эти показатели меньше допустимых, то полупроводниковый резистор не откроется.
Таким образом, варистор получил широкое применение в различных устройствах защиты от перепадов напряжения и блоках питания, а также статического электричества. Современные технологии позволяют получить низкие показатели времени срабатывания, благодаря которому сферы применения этого радиоэлемента расширяются.
Варистор
Варистор – это электрический элемент, сопротивление которого может изменяться в зависимости от того, какое напряжение на него поступает.
Принцип работы варистора
Сопротивление варистора зависит от того, какое напряжение на него поступает. Как правило, до порогового значения, сопротивление варистора велико (более 1-2 мегаОм). При переходе порогового значения напряжение, сопротивление варистора стремительно снижается. Эта особенность варистора отлично помогает в защите электроники от импульсных скачков высокого напряжения. Ведь ток импульса в таком случае идет через варистор и рассеивается в виде тепла.
Однако, если пороговое значение напряжения поддерживается длительное время, то варистор перегревается и “сгорает”.
Кстати, при замене плавкого предохранителя, советуем заодно проверить и варистор. Очень часто, что выходом из строя предохранителя бывает умерший варистор. Если этого не сделать, при следующем же скачке напряжения вы рискуете большим, чем варистор и предохранитель.
Изготовление варистора
Объясняется все это устройством варистора. Состоит варистор из полупроводника и различных материалов для связывания. Распространена такая связка – карбид кремния и эпоксидная смола. Их сплавляют при высоких температурах. Затем, поверхность варистора покрывается металлом и припаиваются выходы.
Конструкция варистора
Способность проводить большое напряжение через себя варистором обеспечивается материалом – кремнием. При нагревании кристаллы карбида кремния значительно уменьшают свое сопротивление. И ток может спокойно проходить по ним.
Однако, все большее распространение получают варисторы из оксида цинка. Они проще в изготовление и могут пропускать через себя более высоковольтные импульсы. Техника их производства схожа с производством керамических варисторов.
Разные формы варисторов
Применение варистора
Варисторы применяются в большинстве бытовой электроники по всему миру. Их можно встретить практически в любой электронике. Они есть и в автомобильной электронике, в сотовой технике и бытовой, сетевых фильтрах и компьютерном железе.
Кстати говоря, хороший блок питания, от китайского отличается наличием варистора у первого. Поэтому, хороший блок питания куда более живуч и ремонтопригоден.
Умельцы, при сборе своих подделок из светодиодных ламп также используют варисторы. А особые умельцы умудряются размещать их в розетках и вилках. Что только не придумаешь для обеспечения защиты своей электроники, если в доме проблема со скачками напряжения.
Сфера их применения обширна. Это могут быть и установки с напряжением 20кВ и с напряжением в 3В. Это может быть сеть с переменным током, а может быть и с постоянным. Воистину, варисторы можно встретить практически везде.
Так какие же варистор характеристики имеет?
Как правило, для описания варистора используют вот такие параметры:
Емкость варистора в закрытом состоянии. Во время работы её значение может меняться. При особенно большом токе – уменьшается практически до нуля. Обозначается как Со.
Максимальная энергия в Джоулях, которую может поглотить варистор за один импульс. Обозначается W.
Максимальное значение импульсного тока, при 8/20мс. Обозначается как Iрр.
Среднее квадратичное значение переменного напряжения в цепи. Обозначается как Um.
Предельное напряжение при постоянном токе. Обозначается как Um=.
Для приблизительных расчетов рабочего напряжения советуем использовать значение Un не больше 0,6 с переменным током и 0,8 с постоянным.
В сетях 220В используют варисторы с минимальным классификационным напряжением (Un) от 380 до 430 В.
Не следует забывать и о емкости варистора при подборе. Как правило, она зависит от размера варистора. Так, варистор TVR 20 431 имеет емкость 900пФ, а TVR 05 431 – 80 пФ. Эти величины всегда можно подглядеть в справочном материале.
На схемах варистор обозначается следующим образом
RU – это обозначение самого варистора. Цифра рядом с RU – номер по порядку. То есть, какое это по счету варистор в цепи. Буква U снизу слева у косой, проходящей через варистор, означает, что данный элемент имеет способность менять напряжение. Также, зачастую на схемах указывается маркировка варистора. О маркировке и её расшифровке мы поговорим ниже.
Так обозначают варистор на схемах
Защита варистором техники
Варисторная защита применяется в бытовых приборах. Они могут быть припаянными в саму плату, или же выведены и закреплены отдельными проводами. Варисторы необходимо подключать параллельно. Подключать их последовательно просто не имеет смысла. Ток по цепи в таком случае проходить просто не будет.
Как работает варисторная защита?
Например, рядом с вашим домом ударила молния. Или она могла попасть в ЛЭП. В сети происходит скачек напряжения. Варистор его поглощает и, если импульс слишком сильный/продолжительный – варистор умирает.
То есть, варистор гарантия того, что ваша чувствительная электроника не сгорит от скачка напряжения. Однако, следует помнить, что варистор может стать точкой короткого замыкания, во время длительной работы при максимальном напряжении.
Выше мы описали несколько способов как этого избежать. Брать варисторы с термисторами или же включать в цепь предохранители.
Если все максимально упростить: при низком напряжении варистор – блокирующее устройство, при высоком – проводящее.
Выбор варистора
Чтобы эффективно и гарантированно защитить вашу технику, к выбору варистора необходимо подойти с умом.
Как правило, для защиты бытовой техники используют варисторы с пороговым значением напряжения от 275 до 430 В. Особо углубляться в подбор варисторов с учетом других значений (емкость и т.п) мы вдаваться не будем. Тут есть множество нюансов, которые в формате этой статьи просто не удастся рассмотреть. Для более точного подбора варистора можем посоветовать использование справочников по варисторам. В них указаны все характеристики, которыми обладает тот или иной варистор. Что позволит вам выбрать наиболее подходящий для ваших целей и задач.
Еще одним важным параметром при выборе варистора является скорость срабатывания. Как правило, у большинства варисторов она составляет около 25 нс. Но не всегда этого хватает.
Тогда вам подойдут варисторы с меньшим временем срабатывания. Недостижимым идеалом по скорости срабатывания являются варисторы, изготовленные по технологии многослойной структуры SIOV-CN. Их скорость срабатывания может составлять менее 1 не.
Такие варисторы необходимы для защиты от статического электричества. В бытовой технике, такие варисторы практически не применяются.
Гарантом жизни вашей техники при любых скачках напряжения, может послужить варистор, установленный на нуле. Естественно, с учетом того, что он установлен и на фазе тоже.
Слышали, наверно, про случаи, когда сразу у множества людей сгорала электроника? Это происходит как раз из-за того, что по проводам идет только фаза. Варистор предохраняет и от этого.
Плюсы использования варистора
Варистор – он как автомат калашникова. Прост, надежен, дешев. И распространен повсеместно. Он всегда сработает и не подведет. Область его применения огромна. Как мы выше писали от 20кВ до 3В. Ну и про время срабатывания забывать не стоит. 25нс у среднего варистора – весьма неплохо. А есть экземпляры, со скоростью срабатывания ниже 0,5 не.
Но, как и у всего в этом мире, у варистора есть и недостатки.
К таковым относится низкочастотных шум во время работы, большая емкость варистора (от 70 до 3000 пФ) и склонность материалов варистора к устареванию.
Плюсы варистора превалируют над минусами. Именно поэтому он получил столь широкое распространение. Как и автомат калашникова.
Как проверить варистор?
Вот 3 способа, доступных практически каждому:
Начнем с самого простого способа – посмотреть на варистор
Для доступа к нему придется разобрать бытовой прибор и очистить его от пыли. Тут вам понадобится отвертка и щеточка. Запыленность – основная проблема блоков питания.
Поврежденный варистор можно обнаружить по трещинам на корпусе, вздутиям, явным признакам воздействия высоких температур. (Как минимум немного оплавленный корпус, как максимум – следы короткого замыкания).
Варистор покрыт снаружи, как правило, керамикой или эпоксидным покрытием. При перегревании варистора – покрытие трескается.
Мультиметр
Проверить варистор мультиметром довольно просто. Выставляем на мультиметре предел измерения. Выкручиваем его на максимум, как правило это 2 мегаОма (2МОм, 2М, реже 2000К). При измерении, мультиметр должен показывать сопротивление ближе к бесконечности. Зачастую, он показывает 1-2 мегаома.
Прозвон
При прозвоне придется отпаять одну из ножек варистора из цепи. Прозвон, следует осуществлять с разных направлений. Рабочий варистор не прозванивается, что понятно. Ток через него не идет. Сопротивление не позволяет.
Маркировка варистора
Если же ваш варистор вышел из строя, то для его замены нам здорово поможет знание маркировки варистора. Сама маркировка располагается на корпусе и представляет собой набор латинских букв и цифр. Несмотря на разных производителей, в большинстве своем, маркировка на варисторах не сильно отличается и её вполне возможно прочитать.
В качестве примера, приведем 2 разных варистора от разных производителей:
Первая цифра 12 – обозначает диаметр варистора в миллиметрах. Вторая цифра – 182К напряжение открытия. 18 – напряжение, 2- коэффициент. CNR же – обозначение материала варистора. В данном конкретном примере, варистор изготовлен из оксидов металлов.
K – используется для обозначения класса точности. То есть, если написано на корпусе варистора – 275К, то К – точность 10%, а 275 – напряжение открытия. И напряжение открытия рассчитывается так – 275 +- 27,5.
То есть, например, наш варистор 20D471K можно заменить варистором TVR20471. Или любым другим аналогом варистора. Например – SAS471D20. Нужно лишь знать основные принципы маркировки.
Несмотря на вышеописанные принципы маркировки, настоятельно рекомендуем пользоваться справочной литературой при выборе варистора. В ней указываются все необходимые характеристики варистора, в том числе и те, которые не узнать по маркировке.
Что делать, если у вашего варистора стерта маркировка?
Узнать, на какое напряжение рассчитан ваш варистор вам поможет мегомметр. Чтобы проверить варистор, надо подключить его к мегомметру и прогонять его по пределам. То есть, если варистор на 470В, то проверять его стоит на 500В.
Есть способ, с использованием блока питания. Правда, для этого нужен блок питания, с регулируемым напряжением и максимальной силой тока. Силу тока нужна выставить такую, чтобы варистор не сгорел. А как мы писали выше, они имеют тенденцию взрываться.
Варистор со стёртой маркировкой
Соответственно, перед подключением его следует визуально осмотреть. Если на корпусе варистора имеются трещины, вздутия, визуально видно, что он плавился – то такой варистор точно не рабочий. Но зачастую – это трещины. Материал варисторов склонен к старению, об этом всегда следует помнить. Варисторы, с такими повреждениями, можно не проверять. Они не рабочие.
Множество варисторов по хорошим ценам на алиэкспресс — кликай.