в состав хромосомы входит что

В состав хромосомы входит что

Спирали ДНК в ядре «упакованы» в хромосомы. Человеческая клетка содержит 46 хромосом, объединенных в 23 пары. Большинство генов, составляющих пару в гомологичных хромосомах, почти или полностью идентичны, и часто приходится слышать, что все гены в геноме человека имеют свою пару, хотя это не совсем правильно.

Наряду с ДНК в состав хромосом входит много белка, большая часть которого представлена мелкими положительно заряженными молекулами гистонов. Они образуют множество небольших, похожих на катушки структур, которые, располагаясь одна за другой, обвиваются короткими сегментами ДНК.

Эти структуры играют важную роль в регуляции активности ДНК, поскольку обеспечивают ее плотную «упаковку» и делают таким образом невозможным ее использование в качестве матрицы для синтеза новой ДНК. Существуют также регуляторные белки, которые, напротив, деконденсируют небольшие участки гистоновой упаковки ДНК, создавая таким образом возможность синтеза РНК.

Среди основных компонентов хромосом есть и негистоновые белки, которые, с одной стороны, являются структурными белками хромосом, а с другой — активаторами, ингибиторами или ферментами в составе регуляторных генетических систем.

Репликация хромосом в полном объеме начинается через несколько минут после завершения репликации ДНК. В течение этого времени вновь синтезированные цепи ДНК объединяются с белками. Две вновь образованные хромосомы до самого конца митоза остаются прикрепленными друг к другу в участке, близком к их центру и называемом центромерой. Такие разделившиеся, но не разошедшиеся хромосомы называют хроматидами.

Процесс деления материнской клетки на две дочерние называют митозом. Вслед за репликацией хромосом с образованием двух хроматид в течение 1-2 ч автоматически начинается митоз.

Одно из самых первых изменений в цитоплазме, связанных с митозом, происходит на поздних стадиях интерфазы и затрагивает центриоли.Центриоли так же, как ДНК и хромосомы, удваиваются во время интерфазы; обычно это происходит незадолго до репликации ДНК. Центриоль длиной около 0,4 мкм и диаметром около 0,15 мкм состоит из девяти параллельных триплетов— трубочек, собранных в виде цилиндра. Центриоли каждой пары лежат под прямым углом друг к другу. Пару центриолеи вместе с прилегающим к ней веществом называют центросомой.

в состав хромосомы входит что. Смотреть фото в состав хромосомы входит что. Смотреть картинку в состав хромосомы входит что. Картинка про в состав хромосомы входит что. Фото в состав хромосомы входит чтоФазы митоза клетки

Незадолго до начала митоза обе пары центриолей начинают перемещаться в цитоплазме, отдаляясь друг от друга. Это движение обусловлено полимеризацией белка микротрубочек, которые начинают расти от одной пары центриолеи к другой и за счет этого расталкивать их к противоположным полюсам клетки. В то же время от каждой пары центриолеи начинают расти другие микротрубочки, которые увеличиваются в длину и отходят от них радиально в виде лучей, образуя на каждом полюсе клетки так называемую астросферу. Отдельные ее лучи проникают через ядерную оболочку, способствуя таким образом разделению каждой пары хроматид во время митоза. Группу микротрубочек между двумя парами центриолеи называют веретеном деления, а весь набор микротрубочек вместе с центриолями — митотическим аппаратом.

Профаза. По мере образования веретена в ядре начинается конденсация хромосом (в интерфазе они состоят из двух слабосвязанных цепей), которые благодаря этому становятся хорошо различимы.

Метафаза. Во время метафазы астросферы отдаляются друг от друга еще больше. Считается, что их движение обусловлено отходящими от них микротрубочками. Эти микротрубочки сплетаются вместе и образуют веретено, которое и отталкивает центриоли друг от друга. Полагают также, что между микротрубочками веретена располагаются молекулы мелких сократительных белков, или «моторные молекулы» (возможно, они аналогичны актину), которые обеспечивают взаимное скольжение микротрубочек в противоположных направлениях, как это происходит при мышечном сокращении. Микротрубочки, прикрепившиеся к центромерам, подтягивают хроматиды к центру клетки и выстраивают их в виде метафазной пластинки по экватору веретена.

Анафаза. Во время этой фазы две хроматиды каждой пары отрываются друг от друга в области центромеры. Все 46 пар хроматид разделяются и образуют два самостоятельных набора из 46 дочерних хромосом. Каждый набор хромосом движется к противоположным астросферам, а полюсы делящейся клетки в это время расходятся все дальше.

Источник

Научная электронная библиотека

в состав хромосомы входит что. Смотреть фото в состав хромосомы входит что. Смотреть картинку в состав хромосомы входит что. Картинка про в состав хромосомы входит что. Фото в состав хромосомы входит что

Юров И. Ю., Ворсанова С. Г., Воинова В. Ю., Чурносов М. И., Юров Ю. Б.,

1.1. Хромосомы человека

Хромосомный набор человека, определяемый как кариотип – совокупность данных о структуре, размерах и количестве митотических хромосом, – установлен в начале 60-х годов прошлого века. Ещё в 1888 году Г. Вальдеер (H. Waldeyer, 1836–1921 гг.) ввёл термин «хромосома» для обозначения окрашенных нитевидных структур, видимых в ходе стадий деления клетки (митоза). Характерные особенности строения каждой хромосомы человека определяются, как известно, положением в ней центромеры – важнейшей структуры, которая в делении клетки (митозе) соединяется с нитями веретена и определяет расхождение сестринских хроматид к противоположным полюсам клетки. Метафазная хромосома состоит из двух хроматид (сестринские хроматиды) и центромеры, при помощи которой они соединяются. В районе центромеры хромосома сужена, две её хроматиды сближены, и этот район в теле хромосомы образует первичную перетяжку. Центромера делит хромосому на два плеча (короткое и длинное). По положению центромеры и первичной перетяжки среди хромосом человека различают метацентрические хромосомы, у которых центромера расположена в середине хромосомы (медианно) и делит её на два равных по длине плеча; субметацентрические хромосомы, в которых центромера расположена субмедианно и делит хромосому на два плеча неравной длины; и акроцентрические хромосомы, у которых центромера расположена почти на конце хромосомы (терминально), отделяя от длинного очень короткое плечо. У некоторых хромосом на коротком плече двух хроматид на красящейся тонкой нити располагаются маленькие хроматические тельца – спутники. Участки на концах хромосомы называются теломерами. Структуры в виде точек прикрепления нитей митотического веретена к центромерам называются кинетохорами. Плечи некоторых хромосом содержат перетяжки, называемые «вторичными» (например, хромосомы 1, 9, 16). Диплоидный набор человека, состоящий из 46 хромосом, составлен из 23 пар гомологичных хромосом – гомологов (отцовского и материнского происхождения): 22 пары аутосом и плюс половые хромосомы (гоносомы) – ХХ у женщин или ХY у мужчин. Гомологичные хромосомы, как правило, сходны между собой в размерах и строении, хотя могут встречаться некоторые отклонения от каждого показателя, и это носит название «гетероморфизм хромосом». Термин «кариотип» рекомендуется применять к систематизированному набору хромосом отдельной клетки человека. Существует также термин «идиограмма», который сохраняется для представления кариотипа в виде схемы, построенной на основании измерений хромосом большого числа клеток. Хромосомы пронумерованы серийно от 1 до 22 в соответствии с их длиной, а также с другими особенностями их строения, допускающими идентификацию. Половые хромосомы (гоносомы) не имеют номеров и обозначаются как Х и Y. Следует отметить, что термины и «кариотип», и «идиограмма», получившие международное признание и распространение, принадлежат русским цитологам: «идиограмма» – С.Г. Навашину (1857–1930 гг.) в 1921 году и «кариотип» – Г.А. Левитскому (1878–1942 гг.) в 1924 году. В фазах деления – метафазах и прометафазах (см ниже) – хромосомы можно увидеть в световом микроскопе как дискретные удлинённые структуры длиной от 2 до 11 мкм. На рисунках 1 и 2 представлены мужской и женский кариотипы человека.

в состав хромосомы входит что. Смотреть фото в состав хромосомы входит что. Смотреть картинку в состав хромосомы входит что. Картинка про в состав хромосомы входит что. Фото в состав хромосомы входит чтов состав хромосомы входит что. Смотреть фото в состав хромосомы входит что. Смотреть картинку в состав хромосомы входит что. Картинка про в состав хромосомы входит что. Фото в состав хромосомы входит что

Рис. 1. Мужской кариотип: I – метафазная пластинка; II – классификация по группам и нумерация хромосом

Как указано выше, кариотип человека состоит из 46 хромосом, которые нумеруются от 1 до 22 (аутосомы) и делятся на 7 групп, – A, B, C, D, E, F, G и половые хромосомы (гоносомы) X и Y (рис. 1 и 2).

К первой группе А относятся хромосомы 1, 2 и 3, которые хорошо отличаются друг от друга. Хромосома 1 (размер – 11 мкм) – метацентрическая, содержит вторичную перетяжку в околоцентромерном участке длинного плеча. Хромосома 2 (10,8 мкм) по размерам почти равна хромосоме 1 и является субметацентрической. Хромосома 3 (размер – 8,3 мкм) – практически метацентрическая.

в состав хромосомы входит что. Смотреть фото в состав хромосомы входит что. Смотреть картинку в состав хромосомы входит что. Картинка про в состав хромосомы входит что. Фото в состав хромосомы входит чтов состав хромосомы входит что. Смотреть фото в состав хромосомы входит что. Смотреть картинку в состав хромосомы входит что. Картинка про в состав хромосомы входит что. Фото в состав хромосомы входит что

Рис. 2. Женский кариотип: I – метафазная пластинка; II – классификация по группам и нумерация хромосом

К группе В относятся хромосомы 4 и 5 (размер – 7,7 мкм каждая) – это крупные субметацентрические хромосомы, которые не отличаются друг от друга при рутинном окрашивании ни размером, ни положением центромер.

К группе С относятся хромосомы с 6 по 12 и Х. В основном, это субметацентрические хромосомы крупных и средних размеров. Наиболее крупные хромосомы из группы С – 6, 7 и Х (6,8–7,2 мкм). Хромосома Х является половой хромосомой (гоносомой). Хромосома 7 более метацентрична, чем хромосома 6. Хромосомы 8 и 9 – практически одинаковы по размеру (5,8 мкм). Хромосома 8 метацентричнее хромосомы 9, которая характеризуется регулярной вторичной перетяжкой в прицентромерном районе длинного плеча.

К группе D относятся хромосомы 13, 14 и 15 (4,2 мкм) – средних размеров акроцентрические хромосомы с почти терминальным расположением центромеры. Эти хромосомы между собой не различаются ни по размерам, ни морфологически после рутинного окрашивания. Короткое плечо всех трёх пар хромосом может формировать спутники (рис. 1, 2 и 5).

К группе Е относятся хромосомы 16, 17 и 18. Хромосома 16 (размер – 3,6 мкм) – сравнительно небольшая метацентрическая хромосома, содержащая вторичную перетяжку в длинном плече. Хромосома 17 (размер – 3,5 мкм) – сравнительно короткая субметацентрическая хромосома. Хромосома 18 (размер – 3,2 мкм) – самая короткая субметацентрическая хромосома.

Группа F представлена хромосомами 19 и 20 (размеры – 2,9 мкм). Это короткие метацентрические хромосомы, которые не отличаются между собой без дифференциального окрашивания по длине.

Хромосомы 21 и 22 (2,8 мкм) относятся к группе G. Это наиболее короткие акроцентрические хромосомы в кариотипе, которые обладают способностью формировать спутники на коротком плече (рис. 1, 2 и 5).

Хромосома Y (2,3 мкм) является маленькой акроцентрической хромосомой, сравнимой по размерам с хромосомами 21 и 22, но не имеющая спутников.

Важнейшая работа по созданию общей системы обозначения и классификации хромосом человека, представляемая в виде отдельной книги, проводилась регулярно из года в год, куда в последние десятилетия включались и результаты использования современных молекулярно-цитогенетических методов. Первые результаты работы учёных по номенклатуре и классификации хромосом человека были представлены в 1960 году в Денвере, в Университете штата Колорадо (США). Работа комиссии была проведена при поддержке американского онкологического общества. В состав комиссии входили известнейшие учёные: 14 учёных-цитологов и 3 учёных-генетика. Результаты были опубликованы в Денвере в том же 1960 году в ряде журналов в виде документа (книги), названного как «Стандартная система номенклатуры митотических хромосом человека». Впоследствии был создан комитет по номенклатуре хромосом человека. Комиссия и комитет периодически собирались для работы и, по мере развития цитогенетических, а в последние десятилетия и молекулярно-цитогенетических исследований, вносили поправки и дополнения в существующую классификацию. Работа комиссий проводилась регулярно в различных странах и городах. Комитет последовательно собирался в Париже, Чикаго, Мехико, Лэйк-Плэсиде, Эдинбурге, Стокгольме, где было решено разработать и опубликовать унифицированный вариант номенклатуры хромосом человека, включающий основные положения первых совещаний (Денвер, Лондон, Чикаго, Париж). Результаты работы комитета публиковались в различных издательствах. Этот важный документ получил название «Международная система номенклатуры хромосом человека» – «An International System for Human Cytogenetic Nomenclature» (ISCN). В дальнейшем поправки и дополнения в документе делались, учитывая новые разработанные технологии, включая молекулярно-цитогенетические, и докладывались на различных конференциях. Последний документ – «ISCN 2016» – An International System for Human Cytogenetic Nomenclature» опубликован в 2016 году. Таким образом, в одном документе даётся полная номенклатура хромосом в норме и при хромосомных синдромах и аномалиях, исходя из цитогенетических и современных молекулярно-цитогенетических технологий (см рекомендуемую литературу).

Следует отметить, что хромосомные синдромы и аномалии связаны с хромосомными (геномными) мутациями (аномалиями) в виде различных структурных перестроек хромосом или с изменением их числа (n). Численные изменения хромосом могут быть двух типов: полиплоидии – умножение хромосомного набора (3n, 4n и т. д.) или генома, кратное гаплоидному числу хромосом; анеуплоидии – увеличение или уменьшение числа хромосом, некратное гаплоидному. Структурные хромосомные (геномные) перестройки классифицируют по принципу линейной последовательности расположения генов: делеции (потеря хромосомных участков), дупликации (удвоение хромосомных участков), инверсии (перевертывание на 180° относительно нормальной последовательности хромосомных участков), инсерции (вставки хромосомных участков) и транслокации (изменение расположения хромосомных участков). Подробная информация по возможным аномалиям хромосом человека представлена в главе 3.5.

Источник

В состав хромосомы входит что

Слово «хромосома» означает «окрашенное тело» (окрашивается более эффективно, чем остальные компоненты клетки). Каждая хромосома состоит из очень длинной молекулы ДНК, связанной с РНК и белками, образующей вещество, известное как хроматин. Во время интерфазы клеточного цикла (когда клетка не делится) хромосомы распределены по всему ядру, в то время как при митозе и мейозе они уплотняются, располагаясь ближе друг к другу.
ДНК содержится именно в хромосомах, вероятно, потому, что это облегчает разделение полного набора генов между дочерними клетками на стадии митоза, а также её упаковку в головки сперматозоидов после мейоза.

Способность к окрашиванию используют в диагностических целях для визуального исследования хромосом, их идентификации и выявления патологий. Различают слабоокрашенные части (эухроматин) и области с более выраженной окраской (гетерохроматин).

Генетическая информация (геном) заключена в молекуле ДНК и кодирована определённой последовательностью азотистых оснований в ДНК. Основная часть этой информации находится в составе хромосом в ядре клетки, однако небольшое количество ДНК в виде свободных цепочек локализовано в митохондриях цитоплазмы. Ядра присутствуют практически во всех клетках организма человека, за исключением эритроцитов и клеток хрусталика.

Обычно в каждом ядре содержится двухметровая цепь ДНК, разделённая между 23 парами хромосом (примерно по 4 см на хромосому). Однако непосредственно перед делением она уплотняется до 5 um (0,005 мм) посредством сложных процессов спирализации и уплотнения.

Структура хроматина хромосом

В каждой хромосоме цепь ДНК дважды обмотана вокруг октамерного комплекса, состоящего из восьми «белков хранения» (гистонов), формирующих нуклеосомы, при этом образованная структура напоминает «бусы на нити». Кора (сердцевина) нуклеосомы состоит из двух молекул каждого из четырех гистонов— Н2А, Н2В, НЗ и Н4. Гистоны заряжены положительно, а потому могут образовывать ионные связи с отрицательно заряженными фосфатными группами ДНК.

Последовательность аминокислот в гистонах у всех видов совпадает практически на 100%, указывая на огромную значимость данных элементов в поддержании структуры и функций хроматина. Каждая нуклеосома вмещает порядка 200 пар оснований молекулы ДНК и укорачивает длину цепи ДНК на одну десятую.

Затем подобная бусам нить спирализуется в соленоид, или зигзагообразную спираль (фибрилла длиной 30 нм), состоящую из 5—6 нуклеосом. При этом её структура поддерживается одной молекулой гистона HI на каждую нуклео-сому. Коэффициент упаковки при образовании соленоида примерно равен 5, что в свою очередь даёт общий коэффициент упаковки 50. Существует предположение, что в таком состоянии эухроматин находится во время интерфазы в местах, где гены не экспрессируются.

в состав хромосомы входит что. Смотреть фото в состав хромосомы входит что. Смотреть картинку в состав хромосомы входит что. Картинка про в состав хромосомы входит что. Фото в состав хромосомы входит что

Во время митоза и мейоза хромосомы ещё больше уплотняются, при этом коэффициент упаковки по отношению к предыдущим уровням составляет 100, а общий коэффициент может достигать 5000. Считают, что фибриллы хроматина складываются в вытянутые петли, в основании которых расположен скаффолд (остов) из негистоновых хромосомных белков, которые прикрепляются к определённым последовательностям оснований, рассредоточенным вдоль молекулы ДНК. Сжатие этих негистоновых хромосомных белков предположительно обусловливает уплотнение хромосом.

Один из ключевых белков скаффолда — топоизомераза II, фермент, который расщепляет двойные цепи ДНК, переносит их через разрыв и вновь соединяет, что в свою очередь необходимо для релаксации суперспиралей ДНК во время репликации или транскрипции. Топоизомераза II прикрепляется к участкам связывания со скаффолдом, которые богаты А- и Т-основаниями (более 65% оснований составляют А и Т, см. главу 4). Считают, что каждая петля выступает в роли независимого функционального домена во время репликации или транскрипции ДНК.

На следующем этапе петли фибрилл хроматина спирализуются, в результате чего возникает наиболее уплотнённый гетерохроматин, входящий в состав хромосомы во время деления клеток.

Дифференциальное окрашивание хромосом

Наиболее уплотнённые части хромосом хорошо окрашиваются красителем Гимзы (G-окраска). При этом отчётливо видны сильно уплотнённые маленькие петли (G-полосы), так как участки связывания со скаффолдом тесно прилегают друг к другу. Их репликация происходит во время S-периода, они не активны во время транскрипции. Полосы, которые плохо окрашиваются раствором Гимзы, или R-полосы, состоят из более свободных петель, богатых Г- и Ц-основаниями, они отличаются высокой активностью во время транскрипции. В основе идентификации хромосом лежат различия в их окраске.

Центромера хромосом

Видимые на ранних стадиях митоза хромосомы состоят из двух абсолютно одинаковых структур, называемых сестринскими хроматидами, которые соединяет первичная перетяжка. Она представляет собой недуплицированный участок ДНК, или центромеру, которая дуплицируется в начале анафазы митоза.

Кинетохор — органелла, которая локализована на каждой стороне каждой центромеры в период ранней профазы митоза и облегчает полимеризацию димеров тубулина, необходимую для образования микротрубочек митотического веретена (веретена деления).

Тепомера хромосом

Теломерой называют специализированный участок конца хромосомы. К ней прикрепляются теломерспецифические белки, образующие «шапочку» (cap) для защиты конца хромосомы.

Теломеры предположительно препятствуют патологическому слиянию концов хромосом конец в конец, обеспечивают полноту репликации, участвуют в образовании пар хромосом во время мейоза и помогают восстанавливать внутреннюю структуру ядра на стадии интерфазы путём присоединения хромосом к ядерной мембране.

Эухроматин и гетерохроматин хромосом

Эухроматин находится в уплотнённом состоянии во время деления клеток и распаковывается на стадии интерфазы. Он обусловливает бледное окрашивание R-полос в уплотнённых хромосомах и содержит большинство структурных генов.

Гетерохроматин очень сильно уплотнён во время деления клетки и остаётся в таком состоянии даже на стадии интерфазы. Он локализован в основном на периферии ядра и около ядрышка и не активен во время транскрипции. Конструктивный (структурный) гетерохроматин одинаков во всех клетках организма, в то время как факультативный гетерохроматин различен в зависимости от типа генов, экспрессируемых в дифференцированных клетках определённых тканей.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

Научная электронная библиотека

в состав хромосомы входит что. Смотреть фото в состав хромосомы входит что. Смотреть картинку в состав хромосомы входит что. Картинка про в состав хромосомы входит что. Фото в состав хромосомы входит что

Юров И. Ю., Воинова В. Ю., Ворсанова С. Г., Юров Ю. Б.,

2.4. Геном человека и структурная организация хромосом

Данные о структуре, размерах и количестве митотических хромосом в клеточном ядре определяются как кариотип. Морфологическое строение хромосом на всех уровнях организации (молекулярном, микроскопическом и субмикроскопическом) определяется упаковкой нитей ДНК, организующих хромосому. На микроскопическом уровне нити ДНК формируют спирализованные хромонемы митотических хромосом. Упаковка хромонем по длине хромосом неравномерна. В них закономерно дифференцируются участки с резко выраженной и резко сниженной степенью спирализации хромонем. Последние формируют хромосомные перетяжки. Важным элементом структуры хромосом является первичная перетяжка, в участке которой расположена центромера. Она делит хромосому на два плеча – короткое (р) и длинное (q).

Структура хромосом претерпевает значительные изменения в ходе клеточного деления (клеточного цикла) и, следовательно, не является постоянной. Хромосомы интерфазных ядер (интерфазные хромосомы) в отличие от метафазных хромосом (см раздел, посвященный делению клетки) представляют собой более расправленные и диффузные клеточные структуры. Интерфазные хромосомы содержат одну хроматиду, в составе которой имеется одна двуспиральная молекула ДНК, в то время как метафазные хромосомы образованы двумя хроматидами и двумя молекулами ДНК. Хромосома как функционирующая клеточная органелла должна содержать минимум три типа последовательностей ДНК, формирующих её структурные компоненты: центромеру, теломеры и участок начала репликации ДНК.

Индивидуальные хромосомы содержат одну протяженную двуспиральную молекулу ДНК диаметром 2 нм, которая претерпевает несколько уровней упаковки, формируя хроматин или ДНК-белковый комплекс (дезоксирибонуклеопротеид – ДНП). Элементарной дискретной единицей упаковки хроматина является нуклеосома. Каждая нуклеосома имеет вид глобулы и состоит из четырех пар гистоновых белков Н2А, Н2В, Н3 и Н4, содержащих по 102–135 аминокислотных остатков. Вокруг гистоновой глобулы диаметром 10 нм (октамера) располагается молекула двуспиральной ДНК длиной 146 пн (или 68 нм), образуя виток в 1,75 оборота. Соседние нуклеосомы соединяются так называемой «спейсерной» ДНК длиной около 20 нм, образуя структуры в виде «бус на нитке». На следующем этапе компактизации 10-нанометровые нуклеосомы образуют фибриллы хроматина диаметром 30 нм (в каждом витке примерно 6 нуклеосом), которые образуют большие петли. На стадии метафазы степень компактизации достигает 1 на 10000 от первоначальной длины хромосомной ДНК. Петли 30-нанометровых фибрилл хроматина содержат 20–100 тыс. пн. ДНК на каждой петле прикрепляется к осевой структуре хромосомы (рис. 4). Осевые компоненты метафазной хромосомы состоят из негистоновых белков.

Как уже отмечалось, одним из структурных элементов хромосомы является центромера – место присоединения кинетохоров (макромолекулярных структур на белковой основе, участвующих в процессе расхождения хромосом при митотическом делении клетки), и слипания сестринских хроматид. Они также регулируют присоединение хромосом к веретену деления и направляют движение хромосом в ходе мейотического и митотического деления клетки. Хромосомы без центромеры (ацентрические фрагменты) не могут присоединяться к нитям веретена деления и теряются в ходе клеточного деления. У человека центромеры содержат особые типы повторяющихся ДНК, а также специфические «центромерные» белки, обеспечивающие сегрегацию хромосом в ходе митотического и мейотического деления клеток. В зависимости от положения центромеры в хромосоме она может быть метацентрической, субметацентрической и акроцентрической. В акроцентрических хромосомах довольно часто на коротких плечах видны небольшого размера хроматические тельца, так называемые спутники, и спутничные нити. Они содержат ядрышковый организатор – значимую структуру генома человека (рис. 5). Плечи некоторых хромосом человека содержат вторичные перетяжки.

Другими структурными элементами хромосом являются теломеры. Это специализированные структуры, содержащие особые типы ДНК и белки, которые образуют концевые участки хромосом. Теломеры выполняют несколько функций:

1) поддержание структурной целостности хромосомы;

2) обеспечение полной репликации концевых участков хромосомы;

3) поддержание организации хромосом в интерфазном ядре.

в состав хромосомы входит что. Смотреть фото в состав хромосомы входит что. Смотреть картинку в состав хромосомы входит что. Картинка про в состав хромосомы входит что. Фото в состав хромосомы входит что

Рис. 4. Организация ДНК

Теломеры хромосом человека представляют собой повторы нуклеотидной последовательности ТТАГГГ, общий размер которой варьирует от 3 до 20 тыс. пн. Стабильность теломер поддерживается с помощью фермента теломеразы, нарушение функциональной активности которой приводит к нарушению структуры хромосом и, как следствие, к клеточной гибели. Укорочение последовательностей теломер, которому противодействует теломераза, связано с процессами старения и малигнизации.

в состав хромосомы входит что. Смотреть фото в состав хромосомы входит что. Смотреть картинку в состав хромосомы входит что. Картинка про в состав хромосомы входит что. Фото в состав хромосомы входит что

Рис. 5. Метафазные хромосомы:
1 – метацентрическая хромосома; 2 – субметацентрическая хромосома; 3 – акроцентрическая хромосома. Видны:
а – центромеры; б – длинные плечи (q), в – короткие плечи (p);г – теломерные участки; д – спутники; е – спутничные нити

ДНК хромосом реплицируется в ходе периода синтеза ДНК клеточного цикла. Каждая хромосома содержит множество элементарных единиц репликации – репликонов, представляющих собой участки автономной репликации. Каждый репликон имеет одну точку инициации репликации, с которой начинается двунаправленный синтез ДНК (см предыдущий раздел, посвященный синтезу ДНК). Размеры репликонов могут различаться друг от друга. Репликоны у человека могут быть очень большими, достигая более чем 1 млн пн.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *