в чем заключается закон соответствия условий среды
В чем заключается закон соответствия условий среды
Принципы структурного построения и управления однородных природных систем в их иерархическом соподчинении повторяются с некоторой периодичностью в зависимости от действия единого системообразующего фактора (заряд ядра в периодическом законе Д. И. Менделеева, генетическая структура в законе гомологических рядов Н. Н. Вавилова и др.).
Закон физико-химического единства живого вещества (В. И. Вернадский) Наверх
Все живое вещество Земли физико-химически едино.
Закон константности количества живого вещества биосферы (В. И. Вернадский) Наверх
Количество живого вещества биосферы (для данного геологического периода) есть константа. Суммарная масса всех живых компонентов биосферы Земли относительно постоянна в любой из геологических периодов развития планеты.
Закон обязательности заполнения экологических ниш Наверх
Функциональные места в экологических системах обязательно должны быть заполнены.
Закон конкурентного исключения (Г. Ф. Гаузе) Наверх
Два вида не могут существовать в одной экологической нише, если их потребности идентичны. Если экологическая ниша освобождается, ее заполняют экологически близкие формы.Подробнее..
Закон генетического разнообразия Наверх
Все живое генетически различно и имеет тенденцию к увеличению биологического разнообразия. Двух генетически абсолютных особей, а тем более видов живого в природе быть не может.
Закон хиральной чистоты (Л. Пастер) Наверх
Живое вещество состоит из хирально чистых структур, т.е. несовместимых со своим зеркальным изображением. В неживой природе химические реакции приводят к хиральной симметрии – «левых» и «правых» молекул образуется поровну.
Закон незаменимости биосферы Наверх
Биосферу нельзя заменить искусственной средой.
Закон корреляции (Ж. Кювье) Наверх
В организме, как целостной системе, все его части соответствуют друг другу как по строению, так и по функциям. Изменение одной части организма или отдельной функции неизбежно влечет за собой изменение других частей и функций.
Закон ограниченности природных ресурсов Наверх
Все природные ресурсы (и условия) Земли конечны. «Неисчерпаемые» природные ресурсы являются неисчерпаемыми только относительно наших потребностей и сроков существования.
Закон эмерджентности Наверх
Система обладает особыми свойствами, не присущими ее отдельным элементам.Подробнее.
Периодический закон географической зональности (А. А. Григорьев –Н. Н. Будыко) Наверх
Со сменой физико-географических поясов Земли аналогичные ландшафтные зоны и их некоторые общие свойства периодически повторяются (например: леса-степи-пустыни).
Закон развития (существования) природной системы за счет окружающей ее среды Наверх
Любая природная система может развиваться (и существовать), только используя материально-энергетические и информационные возможности окружающей ее среды. Изолированное саморазвитие системы невозможно. Следствия закона: а) безотходное производство принципиально недостижимо; б) высокоорганизованная система представляет потенциальную угрозу для низкоорганизованной; в) биосфера Земли развивается не только за счет внутренних ресурсов планеты, но и под воздействием космических систем (прежде всего Солнечной).
Закон соответствия условий среды генетической предопределенности организма Наверх
Вид организма может существовать до тех пор, пока окружающая его природная среда соответствует генетическим возможностям приспособления этого вида к ее колебаниям и изменениям.
Закон толерантности (В. Шелфорд) Наверх
Лимитирующим фактом жизни организма (вида) может быть как минимум, так и максимум экологического воздействия, диапазон между которыми определяет величину выносливости, толерантности организма к данному фактору.Подробнее..
Закон минимума (Ю. Либих) Наверх
Выносливость организма определяется самым слабым звеном в цепи его экологических потребностей, то есть лимитирует жизненные возможности тот экологический фактор, количество которого близко к минимуму и дальнейшее его снижение ведет к гибели организма или деструкции экосистемы. Подробнее..
Закон обеднения разнородного живого вещества в островных сгущениях (Г. Ф. Хильми) Наверх
Система, работающая в среде с уровнем организации более низким, чем уровень самой системы, обречена: постепенно теряя свою структуру, система через некоторое время растворится в окружающей среде.
Закон пирамиды энергий (Р. Линдеман) Наверх
Переход с одного трофического уровня экологической пирамиды в среднем десяти процентов (от 7 до 17) энергии не ведет к неблагоприятным для экосистемы последствиям.
Закон биогенной миграции атомов (В. И. Вернадский) Наверх
Миграция химических элементов в биосфере осуществляется при непосредственном участии живого вещества (биогенная миграция) или в среде, геохимические особенности которой обусловлены деятельностью живого вещества.
Закон внутреннего динамического равновесия Наверх
Вещество, энергия, информация и динамические качества отдельных природных систем и их иерархии взаимосвязаны настолько, что любое изменение одного из этих показателей вызывает сопутствующие функционально-структурные количественные и качественные перемены при сохранении общей суммы вещественно-энергетических, информационных и динамических качеств системы, где эти изменения происходят.
Закон единства «организм-среда» Наверх
Жизнь развивается в результате постоянного обмена веществом и информацией на базе потока энергии в совокупном единстве среды и населяющих ее организмов.
Закон максимизации энергии (Г. и Э. Одум) и информации (Н. Ф. Реймерс) Наверх
Наилучшими шансами на выживание обладает система, в наибольшей степени способствующая поступлению, выработке и эффективному использованию энергии и информации; максимальное поступление вещества не гарантирует системе успеха в конкурентной борьбе.
Закон растущего плодородия Наверх
Агротехнические и другие прогрессивные приемы ведения сельского хозяйства ведут к увеличению урожайности (само плодородие как свойство почв не увеличивается).
Закон однонаправленности потока энергии (Р. Линдеман) Наверх
С одного трофического уровня экологической пирамиды переходит на другой более высокий уровень в среднем около 10 % энергии, а обратный поток составляет не более 0,25 %.
Закон оптимальности Наверх
Никакая система не может сужаться и расширяться до бесконечности; размер любой системы должен соответствовать ее функциям.
Закон сукцессионного замедления Наверх
Процессы, идущие в зрелых равновесных экосистемах, находящихся в устойчивом состоянии, как правило, проявляют тенденцию к снижению темпов.
Закон направленности эволюции (минимума диссипации энергии) Наверх
При возможности развития процесса в нескольких направлениях, допускаемых принципами термодинамики, реализуется то, которое обеспечивает минимум диссипации энергии (минимум роста энтропии). Эволюция всегда направлена на уменьшение потерь энергии.
Закон увеличения веса и роста организмов в филогенетической ветви (Коп и Денер) Наверх
В ходе геологического времени выживающие формы увеличивают свои размеры и вес и затем вымирают.
Закон необратимости эволюции (Л. Долло) Наверх
Организм (популяция, вид) не может вернуться к прежнему состоянию, уже существовавщему в ряду его предков (это относится и к экосистемам).
Системогенетический закон Наверх
Большинство природных систем (в том числе особи, сообщества, экосистемы) в индивидуальном развитии повторяют в сокращенной форме эволюционный путь развития своей системной структуры.
Биогенетический закон (Э. Геккель и Ф. Мюллер) Наверх
Каждая особь на ранних стадиях онтогенеза повторят некоторые основные черты строения своих предков, иначе говоря, онтогенез (индивидуальное развитие) есть краткое повторение филогенеза (эволюционного развития).
Закон давления среды жизни, или ограниченного роста (Ч. Дарвин) Наверх
Имеются ограничения, препятствующие тому, чтобы потомство одной пары особей, размножаясь в геометрической прогрессии, заполнило весь земной шар.
Закон максимума биогенной энергии (В. И. Вернадский – Э. С. Бауэр) Наверх
Любая биологическая или биокосная система, находясь в состоянии динамического равновесия с окружающей средой и эволюционно развиваясь, увеличивает свое воздействие на среду, если этому не препятствуют внешние факторы.
Закон снижения природоемкости готовой продукции Наверх
Удельное содержание при родного вещества в усредненной единице общественного продукта исторически неуклонно снижается (объясняется это миниатюризацией изделий, заменой естественных материалов и продуктов синтетическими, сменой вещественных отношений информационными).
Закон неограниченности прогресса Наверх
Развитие от простого к сложному неограниченно. При этом живая материя стремится к относительной независимости от условий среды существования.
Закон неравномерности развития систем, или закон разновременности развития подсистем Наверх
Системы одного уровня иерархии обычно развиваются не строго синхронно: в то время как одни из них достигли более высокого уровня развития, другие еще остаются в менее развитом состоянии.
Закон относительной независимости адаптации Наверх
Высокая адаптивность к одному из экологических факторов не дает такой же степени приспособления к другим условиям жизни ( наоборот, она может ограничивать эти возможности в силу физиолого-морфологических особенностей организма).
Закон снижения энергетической эффективности природопользования Наверх
С ходом исторического времени при получении из природных систем полезной продукции на ее единицу в среднем затрачивается все больше энергии (расходы на одного человека в каменном веке был 4 тыс. ккал/сут, в индустриальную эпоху – 70 тыс. ккал/сут, в развитых странах настоящего времени – 250 тыс. ккал/сут).
Закон ускорения эволюции Наверх
С ростом сложности организации продолжительность существования вида в среднем сокращается, а темпы эволюции возрастают.
Закон усложнения организации организмов (К. Ф. Рулье) Наверх
Историческое развитие живых организмов (природных систем) приводит к усложнению их организации путем дифференциации функций и органов (подсистем), выполняющих эти функции.
В чем заключается закон соответствия условий среды
. души.
. и тела
СЕРТИФИКАТЫ
Законы экологии
Структурные законы
Функциональные законы
Эволюционно-исторические законы
Системопериодический закон в начало
Принципы структурного построения и управления однородных природных систем в их иерархическом соподчинении повторяются с некоторой периодичностью в зависимости от действия единого системообразующего фактора (заряд ядра в периодическом законе Д. И. Менделеева, генетическая структура в законе гомологических рядов Н. Н. Вавилова и др.).
Закон физико-химического единства живого вещества (В. И. Вернадский) в начало
Все живое вещество Земли физико-химически едино.
Закон константности количества живого вещества биосферы (В. И. Вернадский) в начало
Количество живого вещества биосферы (для данного геологического периода) есть константа. Суммарная масса всех живых компонентов биосферы Земли относительно постоянна в любой из геологических периодов развития планеты.
Закон обязательности заполнения экологических ниш в начало
Функциональные места в экологических системах обязательно должны быть заполнены.
Закон конкурентного исключения (Г. Ф. Гаузе) в начало
Закон генетического разнообразия в начало
Все живое генетически различно и имеет тенденцию к увеличению биологического разнообразия. Двух генетически абсолютных особей, а тем более видов живого в природе быть не может.
Закон хиральной чистоты (Л. Пастер) в начало
Живое вещество состоит из хирально чистых структур, т.е. несовместимых со своим зеркальным изображением. В неживой природе химические реакции приводят к хиральной симметрии – «левых» и «правых» молекул образуется поровну.
Закон незаменимости биосферы в начало
Биосферу нельзя заменить искусственной средой.
Закон корреляции (Ж. Кювье) в начало
В организме, как целостной системе, все его части соответствуют друг другу как по строению, так и по функциям. Изменение одной части организма или отдельной функции неизбежно влечет за собой изменение других частей и функций.
Закон ограниченности природных ресурсов в начало
Все природные ресурсы (и условия) Земли конечны. «Неисчерпаемые» природные ресурсы являются неисчерпаемыми только относительно наших потребностей и сроков существования.
Закон эмерджентности в начало
Система обладает особыми свойствами, не присущими ее отдельным элементам.
Важное следствие иерархической организации состоит в том, что по мере объединения компонентов, или подмножеств, в более крупные функциональные единицы, у этих новых единиц возникают новые свойства, отсутствующие на предыдущем уровне. Такие качественно новые, эмерджентные, свойства экологического уровня или экологической единицы нельзя предсказать, исходя из свойств компонентов, составляющих этот уровень или единицу.Рассматриваемый принцип можно выразить иным способом, исходя из понятия о несводимых свойствах, суть которого заключается в том, что свойства целого невозможно свести к сумме свойств его частей. Хотя данные, полученные при изучении какого-либо уровня, помогают при изучении следующего, с их помощью никогда нельзя полностью объяснить явления, происходящие на этом следующем уровне; он должен быть изучен непосредственно.
Периодический закон географической зональности (А. А. Григорьев –Н. Н. Будыко) в начало
Со сменой физико-географических поясов Земли аналогичные ландшафтные зоны и их некоторые общие свойства периодически повторяются (например: леса-степи-пустыни).
Закон развития (существования) природной системы за счет окружающей ее среды в начало
Любая природная система может развиваться (и существовать), только используя материально-энергетические и информационные возможности окружающей ее среды. Изолированное саморазвитие системы невозможно. Следствия закона: а) безотходное производство принципиально недостижимо; б) высокоорганизованная система представляет потенциальную угрозу для низкоорганизованной; в) биосфера Земли развивается не только за счет внутренних ресурсов планеты, но и под воздействием космических систем (прежде всего Солнечной).
Закон соответствия условий среды генетической предопределенности организма в начало
Вид организма может существовать до тех пор, пока окружающая его природная среда соответствует генетическим возможностям приспособления этого вида к ее колебаниям и изменениям.
Закон толерантности (В. Шелфорд) в начало
Закон минимума (Ю. Либих) в начало
Выносливость организма определяется самым слабым звеном в цепи его экологических потребностей, то есть лимитирует жизненные возможности тот экологический фактор, количество которого близко к минимуму и дальнейшее его снижение ведет к гибели организма или деструкции экосистемы.
Существование и успех любого организма или любой группы организмов зависит от комплекса определенных условий. Любое условие, приближающее к пределу толерантности или превышающее его, называется лимитирующим условием, или лимитирующим фактором. При стационарном состоянии лимитирующим будет то жизненно важное вещество, доступные количества которого наиболее близки к необходимому минимуму. Эта концепция известна ка «закон минимума» Либиха. Она менее применима к «переходным состояниям», когда количества, а следовательно, и эффект многих составляющих быстро изменяются.
Второй важный вспомогательный принцип касается взаимодействия факторов. Так, высокая концентрация или доступность одного вещества или действие другого (не минимального) фактора может изменять скорость потребления элемента питания, содержащегося в минимальном количестве. Иногда организм способен заменять, хотя бы частично, дефицитный элемент другим, химически близким. Так, в местах, где много стронция, в раковинах моллюсков кальций до некоторой степени заменяется стронцием. Показано, что некоторым растениям нужно меньше цинка, если они растут не на ярком солнечном свету, а в тени; таким образом, концентрация цинка в почве с меньшей вероятностью может быть лимитирующей для растений в тени, чем на свету.
Закон обеднения разнородного живого вещества в островных сгущениях (Г. Ф. Хильми) в начало
Система, работающая в среде с уровнем организации более низким, чем уровень самой системы, обречена: постепенно теряя свою структуру, система через некоторое время растворится в окружающей среде.
Закон пирамиды энергий (Р. Линдеман) в начало
Переход с одного трофического уровня экологической пирамиды в среднем десяти процентов (от 7 до 17) энергии не ведет к неблагоприятным для экосистемы последствиям.
Закон биогенной миграции атомов (В. И. Вернадский) в начало
Миграция химических элементов в биосфере осуществляется при непосредственном участии живого вещества (биогенная миграция) или в среде, геохимические особенности которой обусловлены деятельностью живого вещества.
Закон внутреннего динамического равновесия в начало
Вещество, энергия, информация и динамические качества отдельных природных систем и их иерархии взаимосвязаны настолько, что любое изменение одного из этих показателей вызывает сопутствующие функционально-структурные количественные и качественные перемены при сохранении общей суммы вещественно-энергетических, информационных и динамических качеств системы, где эти изменения происходят.
Закон единства «организм-среда» в начало
Жизнь развивается в результате постоянного обмена веществом и информацией на базе потока энергии в совокупном единстве среды и населяющих ее организмов.
Закон максимизации энергии (Г. и Э. Одум) и информации (Н. Ф. Реймерс) в начало
Наилучшими шансами на выживание обладает система, в наибольшей степени способствующая поступлению, выработке и эффективному использованию энергии и информации; максимальное поступление вещества не гарантирует системе успеха в конкурентной борьбе.
Закон растущего плодородия в начало
Агротехнические и другие прогрессивные приемы ведения сельского хозяйства ведут к увеличению урожайности (само плодородие как свойство почв не увеличивается).
Закон однонаправленности потока энергии (Р. Линдеман) в начало
С одного трофического уровня экологической пирамиды переходит на другой более высокий уровень в среднем около 10 % энергии, а обратный поток составляет не более 0,25 %.
Закон оптимальности в начало
Никакая система не может сужаться и расширяться до бесконечности; размер любой системы должен соответствовать ее функциям.
Закон сукцессионного замедления в начало
Процессы, идущие в зрелых равновесных экосистемах, находящихся в устойчивом состоянии, как правило, проявляют тенденцию к снижению темпов.
Закон направленности эволюции (минимума диссипации энергии) в начало
При возможности развития процесса в нескольких направлениях, допускаемых принципами термодинамики, реализуется то, которое обеспечивает минимум диссипации энергии (минимум роста энтропии). Эволюция всегда направлена на уменьшение потерь энергии.
Закон увеличения веса и роста организмов в филогенетической ветви (Коп и Денер) в начало
В ходе геологического времени выживающие формы увеличивают свои размеры и вес и затем вымирают.
Закон необратимости эволюции (Л. Долло) в начало
Организм (популяция, вид) не может вернуться к прежнему состоянию, уже существовавщему в ряду его предков (это относится и к экосистемам).
Системогенетический закон в начало
Большинство природных систем (в том числе особи, сообщества, экосистемы) в индивидуальном развитии повторяют в сокращенной форме эволюционный путь развития своей системной структуры.
Биогенетический закон (Э. Геккель и Ф. Мюллер) в начало
Каждая особь на ранних стадиях онтогенеза повторят некоторые основные черты строения своих предков, иначе говоря, онтогенез (индивидуальное развитие) есть краткое повторение филогенеза (эволюционного развития).
Закон давления среды жизни, или ограниченного роста (Ч. Дарвин) в начало
Имеются ограничения, препятствующие тому, чтобы потомство одной пары особей, размножаясь в геометрической прогрессии, заполнило весь земной шар.
Закон максимума биогенной энергии (В. И. Вернадский – Э. С. Бауэр) в начало
Любая биологическая или биокосная система, находясь в состоянии динамического равновесия с окружающей средой и эволюционно развиваясь, увеличивает свое воздействие на среду, если этому не препятствуют внешние факторы.
Закон снижения природоемкости готовой продукции в начало
Удельное содержание при родного вещества в усредненной единице общественного продукта исторически неуклонно снижается (объясняется это миниатюризацией изделий, заменой естественных материалов и продуктов синтетическими, сменой вещественных отношений информационными).
Закон неограниченности прогресса в начало
Развитие от простого к сложному неограниченно. При этом живая материя стремится к относительной независимости от условий среды существования.
Закон неравномерности развития систем, или закон разновременности развития подсистем в начало
Системы одного уровня иерархии обычно развиваются не строго синхронно: в то время как одни из них достигли более высокого уровня развития, другие еще остаются в менее развитом состоянии.
Закон относительной независимости адаптации в начало
Высокая адаптивность к одному из экологических факторов не дает такой же степени приспособления к другим условиям жизни ( наоборот, она может ограничивать эти возможности в силу физиолого-морфологических особенностей организма).
Закон снижения энергетической эффективности природопользования в начало
С ходом исторического времени при получении из природных систем полезной продукции на ее единицу в среднем затрачивается все больше энергии (расходы на одного человека в каменном веке был 4 тыс. ккал/сут, в индустриальную эпоху – 70 тыс. ккал/сут, в развитых странах настоящего времени – 250 тыс. ккал/сут).
Закон ускорения эволюции в начало
С ростом сложности организации продолжительность существования вида в среднем сокращается, а темпы эволюции возрастают.
Закон усложнения организации организмов (К. Ф. Рулье) в начало
Историческое развитие живых организмов (природных систем) приводит к усложнению их организации путем дифференциации функций и органов (подсистем), выполняющих эти функции.
Раздел 1. Общая экология и ее основные категории
И.Ф. Рассашко, О.В. Ковалева, А.В. Крук
Общая экология
Тексты лекций для студентов специальности 1-33 01 02 «Геоэкология». – Гомель: ГГУ им. Ф. Скорины, 2010. – 252 с.
Раздел 1. Общая экология и ее основные категории
Лекция 4. Основные экологические законы, правила и закономерности
4.1. Общие экологические законы
В данной лекции рассмотрены законы и принципы, не указанные в лекции 2.
Закон физико-химического единства существа (общебиосферный закон) (В. И. Вернадский): все живое вещество планеты Земля физико-химически едино. Этот закон – естественное следствие положения о материальном единстве живого и неживого вещества. Из закона физико-химического единства живого вещества вытекают два важнейших для разумного природопользования вывода.
Первый: вредное для одних видов живых организмов (существ) обязательно вредно и для других видов. Отсюда, если пестициды смертельны для одних организмов, то они не могут не оказывать вредного влияния на другие организмы. Различие состоит только в степени устойчивости видов к вредному агенту.
Второй: живое вещество имеет сложную внутреннюю взаимосвязь, для каждого геологического периода как бы единую сеть жизни, в состав которой входит и биовид человека. Разрывы этой «сети» создают в ней «дыры», что снижает устойчивость биосферы. Поэтому сохранение видового разнообразия – гарант поддержания устойчивости биосферы.
Закон константности (сформулированный В. Вернадским): количество живого вещества биосферы (за определенное геологическое время) есть величина постоянная. Этот закон тесно связан с законом внутреннего динамического равновесия. По закону константности любое изменение количества живого вещества в одном из регионов биосферы неминуемо приводит к такой же по объему изменения вещества в другом регионе, только с обратным знаком. Следствием этого закона является правило обязательного заполнения экологических ниш.
Правило обязательности заполнения экологических ниш. Пустующая экологическая ниша всегда бывает естественно заполнена, но иногда для этого требуется значительное время. Экологическая ниша – совокупность всех факторов среды, в пределах которых возможно существование вида в природе. Пример правила – возникновение новых заболеваний, например, типа СПИДа. СПИД был гипотетически предсказан учеными за 10 лет до выявления болезни как гриппоподобный вирус с высокой летальностью заболевших. Основанием для предсказания послужило то, что победа над многими инфекционными болезнями человека высвободила экологические ниши, которые неминуемо должны быть заполнены. Только заполняются они вирусами, подверженными более значительной степенью изменчивости. Еще пример – в бамбучниках о. Сахалин нет мелких хищников, и их экологическую нишу заполнили серые крысы, приобретшие повадки хищников.
Закон внутреннего динамического равновесия (В. И. Вернадский). Вещество, энергия, информация и динамические качества отдельных естественных систем и их иерархии очень тесно связанны между собой, так что любое изменение одного из показателей неминуемое приводит к функционально-структурным изменениям других, но при этом сохраняются общие качества системы – энергетические, информационные и динамические. Следствия действия этого закона обнаруживаются в том, что после любых изменений элементов естественной среды (вещественного состава, энергии, информации, скорости естественных процессов и т. п.) обязательно развиваются цепные реакции, которые стараются нейтрализовать эти изменения. Следует отметить, что незначительное изменение одного показателя может послужить причиной сильных отклонений в других и во всей экосистеме.
Изменения в больших экосистемах могут иметь необратимый характер, а любые локальные преобразования природы вызовут в биосфере планеты (то есть в глобальном масштабе) и в ее наибольших подразделах реакции ответа, которые предопределяют относительную неизменность эколого-экономического потенциала. Искусственное возрастание эколого-экономического потенциала ограниченно термодинамической стойкостью естественных систем.
Закон внутреннего динамического равновесия – один из главнейших в природопользовании. Он помогает понять, что в случае незначительных вмешательств в естественную среду ее экосистемы превышают определенные границы (которые человеку следует хорошо знать) и уже не могут «угаснуть» в цепи иерархии экосистем (охватывают целые речные системы, ландшафты), они приводят к значительным нарушениям энерго- и биобаланса на значительных территориях и во всей биосфере.
Закон биогенной миграции атомов (или закон В. И. Вернадского). Миграция химических элементов на земной поверхности и в биосфере в целом осуществляется под превосходящим влиянием живого вещества, организмов. Так происходило и в геологическом прошлом, миллионы лет назад, так происходит и в современных условиях. Живое вещество или принимает участие в биохимических процессах непосредственно, или создает соответствующую, обогащенную кислородом, углекислым газом, водородом, азотом, фосфором и другими веществами, среду. Этот закон имеет важное практическое и теоретическое значение. В наше время люди влияют на состояние биосферы, изменяя ее физический и химический состав, условия сбалансированной веками биогенной миграции атомов. В будущем это послужит причиной очень отрицательных изменений, которые приобретают способность саморазвиваться и становятся глобальными, неуправляемыми (опустынивание, деградация грунта, вымирание тысяч видов организмов). С помощью этого закона можно сознательно и активно предотвращать развитие таких отрицательных явлений, руководить биогеохимическими процессами, используя «мягкие» экологические методы.
Закон незаменимости биосферы. Биосфера – это единственная система, обеспечивающая устойчивость среды обитания при любых возникающих возмущениях. Нет никаких оснований надеяться на построение искусственных сообществ, обеспечивающих стабилизацию окружающей среды в той же степени, что и естественные сообщества.
Закон развития экосистемы за счет окружающей среды. Любая естественная система развивается лишь за счет использования материально-энергетических и информационных возможностей окружающей среды. Абсолютно изолированное саморазвитие невозможно – это вывод из законов термодинамики.
Очень важными являются следствия закона:
1 Абсолютно безотходное производство невозможно.
2 Любая более высокоорганизованная биотическая система в своем развитии есть потенциальная угроза для менее организованных систем. Поэтому в биосфере Земли невозможно повторное зарождение жизни – оно будет уничтожено уже существующими организмами.
3 Биосфера Земли, как система, развивается за счет внутренних и космических ресурсов.
Закон 10%, пирамиды энергий (закон Линдемана). С одного трофического уровня экологической пирамиды переходит на другой ее уровень в среднем не более 10% энергии.
Закон ограниченности природных ресурсов. Планета Земля конечна, поэтому все ее составные части также конечны. Термин неисчерпаемых природных ресурсов ошибочен. Даже солнечную энергию нельзя называть неисчерпаемым источником, т. к. ограничения накладываются самой энергетикой биосферы в соответствии с правилом одного процента.
Закон обеднения разнородного вещества в островных его сгущениях (закон Г. Ф. Хильми). Индивидуальная система, работающая в среде с уровнем организации, более низким, чем уровень самой системы, обречена на деградацию, так как, постепенно теряя свою структуру, система через некоторое время растворяется в окружающей среде. Из закона следует, что любые сложные биотические сообщества, сохраненные на незначительных пространствах, обречены на постоянную деградацию.
Закон уменьшения энергоотдачи в природопользовании. В процессе получения из естественных систем полезной продукции с течением времени (в историческом аспекте) на ее изготовление в среднем расходуется все больше энергии (возрастают энергетические затраты на одного человека). Так, ныне затраты энергии на одного человека за сутки почти в 60 раз большие, чем во времена наших далеких предков (несколько тысяч лет тому). Увеличение энергетических затрат не может происходить бесконечно, его можно и следует рассчитывать, планируя свои отношения с природой с целью их гармонизации.
Закон экологической корреляции. В экосистеме, как и в любой другой системе, все виды живого вещества и абиотические экологические компоненты функционально отвечают один другому. Выпадение одной части системы (вида) неминуемо приводит к выключению связанных с ею других частей экосистемы и функциональных изменений.