в чем значение кроссинговера

20. Кроссинговер, его генетическое значение

Кроссинговер (англ. crossing-over — перекрест хромосом) — процесс обмена гомологичных хромосом участками во время их конъюгации в профазе I мейоза. Кроссинговер является одним из механизмов генетической рекомбинации (обмена генами). Частота его зависит от расстояния между генами: чем дальше расположены гены друг от друга, тем чаще между ними идет перекрест. 1% кроссинговера принят за единицу расстояния между генами. Она названа морганидой в честь Т. Моргана, разработавшего принципы генетического картирования. Цитологическим признаком кроссинговера служат хиазмы — χ-образные фигуры бивалентов во время обмена участками. Кроссинговер обычно бывает мейотическим, но иногда происходит в митозе (соматический кроссинговер). Он может также осуществляться внутри гена.

Суть этого процесса заключается в обмене участков гомологичных хромосом. Это происходит путем разрыва и последующего соединения в новом порядке хроматид. Кроссинговер может приводить к рекомбинации больших участков хромосомы с несколькими генами или частей одного гена (так называемый внутригенный кроссинговер), обеих нитей молекулы ДНК или только одной. Кроссинговер происходит во время конъюгации в I фазе мейоза. Кроссинговер может наблюдаться и при митотическом делении, но реже. В случае бесполых организмов митотический кроссинговер является единственным способом генетической рекомбинации. Митотический кроссинговер способен привести к мозаичной экспрессии рецессивных признаков у гетерозиготной особи. Такая экспрессия имеет важное значение в онкогенезе и в изучении летальных рецессивных мутаций.

Явление кроссинговера было открыто Ф. Янссенсом в 1909 году при изучении мейоза клеток саламандры, но теоретически явление кроссинговера предсказывали и раньше. В частности, американский цитолог У. Сэттон в 1903 г. предположил, что в одной хромосоме может находиться несколько генов, и тогда должно наблюдаться сцепленное наследование признаков, т.е. несколько разных признаков могут наследоваться так, как будто они контролируются одним геном. Подобная совокупность генов в одной хромосоме образует группу сцепления. Собственно, изучение кроссинговера и групп сцепления позволило создать карты хромосом. Первая карта хромосом была создана для плодовой мушки дрозофилы.

В зависимости от типа клеток, в которых происходит кроссинговер:

Взависимости от молекулярной гомологии участков хромосом, вступающих в кроссинговер:

В зависимости от количества образованных хиазм и разрывов хромосом с последующих перекомбинацией генов:

Биологическое значение кроссинговера чрезвычайно велико, поскольку генетическая рекомбинация позволяет создавать новые, ранее не существовавшие комбинации генов и тем самым повышать наследственную изменчивость, которая дает широкие возможности адаптации организма в различных условиях среды. Значение кроссинговера:

Человек специально проводит гибридизацию с целью получения необходимых вариантов комбинаций для использования в селекционной работе.

Источник

Кроссинговер

Кроссинговер

в чем значение кроссинговера. Смотреть фото в чем значение кроссинговера. Смотреть картинку в чем значение кроссинговера. Картинка про в чем значение кроссинговера. Фото в чем значение кроссинговера

Кроссинговер — перекрест, взаимный обмен гомо­логичными участками гомологичных хромосом в результа­те разрыва и соединения в новом порядке их нитей — хроматид; приводит к новым комбинациям аллелей разных генов. Важнейший механизм, обеспечивающий комбинативную изменчивость в популяциях и тем самым дающий материал для естественного отбора. Протекает в мейотически, реже — в митотически делящихся клетках. Может приводить к перекомбинации больших|больших участков хромосо­мы с несколькими генами или частей одного гена (внутригенный кроссинговер), обеих нитей молекулы ДНК или только одной. Частота кроссинговера между генами отра­жает расстояние между ними в хромосоме. Иными слова|слова­ми, в паре гомологичных хромосом между несестринскими хроматидами происходит обмен гомологичными участка­ми. Поскольку в паре хромосом одна хромосома происхо­дит от матери, а другая — от отца, процесс кроссинговера ведёт к внутрихромосомным рекомбинациям наследствен­ности. Молекулярный механизм кроссинговера оконча­тельно не выяснен.

Кроссинговер

в чем значение кроссинговера. Смотреть фото в чем значение кроссинговера. Смотреть картинку в чем значение кроссинговера. Картинка про в чем значение кроссинговера. Фото в чем значение кроссинговера

Кроссинговер (crossing-over): обмен генетического материала междухромосомами, как результат «разрыва» и соединения хромосом;процесс обмена участками хромосом при перекресте хромосом (рис. 118, Б4).

Посколькукроссинговер — взаимный обмен гомологичными участками хромосом междугомологичными (парными|парными) хромосомами исходных гаплоидных наборов- особи имеют новые, различающиеся между собой генотипы. При этомдостигается перекомбинация наследственных свойств родителей, чтоувеличивает изменчивость и даёт более богатый материал для естественногоотбора.

Гены перемешиваются благодаря слиянию гамет двух различныхособей|особей, однако генетические изменения осуществляются не только этим путём.Никакие два потомка одних и тех же родителей (если только это не идентичныеблизнецы) не будут абсолютно одинаковыми. Во время мейоза осуществляются два различных видапересортировки генов.

На этой стадии мейозагомологи в каждой паре (или бивалент) остаются связанными друг с другом поменьшей мере одной хиазмой. Во многих бивалентах бывает большее числохиазм, так как возможны множественные перекресты между гомологами

Видео по теме : Кроссинговер

Кроссинговер

в чем значение кроссинговера. Смотреть фото в чем значение кроссинговера. Смотреть картинку в чем значение кроссинговера. Картинка про в чем значение кроссинговера. Фото в чем значение кроссинговера

23.3.1. Кроссинговер и частота рекомбинаций

В 1909 г. бельгийский цитолог Янссенс наблюдал образование хиазм во время профазы I мейоза (см. разд. 22.3). Генетическое значение этого процесса разъяснил Морган, высказавший мнение, что кроссинговер (обмен аллелями) происходит в результате разрыва и рекомбинации гомологичных хромосом во время образования хиазм. В дальнейшем сопоставление цитологических данных с данными о соотношениях рекомбинантных фенотипов подтвердило, что обмен генетическим материалом в мейозе происходит почти буквально между всеми гомологичными хромосомами. Аллели, входящие в группы сцепления у родительских особей|особей, разделяются и образуют новые сочетания, которые попадают|попадают в гаметы,- процесс, называемый генетической рекомбинацией. Потомков, которые получаются из таких гамет с «новыми» сочетаниями аллелей, называют рекомбинантами. Таким образом, кроссинговер представляет собой важный источник генетической изменчивости, наблюдаемой в популяциях.

Для иллюстрации принципа кроссинговера можно рассмотреть поведение пары|пары гомологичных хромосом дрозофилы, несущих аллели серой окраски тела|тела и длинных крыльев (оба аллеля доминантные) и чёрной окраски тела|тела и зачаточных крыльев (оба аллеля рецессивные), во время образования хиазм. Скрещивание между гомозиготным серым длиннокрылым самцом и гомозиготной чёрной самкой с зачаточными крыльями дало в F1 гетерозиготных потомков с серым телом и длинными крыльями (рис. 23.10).

Рис. 23.10. Генетическое объяснение процесса кроссинговера и появления рекомбинантных генотипов. Подсчитав число особей|особей, у которых выявляется рекомбинация (х), и общее|общее число особей|особей (у), можно вычислить частоту рекомбинаций по формуле: Частота рекомбинации (%) =

При возвратном скрещивании мух из поколения F1 с гомозиготными двойными рецессивами были получены следующие результаты:

Как показывают эти результаты, гены, определяющие окраску тела|тела и длину крыльев, сцеплены. (Вспомните, что если бы эти гены находились в разных хромосомах и поэтому распределялись случайным образом, то при дигибридном скрещивании гетерозиготы F1 с гомозиготой по двум рецессив-ным признакам получилось бы соотношение фенотипов 1:1:1:1.) Из приведённых цифр можно вычислить частоту рекомбинации генов, определяющих окраску тела|тела и длину крыльев.

Частота рекомбинаций вычисляется по формуле

В нашем примере частота рекомбинации равна

Это значение соответствует числу рекомбинаций, происходящих при образовании гамет. Один из учеников Моргана, А. X. Стертевант, высказал мысль, что частоты|частоты рекомбинаций свидетельствуют о линейном расположении генов вдоль хромосомы. Ещё более важное предположение Стертеванта состояло в том, что частота рекомбинаций отражает относительное расположение генов в хромосоме: чем дальше друг от друга находятся сцепленные гены, тем больше вероятность того, что между ними произойдёт кроссинговер, т.е. тем выше частота рекомбинантов (рис. 23.11).

Рис. 23.11. А В и С — три генных локуса, расположенных в одной хромосоме. Вероятность кроссинговера и разделения для генов А и С выше, чем для генов В и С или А и В, так как частота кроссинговера зависит от расстояния между генами

23.8. На приведённой ниже схеме изображены локусы двенадцати аллелей, расположенные в паре хромосом. Показаны их относительные расстояния от центромеры.

а) Как называют изображённые здесь хромосомы?

б) Между какими двумя локусами чаще всего будет происходить кроссинговер?

в) Произойдёт ли кроссинговер между генами, определяющими цвет глаз и форму антенн? Обоснуйте свой ответ.

Источник

Кроссинговер, механизмы и эволюционное значение

в чем значение кроссинговера. Смотреть фото в чем значение кроссинговера. Смотреть картинку в чем значение кроссинговера. Картинка про в чем значение кроссинговера. Фото в чем значение кроссинговера

Кроссинговер (от англ. crossing–over – перекрёст) – это обмен гомологичными участками гомологичных хромосом (хроматид).
Механизм кроссинговера «разрыв–воссоединение»
Согласно теории Янссенса–Дарлингтона, кроссинговер происходит в профазе мейоза. Гомологичные хромосомы с гаплотипами хроматид АВ и ab образуют биваленты. В одной из хроматид в первой хромосоме происходит разрыв на участке А–В, тогда в прилежащей хроматиде второй хромосомы происходит разрыв на участке a–b. Клетка стремится исправить повреждение с помощью ферментов репарации–рекомбинации и присоединить фрагменты хроматид. Однако при этом возможно присоединение крест–накрест (кроссинговер), и образуются рекомбинантные гаплотипы (хроматиды) Abи аВ. В анафазе первого деления мейоза происходит расхождение двухроматидных хромосом, а во втором делении – расхождение хроматид (однохроматидных хромосом). Хроматиды, которые не участвовали в кроссинговере, сохраняют исходные сочетания аллелей. Такие хроматиды (однохроматидные хромосомы) называются некроссоверными; с их участием разовьются некроссоверные гаметы, зиготы и особи. Рекомбинантные хроматиды, которые образовались в ходе кроссинговера, несут новые сочетания аллелей. Такие хроматиды (однохроматидные хромосомы) называются кроссоверными, с их участием разовьются кроссоверные гаметы, зиготы и особи.
Таким образом, вследствие кроссинговера происходит рекомбинация – появление новых сочетаний (гаплотипов) наследственных задатков в хромосомах.
Примечание. Согласно другим теориям, кроссинговер связан с репликацией ДНК: или в пахитене мейоза, или в интерфазе (см. ниже). В частности, возможна смена матрицы в вилке репликации.
Интерференция – это подавление кроссинговера на участках, непосредственно прилегающих к точке происшедшего обмена. Рассмотрим пример, описанный в одной из ранних работ Моргана. Он исследовал частоту кроссинговера между генами w (white– белые глаза), у (yellow – желтое тело) и m (miniature – маленькие крылья), локализованными в Х-хромосоме D. melanogaster.Расстояние между генами w и у в процентах кроссинговера составило 1,3, а между генами у и m – 32,6. Если два акта кроссинговера наблюдаются случайно, то ожидаемая частота двойного кроссинговера должна быть равна произведению частот кроссинговера между генами у и w и генами w и m. Другими словами, частота двойных кроссинговеров будет 0,43%. В действительности в опыте был обнаружен лишь один двойной кроссинговер на 2205 мух, т. е. 0,045%. Ученик Моргана Г. Меллер предложил определять интенсивность интерференции количественно, путем деления фактически наблюдаемой частоты двойного кроссинговера на теоретически ожидаемую (при отсутствии интерференции) частоту. Он назвал этот показатель коэффициентом коинциденции, т. е. совпадения. Меллер показал, что в Х-хромосоме дрозофилы интерференция особенно велика на небольших расстояниях; с увеличением интервала между генами интенсивность ее уменьшается и на расстоянии около 40 морганид и более коэффициент коинциденции достигает 1 (максимального своего значения).

Виды кроссинговера:
1.Двойной и множественный кроссинговер
2.Соматический (митотический) кроссинговер
3.Неравный кроссинговер
Эволюционное значение кроссинговера
В результате кроссинговера неблагоприятные аллели, первоначально сцепленные с благоприятными, могут переходить в другую хромосому. Тогда возникают новые гаплотипы, не содержащие неблагоприятных аллелей, и эти неблагоприятные аллели элиминируются из популяции.
Биологическое значение кроссинговера
Благодаря сцепленному наследованию удачные сочетания аллелей оказываются относительно устойчивыми. В результате образуются группы генов, каждая из которых функционирует как единый суперген, контролирующий несколько признаков. В то же время, в ходе кроссинговера возникают рекомбинации – т.е. новые комбинации аллелей. Таким образом, кроссинговер повышает комбинативную изменчивость организмов.
Это означает, что…
а) в ходе естественного отбора в одних хромосомах происходит накопление «полезных» аллелей (и носители таких хромосом получают преимущество в борьбе за существование), а в других хромосомах скапливаются нежелательные аллели (и носители таких хромосом выбывают из игры – элиминируются из популяций)
б) в ходе искусственного отбора в одних хромосомах накапливаются аллели хозяйственно-ценных признаков (и носители таких хромосом сохраняются селекционером), а в других хромосомах скапливаются нежелательные аллели (и носители таких хромосом выбраковываются).

Источник

Суть хромосомной теории наследования: основные положения, кроссинговер и сцепленное наследование

Суть хромосомной теории наследования

Кроссинговер и сцепленное наследование

Биологическую роль хромосом сложно не заметить. Правила стабильности числа, парности, индивидуальности, сложное поведение мейоза и митоза укрепили биологов во мнении, что хромосомы значимы и напрямую связаны, в частности, с передачей наследственных признаков.

Если гены, определяющие комбинированные признаки, находятся в разных парах гомологических хромосом, то происходит независимое комбинирование признаков. Поэтому любой организм имеет количество генов, ограниченное числом пар хромосом, которые могут независимо комбинироваться в мейозе.

К примеру, у кукурузы насчитывается больше 500 генов, у мухи дрозофилы — свыше 1000. У человека больше 30 тысяч генов, при том, что хромосом — 10, 4 и 23 пары.

Это говорит о том, что каждая хромосома содержит огромное количество генов.

Находящиеся в одной хромосоме и образующие группу сцепления гены наследуются вместе.

Сцепленное наследование — это общее наследование генов по Томасу Хант Моргану.

Из этого положения следует, что специфика гаплоидного набора хромосом определяет количество групп сцепления.

Сцепление не всегда бывает абсолютным — к этому заключению пришел Томас Хант Морган в своих дальнейших исследованиях. Он проводил эксперименты на плодовых мушках дрозофилах и выяснил, что полное сцепление случается только в 83% случаев: у одной половины потомства были длинные крылья и серое тело (41,5%), у другой — короткие крылья и черное тело (признаки только родительских форм). 17% случаев связаны с перекомбинацией признаков: 8,5% имело короткие крылья и серое тело, а другие 8,5% — длинные крылья и черное тело.

Причина нарушения сцепления генов — в кроссинговере.

Что такое кроссинговер?

Кроссинговер — это перекрест хромосом, который происходит в профазе I мейоза.

Чем больше расстояние между генами в хромосомах, тем выше вероятность перекреста и больше количество гамет, образованных в результате перекомбинации генов. Частота кроссинговера пропорциональна расстоянию, на котором находятся гены друг от друга. Основное биологическое значение кроссинговера — в увеличении комбинативной изменчивости, которая дает материал для естественного отбора.

Если говорить о количестве, то расстояние между генами коррелирует с частотой, с которой появляются кроссинговерные организмы. В примере выше этот показатель равен 17%. Это расстояние описывает силу сцепления и обозначается процентами рекомбинации кроссинговера или морганидами.

Один процент кроссинговера = одна морганида.

У одних генов наблюдается высокий процент сцепления, а у других — почти не выявляется. При этом в варианте сцепленного наследования максимальная величина кроссенговера — не больше 50%. Если этот показатель будет выше, то пары аллелей смогут беспрепятственно комбинироваться — в таком случае кросенговер невозможно будет отличить от независимого наследования.

Процент кроссинговера учитывается при составлении генетических карт хромосом, с нанесенным на них относительным расстоянием между генами.

Биологическое значение кроссинговера сложно переоценить. Благодаря генетической рекомбинации создаются условия для образования новых комбинаций генов и обеспечивается более высокая жизнеспособность организмов в ходе эволюции.

Основные положения хромосомной теории наследования

Впервые наблюдение хромосом в гаметах и зиготах стало возможно в конце 19 века, когда появились усовершенствованные микроскопы и цитологические методы. Важную роль ядра в регулировании развития признаков организма показал в 1902 году ученый Бовери. Еще ранее, в 1882 году, ученый Флемминг описал поведение хромосом во время митоза. А в 1900 году повторно были открыты законы Менделя. Независимо друг от друга, их оценили трое ученых: Фриз, Корренс и Чермак.

Американский цитолог У. Сеттон и немецкий эмбриолог Т. Бовери, взяв за основу описанные выше данные, предположили, что хромосомы — носители наследственной информации. Так была сформулирована хромосомная теория наследственности.

Согласно этой теории, каждая пара генов находится в паре гомологических хромосом, при этом, каждая хромосома является носителем одного гена. Поскольку у каждого организма признаков намного больше, чем хромосом, то в каждой хромосоме должно находиться большое количество генов.

Автором хромосомной теории наследования признан американский генетик Томас Хант Морган, который обнаружил линейный порядок расположения генов в хромосоме.

Описанные им закономерности, которые подтвердились и углубились позже на различных объектах, получили название хромосомной теории наследования.

Вот главные положения этой теории:

Источник

Кросинговер, его причины и биологическое значение

в чем значение кроссинговера. Смотреть фото в чем значение кроссинговера. Смотреть картинку в чем значение кроссинговера. Картинка про в чем значение кроссинговера. Фото в чем значение кроссинговера в чем значение кроссинговера. Смотреть фото в чем значение кроссинговера. Смотреть картинку в чем значение кроссинговера. Картинка про в чем значение кроссинговера. Фото в чем значение кроссинговера в чем значение кроссинговера. Смотреть фото в чем значение кроссинговера. Смотреть картинку в чем значение кроссинговера. Картинка про в чем значение кроссинговера. Фото в чем значение кроссинговера в чем значение кроссинговера. Смотреть фото в чем значение кроссинговера. Смотреть картинку в чем значение кроссинговера. Картинка про в чем значение кроссинговера. Фото в чем значение кроссинговера

в чем значение кроссинговера. Смотреть фото в чем значение кроссинговера. Смотреть картинку в чем значение кроссинговера. Картинка про в чем значение кроссинговера. Фото в чем значение кроссинговера

в чем значение кроссинговера. Смотреть фото в чем значение кроссинговера. Смотреть картинку в чем значение кроссинговера. Картинка про в чем значение кроссинговера. Фото в чем значение кроссинговера

Происходит кроссинговер в профазе I мейоза и после конъюгации приводит к перераспределению генов в хромосомах. Это явление носит случайный характер и может происходить в любом участке гомологичных хромосом. Исследование кроссинговера, проведенные на разных организмах, выявили следующие закономерности:

■ сила сцепления между двумя генами, расположенными в одной хромосоме, обратно пропорциональна расстоянию между ними, следовательно, чем это расстояние больше, тем чаще происходит кроссинговер;

■ частота кроссинговера зависит от расстояния между генами и выражается в процентах;

■ частота кроссинговера между двумя генами, расположенными в одной хромосоме, является величиной постоянной для каждой конкретной пары генов;

■ величина кроссинговера измеряется отношением количества кроссоверных особей к общему количеству особей в потомстве от анализирующего скрещивания.

Хотя частота кроссинговера является величиной постоянной, на нее могут влиять некоторые факторы внешней и внутренней среды: изменения в строении отдельных хромосом, температура, рентгеновские лучи, некоторые химические соединения и др.. У некоторых организмов обнаружена зависимость частоты кроссинговера от возраста (например, у дрозофил) или пола (например, у мышей).

3. Генетические карты хромосом

Генетические карты — это графическое изображение хромосом с указанным порядком расположения генов и расстояния между ними.

1 морганида, равна/ % кроссинговера. Например, расстояние между генами серой окраски тела и длинных крыльев (также черной окраски тела и зачаточных крыльев) у дрозофилы равно 17%, или 17 морганидам.

Рассчитывают расстояние между генами по формуле:

LAB = в чем значение кроссинговера. Смотреть фото в чем значение кроссинговера. Смотреть картинку в чем значение кроссинговера. Картинка про в чем значение кроссинговера. Фото в чем значение кроссинговера

Генетические карты имеют значение для проведения селекционной работы, диагностики тяжелых наследственных болезней человека и др. Знания о локализации гена в определенной хромосоме используются при диагностике ряда тяжелых наследственных заболеваний человека. Уже теперь появилась возможность для генной терапии, то есть для исправления структуры или функции генов.

Сравнение генетических карт разных видов живых организмов способствует также пониманию эволюционного процесса

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *