в скобках что первое умножение или сложение
С самого начала следует напомнить, чтобы потом не путаться: есть цифры – их 10. От 0 до 9. Есть числа, и они состоят их цифр. Чисел бесконечно много. Точно больше, чем звезд на небе.
Сложение и вычитание
Какие же действия можно произвести с числами? Есть два базовых. Это сложение и вычитание. Все остальные действия построены на этих двух.
Самое простое человеческое действие: взять две кучки камней и смешать их в одну. Это и есть сложение. Для того чтобы получить результат такого действия, можно даже не знать, что такое сложение. Достаточно просто взять кучку камней у Пети и кучку камней у Васи. Сложить все вместе, посчитать все заново. Новый результат последовательного счета камней из новой кучки − это и есть сумма.
Вам будет интересно: Остеоны или система Гаверсова
Точно так же можно не знать, что такое вычитание, просто взять и разделить кучу камней на две части или забрать из кучи какое-то количество камней. Вот и останется в куче то, что называется разностью. Забрать можно только то, что есть в куче. Кредит и прочие экономические термины в данной статье не рассматриваются.
Чтобы не пересчитывать каждый раз камни, ведь бывает, что их много и они тяжелые, придумали математические действия: сложение и вычитание. И для этих действий придумали технику вычислений.
Сумма двух любых цифр тупо заучиваются без всякой техники. 2 плюс 5 равно семь. Посчитать можно на счетных палочках, камнях, рыбьих головах – результат одинаковый. Положить сначала 2 палочки, потом 5, а потом посчитать все вместе. Другого способа нет.
Те, кто поумнее, обычно это кассиры и студенты, заучивают больше, не только сумму двух цифр, но и суммы чисел. Но самое главное, они могут складывать числа в уме, используя разные методики. Это называется навыком устного счета.
Для сложения чисел, состоящих из десятков, сотен, тысяч и еще больших разрядов, используют специальные техники − сложение столбиком или калькулятор. С калькулятором можно не уметь складывать даже цифры, да и читать дальше не нужно.
Сложение столбиком − это метод, который позволяет складывать большие (многоразрядные) числа, выучив только результаты сложения цифр. При сложении столбиком последовательно складываются соответствующие десятичные разряды двух чисел (то есть фактически две цифры), если результат сложения двух цифр превышает 10, то учитывается только последний разряд этой суммы – единицы числа, а к сумме следующих разрядов добавляется 1.
Умножение
Математики любят группировать похожие действия для упрощения расчетов. Так и операция умножения является группировкой одинаковых действий – сложения одинаковых чисел. Любое произведение N x M − есть N операций сложения чисел M. Это всего лишь форма записи сложения одинаковых слагаемых.
Для вычисления произведения используется такой же метод – сначала тупо заучивается таблица умножения цифр друг на друга, а потом применяется метод поразрядного умножения, что называется «в столбик».
Любое математическое выражение – это фактически запись учетчика «с полей» о результатах каких-либо действий. Допустим, сбора урожая помидоров:
Все помидоры сдавали учетчику, он укладывал их по кучкам.
Запишем результат «сбора» урожая в виде выражения:
Получаем пример для школы, запись учетчика результатов работы:
500 + 500 +500 +500 +500 + 50 +50 + 70 =?;
Здесь можно применить группировку: 5 кучек по 500 помидоров − это можно записать через операцию умножения: 5 ∙ 500.
Две кучки по 50 – это тоже можно записать через умножение.
И одна кучка 70 помидоров.
5 ∙ 500 + 2 ∙ 50 + 1 ∙ 70 =?
2500 + 100 + 70 = 2 670
При изучении ребенком математики нужно донести до него, что это инструмент, используемый в повседневной жизни. Математические выражения являются, по сути (в самом простом варианте начальной школы), складскими записями о количестве товаров, денег (очень легко воспринимается школьниками), других предметов.
Соответственно, любое произведение – это сумма содержимого некоторого количества одинаковых емкостей, ящиков, кучек, содержащих одинаковое количество предметов. И что сначала умножение, а сложение потом, то есть сначала начала вычислить общее количество предметов, а затем уже складывать их между собой.
Деление
Операция деления отдельно не рассматривается, она обратная умножению. Нужно что-то распределить по коробкам, так, чтобы во всех коробках было одинаковое заданное количество предметов. Самый прямой аналог в жизни – это фасовка.
Скобки
Большое значение в решении примеров имеют скобки. Скобки в арифметике – математический знак, используемый для регулирования последовательности вычислений в выражении (примере).
Умножение и деление имеют приоритет выше, чем сложение и вычитание. А скобки имеют приоритет выше, чем умножение и деление.
Все, что записано в скобках, вычисляется в первую очередь. Если скобки вложенные, то сначала вычисляется выражение во внутренних скобках. И это непреложное правило. Как только выражение в скобках вычислено, скобки пропадают, а на их месте возникает число. Варианты раскрытия скобок с неизвестными здесь не рассматриваются. Так делают до тех пор, пока все они не исчезнут из выражения.
(20 : 5 + 2) : 3 = (4 +2) : 3 = 6 : 3 = 2
Итого: трем детям по два пучка конфет (по пучку в руку), по 5 конфет в пучке.
«Вишенка на торте»
И напоследок. К математическому выражению не применимы правила русского языка – читать и выполнять слева направо:
Это простенький пример может довести до истерики ребенка или испортить вечер его маме. Потому что именной ей придется объяснять второкласснику, что бывают отрицательные числа. Или рушить авторитет «МарьиВановны», которая сказала, что: «Нужно слева направо и по порядку».
«Совсем вишня»
От перестановки слагаемых сумма не изменяется, от перестановки множителей тоже. Нужно просто записывать выражение так, чтобы не было потом мучительно стыдно.
6 : 2 ∙ (1+2) = 6 ∙ ½ ∙ (1+2) = 6 ∙ ½ ∙ 3 = 3 ∙ 3 = 9
Порядок действий
Для правильного вычисления значений числовых выражений, в которых нужно произвести более одного действия, необходимо знать установленный порядок выполнения арифметических действий.
Порядок действий без скобок
Установленный порядок арифметических действий без скобок:
Порядок действий со скобками
Если выражение содержит скобки, то сначала выполняются все действия внутри скобок, а затем все действия, находящиеся за скобками.
В числовых выражениях со скобками порядок выполнения арифметических действий такой же, как и в выражениях без скобок.
Скобки применяются для обозначения действий, которые нужно произвести раньше остальных. Скобки не влияют на порядок остальных действий в выражении, остальные действия выполняются в указанном порядке.
Дробная черта
Дробная черта в выражении может быть заменена на знак деления, в этом случае, всё что было над и под дробной чертой надо взять в скобки. Например:
Знак деления в выражении можно заменить дробной чертой только в том случае, если это не нарушает порядок действий. Например, выражение:
нельзя заменить на
потому что такая замена нарушит порядок действий в данном выражении.
20 : 4(2 + 3) ≠ | 20 | ; |
4(2 + 3) |
20 | = 20 : (4(2 + 3)). |
4(2 + 3) |
Дробная черта в выражении заменяет скобки и означает, что надо вычислить отдельно выражение, стоящее в числителе, и отдельно выражение, стоящее в знаменателе, и первый результат разделить на второй.
Зубодробительная задачка с очень простой математикой
Эта задача поставит в тупик половину интернета, но не вас.
Вот вам очень простой математический пример:
8 / 2(2 + 2)
Вы удивитесь, но большинство людей не смогут правильно это посчитать. Посчитайте сами и потом смотрите правильный ответ:
В интернете много споров про такие примеры, поэтому мы решили разобраться, какие ошибки совершают чаще всего и почему многие считают неправильно. Для решения нам понадобятся три математических правила:
Разберём подробнее, что это значит в нашем случае.
1. То, что в скобках, выполняется в первую очередь. То есть в нашем примере, вне зависимости от чего угодно, сначала схлопнутся скобки:
2. Между числом и скобкой можно опустить знак умножения. У нас перед скобкой двойка, то есть можно сделать такую замену:
3. Математические действия при отсутствии скобок выполняются слева направо: как при чтении, сначала умножение и деление, потом — сложение и вычитание. Умножение и деление имеют одинаковый приоритет. Нет такого, что сначала всегда делается умножение, затем деление, или наоборот. Со сложением и вычитанием то же самое.
Некоторые считают, что раз множители были написаны близко друг к другу (когда там стояли скобки), то оно выполняется в первую очередь, ссылаясь при этом на разные методические пособия. На самом деле это не так, и нет такого скрытого умножения, которое имеет приоритет над другим умножением или делением. Это такое же умножение, как и остальные, и оно делается в общем порядке — как и принято во всём математическом мире.
Получается, что нам сначала надо сложить 2 + 2 в скобках, потом 8 разделить на 2, и полученный результат умножить на то, что в скобках:
8 / 2 × (2 + 2) = 8 / 2 × 4 = 4 × 4 = 16
Кстати, если на айфоне записать это выражение точно так же, как в условии, телефон тоже даст правильный ответ.
А инженерный калькулятор на Windows 10 так записывать не умеет и пропускает первую двойку-множитель. Попробуйте сами 🙂
Тут в тред врываются математики и с воплями «Шустеф!» поясняют криком:
«В АЛГЕБРЕ ТОТ ЖЕ ПОРЯДОК ДЕЙСТВИЙ, ЧТО И В АРИФМЕТИКЕ, но есть исключение: в алгебре знак умножения связывает компоненты действия сильнее, чем знак деления, поэтому знак умножения опускается. Например, a:b·c= a: (b·c)».
Этот текст из «Методики преподавания алгебры», курс лекций, Шустеф М. Ф., 1967 год. (стр. 43)
Раз в спорном примере знак умножения опущен, то спорный пример алгебраический, а значит, сначала умножаем 2 на 4, а потом 8 делим на 8!
Та самая цитата.
А вот как на это отвечают те, кто действительно в теме и не ленится полностью посмотреть первоисточник:
«Для устранения недоразумений В. Л. Гончаров указывает, что предпочтительнее пользоваться в качестве знака деления чертой и ставить скобки [87]. П. С. Александров и А. Н. Колмогоров [59] предложили изменить порядок действий в арифметике и решать, например, так: 80:20×2=80:40=2 вместо обычного: 80:20×2=4×2=8. Однако это предложение не нашло поддержки».
Если апеллировать к Фриде Максовне Шустеф, то выходит, что:
Самое интересное, что дальше в примерах Фрида Максовна пользуется как раз правильным порядком действий, объясняя решение. Даже там, где есть умножение на скобку с опущенным знаком, она выполняет действия слева направо.
Полная цитата из Шустеф, которая, оказывается, имеет в виду совсем не то.
Моделируем ход техногенной катастрофы с помощью простого уравнения.
Красивые, полезные и странные — всё как мы любим.
Без рекламы и встроенных покупок.
Как такое возможно: сделать всё по отдельности лучше всех, но проиграть в общем зачёте?
Находим оптимальное решение с любыми параметрами
Как за три попытки определить пароль.
Могут ли логика, математика и статистика привести к созданию новой крепкой семьи?
Очередная задача из собеседований.
Прошиваем железяки, чтобы они самоуничтожились.
Что будет, если продавать машины дешевле себестоимости.
Логика, математика и антисоциальное поведение.
Математика против дешевых инстаграмных амбиций.
Как одним вопросом получить ОЧЕНЬ МНОГО информации.
интернет проект BeginnerSchool.ru
Сайт для детей и их родителей
Порядок выполнения математических действий
Сегодня мы поговорим о порядке выполнения математических действий. Какие действия выполнять первыми? Сложение и вычитание, или умножение и деление. Странно, но у наших детей возникают проблемы с решением, казалось бы, элементарных выражений.
Порядок выполнения действий:
Читаем выражение слева направо и выбираем порядок действий по приоритету. Сначала выполняем действия в скобках. Затем умножение и/или деление. Далее складываем и вычитаем.
Если скобки имеют несколько вложений, то есть если внутри скобок есть ещё скобки, то сначала выполняем действия во внутренних скобках. Для простоты понимания, выражение в скобках можно воспринимать как самостоятельное выражение, то есть как отдельный пример, который надо решить. Внутри скобок действия выполняются согласно тому же порядку: Действия в скобках, затем умножение/деление, затем сложение/вычитание.
Умножение и деление не имеет между собой приоритета и выполняются слева направо, также как и сложение с вычитанием.
38 – (10 + 6) = 22;
Итак, вспомним о том, что сначала вычисляются выражения в скобках
1) в скобках: 10 + 6 = 16 ;
Если в выражение без скобок входит только сложение и вычитание, или только умножение и деление, то действия выполняются по порядку слева направо.
10 ÷ 2 × 4 = 20;
Порядок выполнения действий:
1) слева направо, сначала деление: 10 ÷ 2 = 5 ;
2) умножение: 5 × 4 = 20 ;
Если в выражении без скобок есть не только сложение и вычитание, но и умножение или деление, то действия выполняются по порядку слева направо, но преимущество имеет умножение и деление, их выполняют в первую очередь, а за ними и сложение с вычитанием.
18 ÷ 2 – 2 × 3 + 12 ÷ 3 = 7
Порядок выполнения действий:
4) 9 – 6 = 3 ; т.е. слева направо – результат первого действия минус результат второго;
5) 3 + 4 = 7 ; т.е. результат четвертого действия плюс результат третьего;
Если в выражении есть скобки, то сначала выполняются выражения в скобках, затем умножение и деление, а уж потом сложение с вычитанием.
1) выражение в скобках: 13 – 9 = 4 ;
2) умножение: 6 × 4 = 24 ;
3) сложение: 30 + 24 = 54 ;
Итак, подведем итоги. Прежде чем приступить к вычислению, надо проанализировать выражение: есть ли в нем скобки и какие действия в нем имеются. После этого приступать к вычислениям в следующем порядке:
1) действия, заключенные в скобках;
2) умножение и деление;
3) сложение и вычитание.
Если вы хотите получать анонсы наших статей подпишитесь на рассылку “Новости сайта“.
Оставляйте пожалуйста комментарии в форме ниже
Отзывов (60)
Полезная статья. Спасибо!
Очень все понятно. Для детей важна такая разъяснительная работа. Где Вы были, когда я пошла в школу?
)) Покажу сыну, пусть изучает. Я это вроде все помню. Спасибо )
Спасибо, сайт нужный. Честно говоря, уже кое – что подзабыла, а уроки с внучкой делаем. Вот, вспомнилось…
Очень необычная тематика сайта. Но тем, наверное, он и интересен. Иногда не знаешь, как объяснить ребенку тот или иной материал школьной программы.
Какое подспорье для родителей. И полезности для деток. Не всегда они материал усваивают в школе.
Сам учитель. Сайт очень полезный. Детям и родителям – хорошее подспорье
Помогите люди добрые.
Я тут читал кое где в иностранной литературе, что если в выражении есть действия двух уроовней 1(сложение и вычитание) и 2 (умножение и деление)
к примеру 20-6:3х2+2=
то в первую очередь должно выполнятся действия 2-ого уровня, потом 1-го. Но загвоздка с тем, что говорится – надо выполнить сперва умножение а потом деление, а не как нас учили по правилу слева направо.
Объясните плз.
Обязательно слева на право, так как умножение и деление равноценны. Но, если представить умножение в виде дроби:
тогда 2 перенесется в числитель и первым выполняется умножение
(6 * 2)/3 = (6:3)*2 = 4.
То есть порядок выполнения важен!
Помогите решить пример у всех расходятся ответы
6/2*(1+2)
ответь пожалуйста
Если 6 : 2 * (1 + 2) =
1) 1 + 2 = 3
2) 6 : 2 = 3
3) 3 * 3 = 9
Если
6
———-
2 * (1 + 2)
то есть 6 : (2 * (1 + 2))
1) 1 + 2 = 3
2) 2 * 3 = 6
3) 6 : 6 = 1
Это два разных примера.
Если
6 * (1 + 2)
———–
2
1) 1 + 2 = 3
2) 6 * 3 = 18
3) 18 : 2 = 9
Это тот же первый вариант
Если Вы правильно написали, то это первый вариант и ответ 9
Очень жаль, если вы этому детей учите.. Примеры 6:2*(1+2) и 6/2*(1+2) одинаковые… никогда не было такого, чтобы черта дроби и двоеточие означали разные действия или определяли порядок действий.
В данном случае необходимо также учесть правило раскрытия скобок:
6:2*(1+2) = 6:(2*1 + 2*2) = 6:(2+4) = 6:6 = 1 – единственный верный ответ.
6:2*(1+2) и 6/2*(1+2) это абсолютно эквивалентные записи (то есть одинаковые).
Порядок действий следующий:
1) 1+2 = 3
2) 6:2 = 3
3) 3*3 = 9
Ваш вариант с раскрытием скобок будет верен, если запись выражения будет следующей:
6:(2*(1+2)) = 1;
Ваше недоумение понятно, оно имеет глубокие исторические корни, в старых учебниках по алгебре можно встретить упоминание о именно такой последовательности действий, как предлагаете вы. Это связанно с неоднозначностью интерпретации записи. Но в наше время это разночтение устранено. Так что не надо забивать людям голову неверной информацией, а тем более забивать этими пережитками прошлого головы детей.
Простой пример. Ребенок на уроке информатики на языке Паскаль запишет y:=6:2*(1+2) и, поверьте мне, получит y=9. Не ломайте детскую психику.
В связи с порядком действий бывают забавные ситуации когда человеку в руки попадает калькулятор с обратной польской записью, а он и понятия не имеет об этом. И начинается “Святая Война за Истину”. Будьте проще, меньше пафоса, мы все люди и нам свойственно ошибаться. Добра Вам.
Математика. 3 класс
Конспект урока
Математика, 3 класс
Урок №10. Порядок выполнения действий в числовых выражениях
Перечень вопросов, рассматриваемых в теме:
— В какой последовательности выполняются действия в выражениях без скобок?
— В какой последовательности выполняются действия в выражениях со скобками?
Если в выражение без скобок входят только сложение и вычитание или умножение и деление, то действия выполняются по порядку: слева направо.
Если в выражение без скобок входят не только сложение и вычитание, но и умножение или деление, то сначала выполняются по порядку умножение и деление, а затем сложение и вычитание также по порядку.
Если в выражение есть скобки, то сначала выполняются действия в скобках, а затем в установленном порядке сначала умножение и деление, затем сложение и вычитание
Основная и дополнительная литература по теме урока:
1. Моро М. И., Бантова М. А. и др. Математика 3 класс. Учебник для общеобразовательных организаций М.; Просвещение, 2017. – с. 24.
2. Моро М. И., Волкова С. И. Математика. Рабочая тетрадь 3 класс. Часть 1. М.; Просвещение, 2016. – с. 15.
Теоретический материал для самостоятельного изучения
Выполним вычисления устно и расставим значения выражений в порядке возрастания.
Подсказка: Он должен быть в доме, в шкафу, на столе и даже в портфеле ученика.
В результате вычислений получилось:
Действительно во всём должен быть порядок и в математике тоже.
Выполняя задания, мы пользуемся законами и правилами математики. Эти правила и законы и поддерживают математический порядок.
Выполняя устные вычисления, мы выполняли действия по порядку. В выражениях использовали действия умножения и деления.
Это числовые выражения. Для их составления использовали числа и знаки действий.
Использовали не только умножение и деление, но и сложение, вычитание. В каком порядке будем выполнять действия?
В выражении 76 – 27 + 9 – 10 использовали знаки сложения и вычитания. Выполнять действия нужно по порядку: слева направо.
В выражении 80 : 8 ∙ 2 использовали знаки умножения и деления. Выполнять действия нужно также по порядку: слева направо.
Вывод: Если в выражениях только сложение и вычитание или умножение и деление, то действия выполняются по порядку слева направо.
Выражения могут содержать сложение и вычитание, и умножение, и деление. В этом случае сначала выполняются деление и умножение по порядку. В математике эти действия считаются сильными. А затем сложение и вычитание тоже по порядку.
В математике есть способ, который позволяет выделить какое-то действие. Это постановка скобок. Скобки показывают, что действие внутри них, выполняется в первую очередь.
Действия в числовых выражениях выполняются в следующем порядке:
Знания этих математических правил позволит правильно находить значения выражений и не нарушать порядок.
Порядок действий в выражениях особый.
И в каждом случае, помните, он свой.
В порядке все действия выполняйте.
Сначала в скобках все посчитайте.
Потом чередом, умножайте или делите.
И, наконец, вычитайте или сложите.
1. Выберите действие, которое будет в выражение первым.
Правильный ответ: умножение.
2. Выберите действие, которое в выражение будет последним.