вакуум что это в физике
Вакуум: основные понятия, определения и типы вакуума
Вакуум понятие относительное. Учеными доказано, что абсолютного вакуума не существует. Есть несколько понятий вакуума и его интерпретаций.
Что такое вакуум
Ва́куум с латинского «vacuum» обозначает пустой, т.е. это пустое пространство. Но создать пустое пространство невозможно. Поэтому принято считать вакуумом объем, в котором почти нет никаких веществ. Количество молекул в вакууме находится в таком небольшом количестве, что может достигать нескольких десятков.
Из-за малого количество молекул, их внутренняя энергия или импульсы стремятся к нулю. Поэтому считается, что в вакууме практически отсутствуют различные процессы, такие как электрический ток, трение и прочее.
В физике ва́куум – это пространство с газом, давление которого ниже атмосферного давления. Другими словами, это разряжение.
Качество вакуума или его глубина измеряется давлением. А точнее, отношением длины свободного пробега частицы к линейным размерам емкости, в которой он создан. С увеличением степени разряжения уменьшается число столкновений молекул в пространстве. Длина свободного пробега частиц увеличивается и зависит только от размеров сосуда, со стенками которого они сталкиваются. Следовательно, вакуумом можно назвать состояние, когда частицы газа, находясь в определенном объеме, не соприкасаются друг с другом.
Основная единица измерения вакуумного давления – Па. Но паскаль достаточно большая величина для измерения разряжения, поэтому в физике часто используются другие величины, такие как бар, мм.рт.ст., торр, физическая атмосфера.
Соотношение единиц измерения вакуума в физике.
Вакуум
Ва́куум (от лат. vacuum — пустота) — состояние материи в отсутствии вещества. Также его иногда называют безвоздушным пространством, хотя это и неверно. Следует различать понятия физического вакуума и технического вакуума.
Термин «ва́куум», как правило, используется для обозначения области пространства, в котором давление меньше атмосферного. Атмосферное давление обычно выражается в миллиметрах ртутного столба и над уровнем моря приблизительно равно 760 мм рт. ст., что составляет 1 стандартную атмосферу.
Технический вакуум
Применяется обычно к газу, заполняющему ограниченный объём. В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно.
Высокий вакуум в микроскопических порах некоторых кристаллов достигается при атмосферном давлении, что связано именно с длиной свободного пробега газа.
Стоит отметить, что даже в идеальном вакууме при конечной температуре всегда имеется некоторое тепловое излучение (газ фотонов). Таким образом, тело, помещённое в идеальный вакуум рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами.
Физический вакуум
Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира [источник?] и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (так называемых ложных вакуумов ) является одним их главных основ инфляционной теории Большого взрыва.
Что такое физический вакуум?
Под физическим вакуумом понимается не тот «технический вакуум», который образуется в результате откачивания воздуха из какого-либо сосуда, а особое состояние материи. Физический вакуум – это среда, которая фактически заполняет мировое пространство и с ней тесно связаны его фундаментальные физические свойства.
В каждой точке пространства каждое мгновение физический вакуум рождает частицы и античастицы, которые тут же аннигилируются, испуская световые кванты, которые в свою очередь мгновенно поглощаются. В частности, было установлено, что родившийся из вакуума электрон может существовать как реальная частица лишь в течение всего 10 в – 22 степени секунд. За это время он никак не может «проявить себя», то есть вступить во взаимодействие с какой-либо другой реальной частицей. Выяснилось также, что электрон в силу некоторых фундаментальных законов микромира никогда, ни при каких обстоятельствах не может находиться в состоянии покоя – отнять у электрона всю энергию невозможно, при любых условиях он будет находиться в движении, дрожать.
Исследование последних лет позволяет считать, что во многих отношениях физический вакуум ведёт себя подобно сверхпроводнику. Сверхпроводимость – это особое состояние некоторых металлов (при низких температурах), при котором полностью исчезает сопротивление. Из теории физиков С. Вайнберга и А. Салама следует, что в физическом вакууме могут возникать коллективы частиц, находящихся на нижнем энергетическом уровне – так называемый конденсат. При этом обнаружилось поразительное обстоятельство: от того сколько «скрытых» частиц в таком коллективе, зависят физические характеристики реальных частиц, например, их масса.
Но самое важное состоит в том, что та скрытая от наших глаз форма материи «физический вакуум» способна при некоторых условиях рождать вещественные частицы без нарушения законов сохранения. Подобные условия могут складываться как под воздействием внешних сил, скажем, мощных полей тяготения или электромагнитных полей, так и «спонтанно», самопроизвольно.
Московский физик и математик Л. В. Лесков высказал предположение о том, что в нашей Вселенной, наряду с миром материальных объектов существует особая разновидность физического вакуума – «меон», обладающая свойствами особого «информационного пространства».
В 1978 известный московский физик Н. И. Кобозев высказал предположение, что в атомно-молекулярных структурах нейронных сетей головного мозга человека существует своеобразный вакуум, состоящий из особых сверхлёгких частиц – «психонов». Именно эти частицы воспринимают информацию, поступающую из внешнего мира, и передают её мозгу. В результате этого процесса и возникают такие удивительные явления, как интуиция, озарения и тому подобные феномены.
Существует несколько теоретических концепций, описывающих явления, происходящие в физическом вакууме. Одна из них разрабатывается российскими физиками А. Е. Акимовым и Г. И. Шиповым. В её основе лежит предположение о существовании «абсолютного вакуума», обладающего свойствами кривизны и кручения. Эти учёные изучают так называемые торсионные взаимодействия и торсионные поля, возникающие при вращении и кручении различных материальных объектов.
Источник информации книга В. Н. Комарова «Тайны пространства и времени»
Вакуум
Ва́куум (от лат. vacuum — пустота) — состояние материи в отсутствии вещества. Также его иногда называют безвоздушным пространством, хотя это и неверно. Следует различать понятия физического вакуума и технического вакуума.
Термин «ва́куум», как правило, используется для обозначения области пространства, в котором давление меньше атмосферного. Атмосферное давление обычно выражается в миллиметрах ртутного столба и над уровнем моря приблизительно равно 760 мм рт. ст., что составляет 1 стандартную атмосферу.
Технический вакуум
Применяется обычно к газу, заполняющему ограниченный объём. В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно.
Высокий вакуум в микроскопических порах некоторых кристаллов достигается при атмосферном давлении, что связано именно с длиной свободного пробега газа.
Стоит отметить, что даже в идеальном вакууме при конечной температуре всегда имеется некоторое тепловое излучение (газ фотонов). Таким образом, тело, помещённое в идеальный вакуум рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами.
Физический вакуум
Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира [источник?] и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (так называемых ложных вакуумов ) является одним их главных основ инфляционной теории Большого взрыва.
Физический вакуум
Ва́куум (от лат. vacuum — пустота) — среда, содержащая газ при давлениях значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером процесса d. Под d может приниматься расстояние между стенками вакуумной камеры, диаметр вакуумного трубопровода и т.д. В зависимости от величины соотношения λ/d различают низкий (λ/d >1) вакуум.
Следует различать понятия физического вакуума и технического вакуума.
Содержание
Технический вакуум
Высокий вакуум в микроскопических порах некоторых кристаллов достигается при атмосферном давлении, что связано именно с длиной свободного пробега газа.
Аппараты, используемые для достижения и поддержания вакуума, называются вакуумными насосами. Для поглощения газов и создания необходимой степени вакуума используются геттеры. Более широкий термин вакуумная техника включает также приборы для измерения и контроля вакуума, манипулирования предметами и проведения технологических операций в вакуумной камере, и т. д.
Стоит отметить, что даже в идеальном вакууме при конечной температуре всегда имеется некоторое тепловое излучение (газ фотонов). Таким образом, тело, помещённое в идеальный вакуум, рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами.
Физический вакуум
Под физическим вакуумом в современной физике понимают полностью лишённое вещества пространство. Даже если бы удалось получить это состояние на практике, оно не было бы абсолютной пустотой. Квантовая теория поля утверждает, что, в согласии с принципом неопределённости, в физическом вакууме постоянно рождаются и исчезают виртуальные частицы: происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами, но не только, а также в теории могут существовать несколько различных вакуумов, различающихся плотностью энергии, и т. д.
Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира [1] и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (так называемых ложных вакуумов) является одним из главных основ инфляционной теории Большого взрыва.
Но, пожалуй, самым наглядным из явлений, которые нельзя объяснить, не используя идею о нулевых колебаниях вакуума, это спонтанное излучение. Самые обыкновенные излучающие спонтанно лампы накаливания не светились бы, если бы вакуум был абсолютной пустотой. Дело в том, что любой объект (а, значит, и возбужденный атом), помещенный в абсолютно пустое пространство, представляет собой замкнутую систему. А поскольку такая система стабильна во времени, то никакого излучения не происходило бы. Уже из этого простого рассуждения понятно, что объяснение спонтанного излучения требует привлечения более сложной модели вакуума, чем классическая абсолютная пустота.