в процессе чего растения получают энергию для жизнедеятельности
Жизнедеятельность растений: основные жизненные процессы в организме растений и связь органов в организме растения
Какие жизненные процессы протекают в растительном организме? Рассмотрим основные.
Жизненные процессы в организме растений
Под жизнью понимают биологический и качественно особенный вид движения материи. Поскольку растение является живым организмом, то и ему характерны все основные признаки живого.
К основным жизненным процессам, протекающим в организме растения и не зависящим от строения растения, относятся:
Обмен веществ и энергии
Основной признак проявления жизни — осуществление обмена веществами и энергией. Самым сложным процессом, связанным с образованием веществ или ассимиляцией, является фотосинтез. В случае распада веществ или диссимиляции — это дыхание.
Обмен веществ и энергии — непростой комплекс процессов поступления в организм веществ и энергии из вне, с последующим их преобразованием, усвоением, а также распадом с выделением энергии и выведением из организма.
Постоянный обмен и превращение веществ и энергии обеспечивают размножение, рост и реакции растений на меняющиеся условия. Организм постоянно принимает вещества, которые проходят в нем определенные превращения, и выводит конечные продукты обмена.
Обмен веществ — это два взаимосвязанных процесса:
К примеру, солнечная энергия позволяет зеленым водорослям осуществлять процесс фотосинтеза, в ходе которого сложные органические соединения продуцируются из простых неорганических веществ.
Питание растения
Под питанием понимают постоянное поступление в организм растения необходимых веществ и энергии.
Чтобы процесс фотосинтеза произошел, одной солнечной энергии мало. Также необходимы вода и углекислый газ. Последний поступает к основной хлорофиллоносной ткани сквозь щели устьиц эпидермиса листка. Кислород, полученный в ходе фотосинтеза, выводится наружу.
Есть еще воздушное питание. Оно происходит за счет того, что солнечная энергия превращается в энергию химических связей.
Результатом процесса фотосинтеза является образование глюкозы из углекислого газа. Позже она преобразуется в крахмал — основное запасное вещество растений. В ходе этого процесса выделяется свободный кислород.
В процессе дыхания кислород поглощается, а углекислый газ — высвобождается.
Фотосинтез и дыхание — два противоположных, но тесно связанных друг с другом процесса. В процессе фотосинтеза происходит поглощение энергии Солнца, а в процессе дыхания она высвобождается — то есть, покрывает потребности организма. Во время фотосинтеза высвобождается намного больше кислорода, чем используется растением в ходе дыхания.
По этой причине зеленые растения считаются главным источником атмосферного кислорода.
Питание — поступление в организм и усвоение питательных веществ, которые поддерживают процессы жизнедеятельности.
Питание — составляющая процесса обмена веществ, без которой невозможна жизнедеятельность растения: для нормального функционирования ему нужна энергия. Рост и развитие растения осуществляется за счет поступления из почвы через корневую систему минеральных веществ.
Химические элементы по-разному влияют на процессе развития в организме растения. Нитроген (азот) способствует ускорению роста вегетативной массы — листьев и стебля. Фосфор и Калий положительно сказываются на формировании плодов и цветов.
Прочие элементы также оказывают воздействие на определенные процессы, хотя и нужны растениям в меньшей степени.
Есть два основных типа питания: автотрофный и гетеротрофный.
Автотрофный тип питания основан на синтезе органических веществ из неорганических при помощи энергии Солнца. Благодаря такому синтезу организм растения вырабатывает кислород. Часть его идет на поддержание процесса дыхания, а остальная часть — поступает в атмосферу.
Важное условие фотосинтеза — наличие воды, света и углекислого газа. Вода поступает в растение в основном из почвы (минеральное питание), углекислый газ — из атмосферы (воздушное питание).
Образование молекул всех органических веществ невозможно углерода углекислого газа. Когда происходит фотосинтез, то в хлоропластах зеленых растений в результате влияния света происходит разложение молекул воды и выделение кислорода.
Внешние факторы определяют скорость фотосинтеза. К таким факторам относятся освещенность, температура воздуха, наличие воды, количество углекислого газа (этот показатель в атмосфере составляет 0,03%).
Наилучшее условие для протекания фотосинтеза — температура на уровне +20 — +25 градусов Цельсия и достаточно влажная почва.
Гетеротрофный способ основан на питании органическими веществами. Среди гетеротрофов встречаются паразиты и сапротрофы.
Паразиты — организмы, которые питаются органическими веществами живых организмов.
Сапротрофы — организмы, использующие в качестве источника питания вещества отмерших организмов.
Дыхание растения и транспирация
В листьях растения происходят еще два важных процесса: дыхание и транспирация (испарение воды).
Дыхание — сложный процесс, в ходе которого организм растения усваивает кислород из атмосферы и выделяет углекислый газ.
Благодаря дыханию, обеспечивается беспрерывная связь организмов с окружающей средой. В процессе дыхания органические вещества окисляются, и энергия, связанная в них, высвобождается. В последующем растения используют эту энергию для обеспечения жизнедеятельности. Дыхание основано на поглощении кислорода и выделении углекислого газа.
Климатические факторы окружающей среды влияют на дыхание растений.
Интенсивность дыхания в разных частях растения разная. Она измеряется количеством вдыхаемого кислорода и выдыхаемого углекислого газа.
Наибольшая интенсивность дыхания — у молодых быстро растущих органов. В местах, где наблюдается интенсивный рост, клетки быстро делятся и растут. По этой причине им необходимы питательные вещества и энергия, высвобождаемая в растениях при помощи кислорода, поступившего с дыханием.
Генеративные органы дышат очень интенсивно, листья — чуть менее интенсивно, а корень и стебель — слабо. Примечательно, что сухие семена практически не дышат, но когда набухают и прорастают, то их дыхание становится довольно сильным. По окончании активного роста дыхание органов растения становится слабее.
Транспирация или испарение воды — процесс выделения водяного пара через устьица, чечевички и т. д.
Воду могут испарять все части растения, но больше других — листья. Устьица регулируют скорость испарения. Водяные пары попадают в щели устьиц через систему межклеточников. Через эти щели они и выводятся наружу. С поверхности листа вода также испаряется, хотя и не так интенсивно.
Транспирация обеспечивает снижение температуры организма растения и исключает тем самым перегревание. Кроме того, испарение воды гарантирует непрерывный поток водных растворов минеральных солей от корня, к органам, находящимся над землей.
Наличие воды — важное условие для протекания всех жизненных процессов растения. Большая часть поглощаемой растениями воды испаряется, а остальная используется для образования органических соединений.
Скорость транспирации зависит от ветра, температуры и влажности воздуха. При высокой влажности воздуха транспирация достаточно медленная или вообще отсутствует. При сильном ветре и высокой температуре скорость испарения увеличивается.
Рост растения
Рост — количественное увеличение размера, объема, массы и поверхности целого организма или отдельных его частей, которое происходит благодаря поступлению питательных веществ.
Растения растут постоянно и на протяжении всей жизни. Рост органов растения так же заметен.
К примеру, деревья растут и в высоту, и в толщины, и в некоторых случаях могут достигать впечатляющих размеров. При этом молодые деревья растут активнее старых. Рост основан на делении и росте клеток. На кончике корня и верхушечной части побегов клетки делятся и растут намного быстрее.
Рост корней стеблей растений осуществляется верхушечкой, а рост в толщину возможен благодаря делению клеток камбия.
Растение меняется постоянно и все изменения, которые с ним происходят, заметны. Семя, прорастая, дает росток, который вначале питается за счет накопленных питательных веществ, которые содержит семя. Потом росток сам поглощает питательные вещества из вне. Потребности в питательных веществах увеличиваются в процессе роста. Это объясняется тем, что все больше питательных веществ нужно растению для того, чтобы сформировать вегетативные органы и органы размножения.
Развитие и движение растения
Развитие — качественные изменения, происходящие в отдельных органах растения и в организме в целом.
Наблюдается взаимосвязь количественных и качественных изменений: роста и образования разных специальных образовательных тканей, за которым закреплены определенные функции организма, то есть, дифференциация.
Чтобы растение нормально росло и развивалось, ему нужны свет, влага, питательные вещества и активное дыхание.
Растения могут двигаться, хотя иногда их движения не особо заметны. К примеру, если поставить комнатное растение на подоконник, то оно повернется в сторону света. Даже при перестановке оно будет искать источник света и тянуться к нему.
Подсолнух поворачивает соцветие по ходу движения солнца.
Цветы душистого табака закрываются в утреннее и дневное время, а в вечернее — раскрываются.
Цветы почти всех растений раскрываются в определенное время. Цветы цикория раскрываются в 7 утра, а соцветия одуванчика — в 5-6 утра. Вечером или после дождя соцветия одуванчика закрываются.
Размножение и раздражительность растений
Размножаться могут все без исключения растения. Есть два основных способа размножения растений: семенной и вегетативный.
В случае вегетативного способа размножение происходит с помощью частей стеблей, корней и листьев.
Семенное размножение более сложное, так как прохождения фаз цветения, опыления, оплодотворения, формирования семян и плодов с последующим их распространением.
Раздражительность — способность организма изменять особенности своей жизнедеятельности в результате влияния окружающей среды (внешних факторов или раздражителей).
Раздражение свойственно и животным, и растениям. У растений раздражительность служит как приспособление к меняющимся условиям существования.
У мимозы стыдливой сложные листья, которые состоят из множества пластинок. В обычном состоянии они выпрямлены, но при приближении к ним или касании листочки складываются и прижимаются к черешку листа.
Физиология растений — отрасль биологии, которая изучает процессы функционирования организмов растений.
Как связаны органы в организме растения
Каждая отдельная часть растения тесно связана с другими, дополняет их и обеспечивает функционирование организма как единого целого. При нарушении функции или строения какого-либо органа, другие части организма растения тоже страдают и испытывают на себе определенные последствия таких нарушений.
Питание растений осуществляется из почвы и воздуха. Почвенное питание играет особую роль, так как при нем корневая система всасывает из грунта растворы минеральных солей.
Если корень повреждается или отмирает, то это приводит к нарушению закрепления растения в грунте поглощения им из почвы раствора минеральных солей.
Лист растения — главное место образования органических веществ из неорганических. Без органических веществ клетки, ткани и органы растений — как и весь организм в целом — не могут нормально расти и развиваться.
Строение листка растения идеально подходит для образования органических веществ из неорганических — фотосинтеза. Хлоренхимы — клетки основной ткани листка — содержат в хлоропластах зеленые пигменты хлорофиллы: именно благодаря им и происходит фотосинтез.
Фотосинтез — главная функция листа.
Листьям и стеблям необходимы также минеральные вещества: они поступают из корня в виде водного раствора.
Проводящая ткань — флоэма и ксилема — обеспечивает связь между различными частями растения. В частности, между надземными и подземными органами.
Органические вещества в организме растения могут свободно перемещаться и превращаться во всех клетках и органах. Поэтому растение и растет, а в плодах, семенах, корневой системе, подземных и надземных органах накапливаются органические вещества.
Процессы жизнедеятельности в организме растения не прекращаются. Как и все организмы, растение дышит при помощи кислорода. Так как специальных органов, отвечающих за дыхание, у растения нет, то дышит оно через поверхность различных органов: вегетативных и генеративных. Поэтому дыхание у растения осуществляется всеми органами и клетками.
Согласованность работы всех органов — заслуга специальных веществ, вырабатываемых растениями: фитогормонов. Они формируются в специальных клетках, а затем за счет работы элементов проводящих тканей попадают в другие клетки, где и проявляют свое действие.
Благодаря одним фитогормонам деление и рост клеток ускоряется, а благодаря другим — замедляется. Также фитогормоны отвечают за регуляцию прорастания семян, рост почек, формирование цветов и плодов и др.
ГДЗ биология 6 класс Пасечник, Суматохин, Калинова Просвещение 2019-2020 Задание: 28 Обмен веществ – гласный признак жизни
стр. 118. Вспомните
№ 1. Чем отличается живой организм от неживых тел?
Живой организм отличается от неживых тел, прежде всего клеточным строением (белки, нуклеиновые кислоты). Тогда как у неживых тел атомы и элементарные единицы. Также все живые организмы активны, деятельны, способны к воспроизведению себе подобных путем размножения. Они дышат, питаются, растут и развиваются, могут реагировать на раздражители. Живым организмом свойственен обмен веществ и энергией как внутри клеток, так и с окружающей средой.
№ 2. Что вам известно об энергии?
Энергия является скалярной физической величиной. Это единая мера различных форм движения и взаимодействия материи. С фундаментальной точки зрения энергия – это один из трех аддитивных интегралов движения. Выживание любого организма на нашей планете зависит напрямую от постоянного притока энергии. А черпается она из веществ, служащих пищей.
Используется энергия в результате определенных химических реакций для построения и поддержания структуры и функций клеток в организме. В таком процессе молекулы пищи используются не только для извлечения энергии, но и для синтеза биологических молекул собственного организма.
Первичный источник энергии почти для 99% всех земных существ – это световая энергия, в основном солнечная. Она при помощи фотосинтеза преобразуется растениями в присутствии воды и некоторых минералов в химическую. Часть такой энергии затрачивается на наращивание биомассы (рост, вес), а часть утрачивается в виде тепла и отходом жизнедеятельности.
Стр. 119. Вопросы после параграфа
№ 1. Что такое обмен веществ?
Обмен веществ – это взаимосвязанные химические реакции по образованию и разрушению веществ, которые возникают и протекают в живом организме и необходимы для поддержания его жизни и связи с окружающей средой.
№ 2. Откуда организмы получают питательные веществ, необходимые для обмена веществ?
Источником поступления питательных веществ для растений служит почва, из которой они получают вместе с водой азотистые и минеральные вещества, а также углекислый газ из воздуха. В процессе фотосинтеза они могут вырабатывать органические вещества – кислород, необходимых для жизни всех живых организмов на планете, в том числе, и для растений. Животные употребляют питательные вещества в том виде, в котором они есть.
№ 3. Как живые организмы используют энергию?
Полученная энергия используется живыми организмами для построения новых клеток в его строении, для роста и работы органов и тканей, а также для поддержания оптимальной температуры тела и осуществления всех своих процессов жизнедеятельности. При этом растения могут использовать полученную энергию еще и на преобразование органических веществ из неорганических. А животные тратят много полученной энергии на ориентацию в пространстве и активное передвижение своего тела в нем (пряжки, бег, плаванье, полет и т.д.).
№ 4. Почему обмен веществ является основой жизни?
Потому что обмен веществ – это совокупность химических реакций, которые возникают в любом живом организме для поддержания его жизнедеятельности, а значит, является обязательным условием существования. Именно благодаря обмену веществ не только осуществляется рост, развитие, движение, размножение организмов, но происходит их взаимодействие с окружающей средой.
№ 5. Чем отличается питание растений от питания грибов и животных?
Растения по типу питания относятся к автотрофам, потому что могут синтезировать необходимые для своей жизнедеятельности органические вещества под воздействием солнечного света из воды, углекислого газа и минеральных соединений.
Стр. 119. Подумайте
Какая существует связь между обменом веществ и превращением энергии?
Питание является важнейшей составной частью обмена веществ. Благодаря питанию происходит поглощение живыми организмами питательных веществ (минеральных и органических), которые нужны для поддержания их жизни. Вместе с ними поглощается и содержащаяся в них энергия в виде белков, углеводов, жиров и т.д., которые необходимы для роста, развития, движения, воспроизведения и прочих процессов жизнедеятельности организмов.
Таким образом, можно сделать вывод, что все процессы, включая поступление питательных веществ, их превращение в энергию и выведение ее излишков между собой взаимосвязаны и согласованы.
Bio-Lessons
Образовательный сайт по биологии
Фотосинтез. Воздушное питание растений.
Фотосинтез. Воздушное питание растений.
Как же осуществляется фотосинтез?
Через устьичные щели в лист поступает углекислый газ. При попадании солнечных лучей на поверхность листа в его хлоропластах происходит сложный процесс: из углекислого газа и воды, всасываемой корнями, образуется органическое вещество — сахар (глюкоза). При этом выделяется кислород. Частично он используется растениями для дыхания, а излишки поступают в воздух также через устьица. Сахар затем превращается в крахмал. Крахмал в воде не растворяется. Образование сахара на свету при участии воды и углекислого газа происходит только в хлоропластах и только за счет энергии солнечного света.
Следовательно, процесс образования в хлоропластах на свету органических веществ из воды и углекислого газа с выделением кислорода называется фотосинтезом (рис.1).
Рис.1 Процесс фотосинтеза
История открытия фотосинтеза
Первые опыты по изучению питания растений провел в 1630 г. голландский врач Ян Батист ван Гельмонт. Он доказал, что растения не получают органические вещества в готовом виде из почвы, а сами образуют их (рис.2)
Рис.2 Опыт Яна Батиста ван Гельмонта
А швейцарский естествоиспытатель Жан Сенебье доказал, что растения используют углекислый газ.
Русский ученый К. А. Тимирязев (1843-1920) впервые описал роль хлорофилла (пигмент, который находится в хлоропластах) в фотосинтезе. Он назвал фотосинтез космическим процессом. Растения используют космическую энергию Солнца. Жизнь как явление существует на нашей планете, только благодаря фотосинтезу, обеспечивающему питанием и кислородом все живое. Может, благодаря фотосинтезу наша планета единственная в Космосе, населенная живыми существами?
Опыт доказывающий образование крахмала в листьях
Доказать процесс образования крахмала в листьях можно путем постановки простого опыта (рис.3)
Рис.3 Образование крахмала в зеленых листьях на свету
Комнатное растение, желательно пеларгонию или примулу, хорошо поливают и ставят в темное место на 2-3 дня. За это время растением расходуется ранее образованный в листьях крахмал. Через 2—3 дня несколько листьев на растении закрывают с двух сторон черной бумагой так, чтобы часть поверхности листа оставалась открытой. Растение выставляют на свет.
Через сутки бумагу убирают, лист срывают, опускают его на одну минуту в кипяток, затем переносят в посуду с горячим спиртом, который в целях предосторожности подогревается на водяной бане. Обесцвеченный лист ополаскивают холодной водой и помещают в плоский сосуд. Расправленный лист заливают слабым раствором йода. Через 2—3 мин можно увидеть, что закрытая часть листа не изменила своего цвета, а та часть листа, на которую попадал свет, окрасилась в синий цвет.
Обработка йодом помогает обнаружить в клетках крахмал. Следовательно, крахмал образуется в листьях только на свету.
В ходе фотосинтеза растение использует углекислый газ и выделяет кислород, который поддерживает горение. Это можно подтвердить следующим опытом.
Следует взять две банки (0,8 л) из светлого стекла и поместить в каждую по 5-6 веточек традесканции. Чтобы растения не завяли, в банки наливают немного воды. Затем небольшие свечи, укрепленные на проволоке, зажигают, опускают в банки и закрывают их. Вскоре свечи погаснут, что указывает на отсутствие в банке кислорода и на увеличение содержания углекислого газа, образовавшегося в результате горения свеч. Свечи вынимают, закрывают обе банки стеклом и выставляют одну на свет, а другую — в темное место. На следующий день банки открывают и опять опускают туда на проволоке зажженные свечи. В банке, стоявшей на свету, свеча горит, а в банке, находившейся в темном месте, — гаснет (рис.4).
Рис. 4 Образование кислорода на свету
Таким образом, вы снова убедились, что зеленые растения поглощают углекислый газ и выделяют кислород, который поддерживает горение, только на свету, т. е. в процессе фотосинтеза. А при дыхании растения, как и все живые организмы, поглощают кислород, а выделяют углекислый газ.
Подводим итог
Фотосинтез — основа воздушного питания растений. При фотосинтезе зеленые растения с помощью хлорофилла извлекают энергию из солнечного света и с ее помощью создают органические вещества из углекислого газа и воды. Как побочный результат при фотосинтезе выделяется кислород.
Преобразование энергии солнечного света и организмы использующие её
Сегодня мы поговорим об организмах, которые используют в своей жизнедеятельности солнечную энергию. Для этого нужно затронуть такую науку, как биоэнергетика. Она изучает способы преобразования энергии живыми организмами и использование её в процессе жизнедеятельности. В основе биоэнергетики лежит термодинамика. Эта наука описывает механизмы преобразования различных видов энергии друг в друга. В том числе, использование и преобразование различными организмами солнечной энергии. С помощью термодинамики можно полностью описать энергетический механизм процессов, происходящих вокруг нас. Но с помощью термодинамики нельзя понять природу того или иного процесса. В этой статье мы попробуем объяснить механизм использования солнечной энергии живыми организмами.
Как живые организмы получают солнечную энергию?
Для описания преобразования энергии в живых организмах или прочих объектах нашей планеты следует рассмотреть их с точки зрения термодинамики. То есть, системы, обменивающейся энергией с окружающей средой и объектами. Их можно подразделить на следующие системы:
Через некоторое время эти вещества разрушаются и обеспечивают организм энергией. Их продукты распада удаляются из организма. Их место в организме заполняют другие молекулы. При этом целостность структуры организма не нарушается. Такое усвоение и переработка энергии в организме обеспечивает обновление организма. Энергетический обмен необходим для существования всех живых организмов. При остановке процессов преобразования энергии в организме он умирает.
4Н ⇒ Не4 + 2е + hv, где
v ─ длина волны гамма-лучей;
h ─ постоянная Планка.
В дальнейшем, после взаимодействия гамма-излучения и электронов, энергия выделяется в виде фотонов. Эту световую энергию излучает небесное светило.
Солнечная энергия при достижении поверхности нашей планеты улавливается и преобразуется растениями. В них энергия солнца превращается в химическую, которая запасается в виде химических связей. Это связи, которые в молекулах соединяют атомы. Примером может служить синтез глюкозы в растениях. Первая стадия этого преобразования энергии ─ фотосинтез. Растения обеспечивают его с помощью хлорофилла. Этот пигмент обеспечивает превращение лучистой энергии в химическую. Происходит синтез углеводов из H2O и CO2. Это обеспечивает рост растений и передачу энергии на следующую ступень.
Фотосинтез у растений
Здесь стоит дать ответ на часто задаваемый вопрос: «Какой органоид использует энергию солнечного света?». Это хлоропласты, участвующие в процесс фотосинтеза. Они используют её для синтеза из неорганических веществ органических.
В непрерывном потоке энергии заключается суть всего живого. Он постоянно движется между клетками и организмами. На клеточном уровне для преобразования энергии существуют эффективные механизмы. Можно выделить 2 основные структуры, где происходит превращение энергии:
Человек, как и другие живые организмы на планете, пополняет энергетический запас из продуктов. Причём, часть потребляемых продуктов растительного происхождения (яблоки, картофель, огурцы, помидоры), а часть животного (мясо, рыба и другие морепродукты). Животные, которые мы употребляем в пищу, энергию также получают из растений. Поэтому вся получаемая нашим организмом энергия преобразуется из растений. А у них она появляется в результате преобразования солнечной энергии.
По типу получения энергии все организмы можно разделить на две группы:
Как преобразуется энергия в живых организмах?
Существует 3 основных разновидности энергии, преобразуемой организмами:
Преобразование энергии макроэргических фосфатных связей
Использование организмами накопленной энергии
В процессе метаболизма организм получает энергетический запас, расходуемый на совершение биологической работы. Это может быть световая, механическая, электрическая, химическая работа. И очень большая часть энергии организм расходует в виде тепла.
Ниже кратко описаны основные типы энергии в организме:
Как из питательных веществ освобождается энергия?
В процессе извлечения энергии из питательных веществ есть 3 условных этапа;
Схема освобождения энергии из питательных веществ
Высвобождение энергии в живых клетках происходит постепенно. На всех этапах выделения она может накапливаться в химической форме, удобной для клеток вещества. Энергетическое строение клетки включает 3 разных функциональных блока, в которых идут различные процессы: