в честь чего названо солнце

Почему Солнце назвали Солнцем?

в честь чего названо солнце. Смотреть фото в честь чего названо солнце. Смотреть картинку в честь чего названо солнце. Картинка про в честь чего названо солнце. Фото в честь чего названо солнце

Большинство планет Солнечной системы традиционно носят имена богов древнеримского пантеона. Но само Солнце названо не в их честь. Откуда же возникло его название?

Можно заметить, что в самых разных языках имена нашей звезды похожи. На английском она называется «Sun», на испанском, как и на латыни, «Sol», а в сербском языке его называют «сунце». Вообще во всех индоевропейских языках для обозначения светила используется древний корень «sol» и его вариации. Это явно указывает на древность этого слова, и это действительно так. Даже в языках многих аборигенов, которые не придумали слово для обозначения числа «пять», есть слово, означающее нашу звезду.

В индоевропейском языке есть ещё одно слово, близкое по звучанию к «sun». Это слово «su», и означает оно глагол «рожать». Очевидно, что уже в древности люди осознали, что именно солнечный свет способствует росту растений и влияет на размер урожаев.

Можно заметить схожесть между словом «солнце» и «сердце». Лингвисты полагают, что изначальный смысл этих терминов означал «находящееся в середине». Но если Солнце располагалось в центре неба, то сердце – в центре человека.

Но почему же всё-таки Солнце не названо в честь какого-нибудь бога, как планеты? Дело в том, что сами планеты были открыты человечеством на заре цивилизации, когда жрецы стали вести регулярные наблюдения за небом. На том момент уже существовали развитые языческие верования, и потому людям было просто поверить в то, что яркие точки на небосводе как раз и являются богами. Но Солнце было известно человечеству задолго до того, как возникли самые первые религиозные культы. Поэтому и свое имя оно получило ещё тогда, когда у людей не было веры в богов и даже в духов и мистических существ. В результате и потребности давать нашей звезде какое-то особое имя не было.

Список использованных источников

Источник

Что такое Солнце — описание, структура, образование, эволюция, орбита, исследование и факты

в честь чего названо солнце. Смотреть фото в честь чего названо солнце. Смотреть картинку в честь чего названо солнце. Картинка про в честь чего названо солнце. Фото в честь чего названо солнце

Солнце является основным источником энергии для Земли и всей Солнечной системы. Без него жизнь на нашей планете была бы невозможна. Неслучайно у многих древнейших цивилизаций (например, у египтян) именно бог Солнца считался верховным божеством, которому все остальные Боги были подчинены. Однако современная наука может рассказать о нашем светиле значительно больше, чем древнеегипетские мифы. Какие процессы протекают внутри Солнца, какова история этой звезды, и какое будущее ожидает ее через миллиарды лет?

Общая характеристика

Солнце – это огромный разогретый шар из газа, чей диаметр оценивается в 1,392 млн км. Это в 109 раз больше диаметра нашей планеты. На звезду приходится 99,87% всей массы Солнечной системы.

С Земли кажется, что светило имеет желтый цвет, однако это иллюзия, связанная с влиянием атмосферы нашей планеты на солнечный свет. На самом деле Солнце излучает почти белый свет.

Солнце – это одна из сотен миллиардов звезд галактики Млечный путь. Ближайшая к Солнцу звезда – это Проксима Центавра, находящаяся от неё на расстоянии 4,24 световых лет. Для сравнения – расстояние от Земли до Солнца, принимаемое за астрономическую единицу (а.е.), солнечный свет проходит всего за 8,32 минут.

По астрономической классификации Солнце относится к типу «желтых карликов». Это значит, что оно не так и велико по сравнению с размерами других звезд, но довольно ярко светит. Наше светило входит 15% самых ярких звезд Млечного Пути. Вместе с тем в галактике есть звезды, чей радиус превышает солнечный в 2000 раз!

Источником тепла, излучаемого звездой, являются термоядерные реакции. В центре Солнца атомы водорода сливаются друг с другом, в результате чего образуется атом гелия и некоторое количество энергии. Это реакция называется протон-протонным циклом, на него приходится порядка 98% энергии, вырабатываемой светилом. Однако имеют место и иные реакции, в ходе которых «сгорают» такие элементы, как гелий, углерод, кислород, неон и кремний, а образуются металлы (железо, магний, кальций, никель) и другие элементы (сера). Все эти процессы называют звездным нуклеосинтезом.

Влияние Солнца на окружающие небесные тела огромно. Солнечный ветер (частицы вещества, излучаемого звездой), доминируют в межпланетном пространстве на расстоянии до 100-150 а.е. от светила. Считается, что гравитация нашей звезды определяет орбиты тел, находящихся даже на расстоянии светового года от неё (в облаке Оорта).

Само Солнце также вращается вокруг своей оси. Так как оно состоит из газов, то разные его слои вращаются с разной угловой скоростью. Если в районе экватора период обращения составляет 25 дней, то на полюсах он увеличивается до 34 дней. Более того, последние исследования показывают, что внутренние области совершают оборот значительно быстрее, чем внешняя оболочка.

Таблица «Основные физические характеристики Солнца»

Средний диаметр1 392 000 км
Длина экватора4 370 000 км
Масса1,9885•10 30 кг (примерно 333 тысячи масс Земли)
Площадь поверхности6 триллионов км²
Объем1,41•10 18 км³
Плотность1,409 г/м³
Температура на поверхности6000° С
Температура в центре звезды15 700 000° С
Период вращения вокруг своей оси (на экваторе)25,05 дней
Период вращения вокруг своей оси (на полюсах)34,3 дня
Наклон оси вращения к эклиптике7,25°
Минимальное расстояние до Земли147 098 290 км
Максимальное расстояние до Земли152 098 232 км
Вторая космическая скорость617 км/с
Ускорение свободного падения27,96g
Светимость (мощность излучения)3,828•10 26 Вт

Состав Солнца

Основными элементами, из которых состоит наша звезда, являются водород (73,5% солнечной) и гелий (24,9%). На все остальные элементы приходится примерно 1,5%.

Химический состав светила непостоянен – он меняется из-за превращений, происходящих во время термоядерных реакций. На заре своего существования Солнце почти полностью состояло из водорода. В ходе термоядерных реакций этот элемент превращается в гелий, поэтому его массовая доля падает. Гелий также превращается в более тяжелые элементы, однако, однако в целом его доля возрастает. Изменения химического состава звезд оказывают огромное влияние на процессы их эволюции.

Строение Солнца

Конечно, у Солнца, состоящего из газов, нет привычной нам твердой поверхности. Значительную ее часть составляет атмосфера, которая по мере движения к центру светила уплотняется. Тем не менее принято выделять 6 «слоев», из которых состоит звезда. Три из них являются внутренними, а следующие три образуют солнечную атмосферу.

Внутреннее строение Солнца

Внутренняя структура нашей звезды включает следующие слои:

В центре светила располагается ядро. Именно в этой области идут термоядерные реакции. Радиус ядра оценивается в 150 тыс. км. Температура здесь не опускается ниже 13,5 млн градусов, а давление доходит до 200 млрд атм. Из-за этого вещество здесь находится в крайне плотном состоянии. Его плотность составляет 150 г/куб. см. Это в 7,5 раз выше плотности золота. Именно такие условия необходимы для протекания термоядерных реакций. Надо понимать, что именно в ядре вырабатывается энергия, которую и излучает Солнце. Все остальные области звезды лишь обогреваются ядром, но сами ее не вырабатывают.

Зона лучистого переноса

Над ядром располагается зона радиации, которую также именуют зоной лучистого переноса. Ее внешняя граница проходит по сфере радиусом 490 тыс. км. Температура постепенно падает от отметки в 7 млн градусов на границе с ядром до 2 млн градусов у внешней границы. Также и плотность вещества снижается с 20 до 0,2 г/куб. см. Тем не менее из-за высокой плотности атомы водорода не могут двигаться. То есть если при нагреве, например, воды ее теплые слои поднимаются на поверхность, перенося туда тепло, то здесь такой механизм не работает – вещество остается неподвижным. Единственный способ энергии пробраться через зону радиации – это длительная цепочка поглощений и излучений фотонов атомами водорода. Из-за этого фотон, возникший при термоядерной реакции в ядре, в среднем «пробирается» наружу через зону радиации примерно 170 тыс. лет!

Зона конвективного переноса

Выше располагается зона конвективного переноса толщиной 200 тыс. км. Здесь плотность уже невысока, и вещество активно перемешивается – нагретые газы поднимаются наверх, отдают тепло, остывают и снова погружаются вниз. Скорость газовых потоков может достигать 6 км/с. Именно это движение порождает магнитное поле Солнца. Температура на поверхности падает до 6000° С, а плотность на три порядка ниже плотности земной атмосферы.

Атмосфера

Атмосфера Солнца состоит из следующих слоев:

Фотосфера

Нижний слой атмосферы называют фотосферой. Именно она излучает тот свет, который согревает планеты Солнечной системы. Толщина фотосферы колеблется от 100 до 400 км. На внешней границе фотосферы температура падает до 4700° С.

Хромосфера

Над фотосферой располагается хромосфера – слой толщиной около 2000 км. Её яркость очень мала, поэтому с Земли её можно наблюдать довольно сложно. Удобнее всего это делать во время солнечных затмений. Она имеет специфический красный оттенок. В хромосфере можно наблюдать спикулы – столбы плазмы, выбрасываемые из нижних слоев хромосферы. Время существования одной спикулы не превышает 10 минут, а длина доходит до 20 тыс. км. Одновременно в хромосфере находится около миллиона спикул. Интересно, что с увеличением высоты температура хромосферы не падает, а растет, и на верхней границе может доходить до 20 000° С.

Корона

Верхний слой атмосферы называется короной. Ее верхняя граница до сих пор четко не определена. Вещество в ней крайне разрежено, однако температура в ней может достигать нескольких миллионов градусов. На сегодня ученым не удалось полностью объяснить, за счет каких механизмов солнечная корона разогревается до такой температуры. В короне можно наблюдать протуберанцы – выбросы солнечного вещества, чья высота над поверхностью звезды может достигать 1,7 млн км.

Магнитное поле Солнца

У Солнца есть магнитное поле. Исследователи выделяют глобальное поле звезды и множество локальных полей.

Глобальное поле обладает цикличностью. Его напряженность колеблется с частотой 11 лет, при этом наблюдаются изменения в частоте появления солнечных пятен. Такой цикл называют «циклом Швабе» по фамилии ученого, заметившего ещё в XIX веке, что количество солнечных пятен на поверхности светила меняется циклически. Лишь позже стала очевидна связь этого явления с процессами в зоне конвективного переноса и колебаниями магнитного поля. В начале XX века стало ясно, что за один цикл Швабе полярность магнитного поля меняется на противоположное. То есть Солнцу нужна два 11-летних цикла, чтобы магнитное поле вернулось к начальному состоянию. В связи с этим выделяют 22-летний цикл, известный как «цикл Хейла».

В разных районах Солнца могут наблюдаться и малые, то есть локальные магнитные поля. Их напряженность может в тысячи раз превышать напряженность глобального поля, однако время их существования редко превышает несколько десятков дней. Особенно часто локальные поля наблюдаются в районе солнечных пятен. Дело в том, что эти пятна как раз и являются теми точками, через которые магнитные поля из внутренних областей выходят наружу.

Жизненный цикл Солнца

Возраст Солнца оценивается учеными в 4,5 млрд лет. Сформировалось оно из газопылевого облака, которое постепенно сжималось под действием собственной гравитации. Из этого же облака возникли планеты и почти все остальные объекты в Солнечной системе. Когда в центре сжимающегося облака плотность, а вместе с ней температура и давление выросли до критических значений, началась термоядерная реакция – так зажглось Солнце.

В ходе термоядерных реакций масса Солнца постепенно уменьшается. Каждую секунду 4 млн тон солнечного вещества преобразуется в энергию. Вместе с тем звезда разогревается. Каждый 1,1 млрд лет яркость Солнца увеличивается на 10%. Это значит, что ранее температура на Земле была значительно ниже, чем сейчас, а на Венере, возможно, была жидкая вода или даже жизнь (сейчас средняя температура на поверхности Венеры составляет 464° С). В будущем же яркость Солнца будет возрастать, что будет вести к росту температуры на Земле. Через 3,5 млрд лет яркость светила вырастет на 40%, и условия на Земле станут такими же, как и на Венере. С другой стороны, Марс также разогреется и станет более пригодным для жизни. Таким образом, в ходе эволюции звезды так называемая «зона обитаемости», постепенно удаляется от Солнца.

Постепенно из-за выгорания водорода ядро будет уменьшаться в размерах, а вся звезда в целом – увеличиваться. Через 6,4 млрд лет водород в ядре закончится, радиус звезды в этот момент будет больше современного в 1,59 раз. В течение 700 млн лет звезда расширится до 2,3 современных радиусов.

Далее рост температуры приведет к тому, что термоядерные реакции горения водорода запустятся уже не в ядре, а в оболочке звезды. Из-за этого она резко расширится, и ее внешние слои будут достигать современной земной орбиты. Однако к тому моменту светило потеряет значительную часть своей массы (28%), что позволит нашей планете перейти на более отдаленную орбиту. Солнце в этот период своей жизни, который продлится 10 млн лет, будет являться красным гигантом.

После из-за роста температуры в ядре до 100 млн градусов там начнется активная реакция горения гелия – «гелиевая вспышка». Радиус светила сократится до 10 современных радиусов. На выгорание гелия уйдет порядка 110 млн лет, после чего звезда снова расширится и станет красным гигантом, но эта стадия будет длиться уже 20 млн лет.

Из-за пульсаций, связанных с изменениями температуры Солнца, его внешние слои отделятся от ядра и образуют планетарную туманность. Само же ядро превратится в белый карлик – объект, чьи размеры будут сопоставимы размерами Земли, а масса будет равна половине современной солнечной массы. Далее этот карлик, состоящий из углерода и кислорода, будет постепенно остывать. Никаких термоядерных реакций в белом карлике идти не будет, поэтому со временем (за десятки млрд лет) он превратится в черный карлик – остывшую плотную массу вещества. На этом эволюция Солнца завершится.

Орбита и расположение Солнца в галактике Млечный путь

Солнце вместе со всей Солнечной системой вращается относительно центра Млечного пути, в котором располагается огромная черная дыра. Расстояние от нее до нашего светила составляет 26 тыс. св. лет. Один оборот Солнечная система совершает примерно за 225-250 млн лет. Скорость движения звезды относительно центра галактики составляет 225 км/с.

Исследование Солнца

Изначально люди относились к Солнцу как к божеству, дающему людям свет. Древние астрономы полагали, что наше светило – это лишь одна из планет, к которым также относили и Луну. Поэтому в честь него, как и в честь других планет, нередко называли дни недели. И сегодня в английском языке воскресенье носит название «Sunday», что переводится как «день Солнца». В 800 г. до н. э. китайцы впервые обнаружили на Солнце пятна.

Аристарх Самосский в III в. до н. э. первым предположил, что именно Земля вращается вокруг Солнца, а не наоборот. Но лишь во времена Коперника и Галилея эта теория была принята научным сообществом. Тогда же начались исследования Солнца с помощью телескопа. Галилей понял, что солнечные пятна – это часть светила. Изучая их, он понял, что звезда вращается вокруг своей оси, и даже смог определить период обращения.

В 1672 г. Д. Кассини смог достаточно точно рассчитать расстояние до светила. Для этого он определял положение Марса на небосводе в Париже и Кайенне (Южная Америка). Он получил значение в 140 млн км.

В XIX в. физики стали изучать спектр солнечного света. Этот метод позволял определить химический состав звезды. В 1868 г. было обнаружено, что в состав светила входит элемент, до того неизвестный человечеству. Его назвали гелием.

Большой загадкой для ученых оставалась природа энергии, излучаемой Солнцем. Выдвигались ошибочные версии, что звезда нагревается за счет падения на нее метеоритов или за счет гравитационного сжатия. Лишь с открытием ядерных реакций физики смогли предположить, что источник солнечного тепла – это термоядерный синтез.

Дальнейшее изучение Солнца связано с развитием космонавтики. С помощью советских аппаратов «Луна-1» и «Луна-2» в 1959 г. был открыт солнечный ветер.

Интересные факты о Солнце

в честь чего названо солнце. Смотреть фото в честь чего названо солнце. Смотреть картинку в честь чего названо солнце. Картинка про в честь чего названо солнце. Фото в честь чего названо солнце

Для любого объекта, излучающего тепло, можно посчитать отношение мощности к его объему. Оказывается, что удельная мощность Солнца примерно в тысячу раз меньше, чем удельная мощность человеческого организма! Это означает, что огромный объем выделяемого светилом тепла в первую очередь объясняется его гигантскими размерами.

Периодически всплески солнечной активности приводят к геомагнитным бурям. Мощнейшая из них произошла в 1859 г. В результате на Земле перестала работать телеграфная связь, а северное сияние наблюдалось даже над Кубой.

Сейчас общепризнанна теория, что Солнце образовалось из газопылевого облака. Однако откуда появилось само облако? Ученые предполагают, что оно является остатком предыдущих звезд. Химический анализ показывает, что Солнце является звездой уже третьего поколения. Это значит, что вещество, из которого состоит светило, ранее входило в состав двух других звезд, уже прекративших существование.

Хотя большинство планет вращаются вокруг Солнца в плоскости эклиптики, экватор самой звезды не совпадает с этой плоскостью, а наклонен на 7°. Эту аномалию до сих пор не удалось объяснить. Возможно, причиной этого является существование ещё одной планеты в Солнечной системе, чья орбита лежит не в плоскости эклиптики, а под углом к ней. Ряд наблюдений подтверждает существование Девятой планеты, но пока что говорить об ее открытии преждевременно.

Видео

Список использованных источников

Источник

Как планеты солнечной системы получили свои имена

в честь чего названо солнце. Смотреть фото в честь чего названо солнце. Смотреть картинку в честь чего названо солнце. Картинка про в честь чего названо солнце. Фото в честь чего названо солнце

Знаете ли вы, что когда-то Уран назывался. Георгом? Это планету открыл Уильям Гершель в 1781 году. Название новому астрономическому телу он дал в честь короля Георга III, поэтому планета стала «Georgium Sidus» (с латыни «Звезда Георга»). Гершель считал, что в будущем это название будет говорить о том, когда именно был открыт Уран, но что-то пошло не так.

Большинство из нас прекрасно понимают связь Марса с его названием, но что насчет остальных планет?

В течение короткого периода в книгах по астрономии планеты перечислялись как: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн и. Георг. Конец этой «славной эпохе» наступил с Иоганном Боде, который предложил новое название Джорджу — Уран. Боде не просто так предложил такое имя. Это было данью традиции, которая сложилась еще много веков назад.

Меркурий

Меркурий — самая маленькая и самая ближняя к Солнцу планета. Ее очень трудно увидеть невооруженным глазом из-за близости к нашей звезде. Однако ее все же можно заметить после захода или до восхода солнца.

в честь чего названо солнце. Смотреть фото в честь чего названо солнце. Смотреть картинку в честь чего названо солнце. Картинка про в честь чего названо солнце. Фото в честь чего названо солнце

Меркурий является одной из пяти самых ярких планет, сверкающих в небе. Именно поэтому его обнаружили еще римляне, которые отметили, что тот перемещается очень быстро. Так у планеты и появилось имя — Меркурий. В честь самого быстрого бога торговли и путешествий.

Венера

Помимо Луны, Венера — самый яркий объект в ночном небе. Это делает ее очень заметной и позволяет легко идентифицировать без специальной техники. Именно этот блеск и послужил происхождению имени небесного тела.

в честь чего названо солнце. Смотреть фото в честь чего названо солнце. Смотреть картинку в честь чего названо солнце. Картинка про в честь чего названо солнце. Фото в честь чего названо солнце

Люди воспринимали эту планету как нечто восхитительное, поэтому дали ей имя Венеры, римской богини любви и красоты.

Как и Венера, Марс хорошо виден в ночном небе невооруженным глазом. Египтяне называли Марс «Хар Дечер», что означало «красный».

в честь чего названо солнце. Смотреть фото в честь чего названо солнце. Смотреть картинку в честь чего названо солнце. Картинка про в честь чего названо солнце. Фото в честь чего названо солнце

Вероятно, это было связано с кроваво-красным оттенком, который рассеивался от планеты из-за оксида железа на его шероховатой поверхности. Однако в конце концов планета была названа Марсом, в честь римского бога войны, правда, все по тем же причинам.

Юпитер

Первые подробные наблюдения Юпитера были сделаны Галилеем, хотя это третий по яркости объект в ночном небе. В античности планета была изучена плохо, однако многие культуры давали ей разные названия. Например, в месопотамской культуре Юпитер был Мулу-баббар то есть «белая звезда». Греки называли его «звездой Зевса».

в честь чего названо солнце. Смотреть фото в честь чего названо солнце. Смотреть картинку в честь чего названо солнце. Картинка про в честь чего названо солнце. Фото в честь чего названо солнце

Но поскольку при более глубоком изучении планеты остальные небесные тела нашей системы уже носили имена из древнеримской мифологии, то Юпитер, из-за своего размера, был назван в честь царя всех древнеримских богов.

Сатурн

Когда Галилей взглянул на Сатурн в телескоп в 1610 году, он был поражен, обнаружив пару странных объектов с обеих сторон планеты. Он набросал на бумаге свое наблюдение, полагая, что Сатурн состоит из трех тел. Впоследствии Христиан Гюйгенс обнаружил кольца, но произошло это уже в 1655 году.

в честь чего названо солнце. Смотреть фото в честь чего названо солнце. Смотреть картинку в честь чего названо солнце. Картинка про в честь чего названо солнце. Фото в честь чего названо солнце

Римляне назвали Сатурн в честь римского бога сельского хозяйства и богатства, который согласно легендам в одной руке держал серп, а в другой – колосья пшеницы. Удивительно, что это метафорически совпало с тем, что увидел Галилей.

Нептун

Из-за невероятного расстояния Нептун нельзя увидеть невооруженным глазом с Земли. Фактически, эта планета была открыта математически учеными Джоном Адамсом и Урбеном Леверье.

в честь чего названо солнце. Смотреть фото в честь чего названо солнце. Смотреть картинку в честь чего названо солнце. Картинка про в честь чего названо солнце. Фото в честь чего названо солнце

Их теория подтвердилась Иоганном Галле в 1846 году. Галле намеревался назвать планету в честь Леверье, но Международное астрономическое сообщество не согласилось, поэтому Нептун носит имя в честь римского бога моря.

Материалы по теме

А вот ещё:

Самые странные теории Вселенной

в честь чего названо солнце. Смотреть фото в честь чего названо солнце. Смотреть картинку в честь чего названо солнце. Картинка про в честь чего названо солнце. Фото в честь чего названо солнце

Ученые не первую сотню лет пытаются понять, что такое Вселенная на самом деле. В последнее время развиваются технологии, исследователи больше узнают об окружающем мире и появляются новые теории о том, как все устроено. Одни из них звучат правдоподобно, а другие — безумно. Сегодня мы расскажем о двух самых странных, но захватывающих, теориях об устройстве Вселенной.

Почему Вселенная такая, какая она есть? На протяжении многих лет ученые исследовали этот вопрос и выдвинули множество идей, которые объясняют, как устроен космос и что его ждет в будущем. Известно, что Вселенная состоит из скоплений галактик. В каждой галактике — десятки и сотни миллиардов звезд с вращающимися вокруг них планетами, а также газо-пылевые облака огромных размеров. Есть еще гипотетическая темная материя и темная энергия, которая отвечает за расширение Вселенной. Однако некоторые ученые считают, что все устроено гораздо сложнее.

Голографическая Вселенная

Согласно теории, которую выдвинули в 1993 году, Вселенная на самом деле — огромная голография. Концепция напоминает платоновскую аллегорию пещеры. Согласно голографическому принципу, вся материя, содержащаяся в некой области пространства, может быть представлена как «голограмма» — информация, которая находится на границе этой области. Впервые принцип предложил нидерландский физик-теоретик Джерард’т Хофт, а американский профессор физики из Стэнфорда Леонард Сасскинд объединил свои идеи с предыдущими идеями Хофта и профессора физики в Университете Флориды Чарльза Торна, предложив теорию струн.

в честь чего названо солнце. Смотреть фото в честь чего названо солнце. Смотреть картинку в честь чего названо солнце. Картинка про в честь чего названо солнце. Фото в честь чего названо солнце

Сам голографический принцип Вселенной родился из обсуждения термодинамики черных дыр — Леонард Сасскинд подробно писал об этом в книге «Война при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики». Идея состоит в том, что вся информация, которая когда-то попала в черную дыру (а ее там должно быть много и, согласно закону сохранения энергии, просто исчезнуть она не может) дублируется на горизонте событий. Когда что-то попадает в черную дыру, оно остается там навсегда и искажается до неузнаваемости. В итоге, вся информация сохраняется в нечитаемом виде.

Это утверждение основано на фундаментальном физическом принципе. Именно благодаря Сасскинду голографический принцип разрешает информационный парадокс черной дыры (во всяком случае в рамках теории струн).

Так появилась идея голографической черной дыры, которая хранит информацию о падающих в нее трехмерных объектах на двухмерный горизонт событий. Потом ученые пошли дальше — они предположили, что вообще любая информация в любом объеме может быть записана на поверхности, ограничивающей этот объем. Если мы говорим об информации из черного ящика, то она записана на стенках черного ящика, если информация о Солнечной системе, то записать ее можно на воображаемой сфере вокруг нее, а данные обо всем, что происходит во Вселенной, записано на ее границе.

в честь чего названо солнце. Смотреть фото в честь чего названо солнце. Смотреть картинку в честь чего названо солнце. Картинка про в честь чего названо солнце. Фото в честь чего названо солнце

Для этого не нужны какие-то определенные границы, ведь это теоретический принцип. Если подытожить, то он гласит, что, вся информация и процессы, которые происходят на участке пространства равна какой-то записи на границе этого объема. Теория голографической Вселенной предполагает, что все, что человек видит, слышит. ощущает и наблюдает, может быть как реальностью, так и «голографической» 3D-проекцией 2D-записей на «стене, которая окружает Вселенную». Здесь очень важны кавычки — голография не похожа на ту, к которой мы привыкли, это лишь схожий принцип. И, конечно, мир не окружен настоящей стеной, она воображаемая, как экватор на глобусе.

Несмотря на то, что эта идея звучит безумно, это научно проверяемая теория. Ученые, которые провели исследование в 2017 году. Международная группа космологов из Канады, Великобритании и Италии получила данные, свидетельствующие в пользу теории голографической Вселенной.

Космологи использовали двумерную модель Вселенной, которая на основе наблюдаемых ранее параметров, смогла в точности воспроизвести картину микроволнового фона — теплового излучения, равномерно заполняющего космическое пространство. Полученные результаты свидетельствуют в пользу применимости голографического принципа, хотя пока и не опровергают стандартные космологические модели.

Вселенная — это сверхтекучая жидкость

Даже если пространство имеет только три измерения, все еще существует четвертое измерение в форме времени. Именно поэтому теоретически можно визуализировать Вселенную, которая существует в четырехмерном пространстве-времени. В 1905 году Эйнштейн в своей теории относительности первым предположил, что пространство и время могут быть связаны между собой. При этом сам термин «пространство-время» придумали лишь три года спустя, его автор — математик Герман Минковский. «Отныне время само по себе и пространство само по себе становятся пустой фикцией, и только единение их сохраняет шанс на реальность» — заявил он на коллоквиуме в 1908 году.

Согласно некоторым теориям, например, предложенной итальянскими физиками Стефано Либерати и Лукой Макчионе, пространство-время — это не просто абстрактная система отсчета, содержащая физические объекты, такие как звезды и галактики. Итальянские ученые считают, что это физическая субстанция сама по себе, аналогичная океану, полному воды. Подобно тому, как вода состоит из бесчисленных молекул, согласно теории, пространство-время — состоит из микроскопических частиц на более глубоком уровне реальности.

в честь чего названо солнце. Смотреть фото в честь чего названо солнце. Смотреть картинку в честь чего названо солнце. Картинка про в честь чего названо солнце. Фото в честь чего названо солнце

Вообще, сама идея о том, что пространство-время ведет себя как жидкость, самая новая — теорию «сверхтекучего вакуума» предложили больше полвека назад. Но итальянские исследователи стали первыми, кто задались вопросом о вязкости такой жидкости. То, как все движется во Вселенной — одна из загадок в физике. Например волна распространяется через воду, используя ее как «среду» для перемещения. Передача энергии требует среды, но как электромагнитные волны и, например, фотоны, движутся в пространстве, где вроде нет ничего?

Либерати и Макчионе предложили решение проблемы — они разработали теорию сверхтекучего космоса. Согласно ей, Вселенная состоит из сверхтекучей жидкости с нулевой вязкостью, которая ведет себя как единое целое. Сверхтекучей можно назвать жидкость, которая может течь бесконечно, при этом не теряя энергию. Это не выдуманная концепция, такие жидкости существуют на самом деле.

Сверхтекучесть — фаза вещества, в которое переходят жидкости или газы, когда остывают до температур вблизи абсолютного нуля. В этом состоянии атомы теряют индивидуальные свойства, и ведут себя, как единый супер-атом. Самая известная сверхтекучая жидкость — это гелий, но лишь охлажденный до 2 K (Кельвинов) или –271,15 ℃.

в честь чего названо солнце. Смотреть фото в честь чего названо солнце. Смотреть картинку в честь чего названо солнце. Картинка про в честь чего названо солнце. Фото в честь чего названо солнце

У сверхтекучих жидкостей есть несколько уникальных свойств. Они могут, например, подняться по стенкам незакрытого сосуда и «сбежать» из него. При этом, их просто невозможно нагреть — они отлично передают тепло. Жидкость со сверхтекучими свойствами просто испарится при нагреве.

Теория визуализирует пространство-время как сверхтекучую жидкость с нулевой вязкостью. Странным свойством таких жидкостей является то, что их нельзя заставить вращаться «оптом», как «работает» обычная жидкость при перемешивании. Они распадаются на крошечные вихри. В 2014 году ученые выяснили, что эти квантовые «торнадо» в ранней Вселенной объясняют возникновение галактик.

Будущее Вселенной

Над созданием таких глобальных и странных теорий работает много ученых — физики, математики, астрономы. Все эти дисциплины объединяет космология. Как науке, космологии всего сто лет, но она уже очень многое знает о том, как устроена наша Вселенная — как образовалось все, что нас окружает, от атомов до галактик, с чего все началось и чем закончится. Разные теории объясняют мир по-своему. Возможно, однажды ученые придут к единому ответу.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *