в чем заключается явление инерции
Явление инерции
Из практики реальной жизни мы знаем, что тело не может изменить свою скорость самостоятельно. В IV веке Аристотель писал о том, что все движущееся движимо чем-то. Авторитет Аристотеля был очень велик, и только спустя 2 тысячи лет Галилей показал, что если на тело не оказывают воздействие другие тела, то оно находится в покое или может двигаться равномерно и прямолинейно. При этом такое движение происходит бесконечно долго. Чем меньше действие других тел, тем меньше изменяется скорость перемещения тела, тем ближе движение к равномерному.
Определение инерции
Явлением инерции называют явление, при котором скорость тела остается неизменной, если на него не действуют другие тела или их действие взаимно компенсируются. Inertia — от латинского бездеятельность, косность.
Явление инерции становится очевидным тогда, когда изменяется величина или направление скорости движения. Так, при уменьшении скорости движения автомобиля, особенно, если это происходит резко, водитель и пассажиры отклоняются вперед, продолжая движение. Если резко затормозить при езде на велосипеде, то можно перелететь через его руль вперед.
Если любое тело вывести из состояния покоя, то после прекращения воздействия на него, оно будет двигаться по инерции.
Движение тела, если равнодействующая сил, приложенных к нему равна нулю, называют движением по инерции.
Так, пуля, вылетевшая из дула пистолета двигалась бы бесконечно долго с постоянной скоростью, если бы на нее не действовал воздух, создавая силу трения. По инерции движется ракета, удаленная от всех небесных тел после того как у нее выключили двигатели.
Закон инерции
Выводы Галилея были обобщены И. Ньютоном, который сформулировал закон инерции (или первый закон Ньютона):
Каждое тело находится в состоянии покоя или движется равномерно и прямолинейно, относительно любой инерциальной системы отсчета, до того момента пока действие на него других тел не заставит его изменить свое состояние.
Закон инерции является важным и независимым законом. Он отображает возможность определить пригодность системы отсчета для рассмотрения движения в динамическом и кинематическом смыслах. Он стал первым шагом при установлении основных законов классической механики.
Примеры решения задач
Задание | Ящик прикрыт крышкой, на крышке лежит небольшое тело (рис.1), как, не трогая тело опустить его в ящик? |
Задание | В какую сторону упадет человек споткнувшись? В какую сторону он упадет, если поскользнётся? |
Решение | Пусть человек идет лицом вперед. Так как существует явление инерции, то у человека, который спотыкается, нижняя часть тела резко уменьшает свою скорость, а верхняя часть тела по инерции продолжает двигаться, в результате человек падает вперед, по движению, обычно лицом вниз. |
Пусть, опять-таки, человек идет лицом вперед. Если человек поскальзывается, то его ноги, являющиеся точками опоры, приобретают скорость большую, чем верхняя часть тела, тогда, обычно человек падает в сторону противоположную движению, на спину.
Инерция
Понятие инерция в формулировках Галилея и Ньютона
Галилео Галилей и Исаак Ньютон внесли свой вклад в развитие такого раздела физики, как механика. Неудивительно, что каждый из них предложил свою формулировку.
Галилео Галилей
Исаак Ньютон
Формулировка закона инерции
Когда тело движется по горизонтальной поверхности, не встречая никакого сопротивления движению, то его движение — равномерно, и продолжалось бы постоянно, если бы плоскость простиралась в пространстве без конца.
Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не принуждается приложенными силами изменить это состояние.
Инерция — это физическое явление, при котором тело сохраняет свою скорость постоянной или покоится, если на него не действуют другие тела.
Инерция – это физическое явление сохранения скорости тела постоянной, если на него не действуют другие тела или их действие скомпенсировано.
Варианты формулировки не противоречат друг другу и говорят по сути об одном и том же, просто разными словами — выбирайте ту, что вам нравится больше.
Сила: первый закон Ньютона
В повседневной жизни мы часто встречаем, как любое тело деформируется (меняет форму или размер), ускоряется или тормозит, падает. В общем, чего только с разными телами в реальной жизни не происходит. Причина любого действия или взаимодействия — сила.
Сила — это физическая векторная величина, которая воздействует на данное тело со стороны других тел. Она измеряется в Ньютонах (в честь Исаака Ньютона, разумеется).
Сила — величина векторная. Это значит, что, помимо модуля, у нее есть направление. От того, куда направлена сила, зависит результат.
Вот стоите вы на лонгборде: можете оттолкнуться вправо, а можете влево — в зависимости от того, в какую сторону оттолкнетесь, результат будет разный. В данном случае результат выражается в направлении движения.
Теперь зная, что такое сила, мы можем вернуться к ньютоновской формулировке закона инерции — он же, Его Величество, первый закон Ньютона:
Существуют такие системы отсчета, относительно которых тело сохраняет свою скорость постоянной, в том числе равной нулю, если действие на него других сил отсутствует или скомпенсировано.
Первый закон Ньютона
R — результирующая сила, сумма всех сил, действующих на тело [Н]
const — постоянная величина
В этом законе встречается такое словосочетание, как «система отсчета». Оно изучается в самом начале курса физики, но там это понятие читают в контексте «такие системы отсчета». Напрашивается вопрос: какие такие системы отсчета?
Системы отсчета: инерциальные и неинерциальные
Чтобы описать движение нам нужны три штуки:
В совокупности эти три опции образуют систему отсчета:
Инерциальная система отсчета — система отсчёта, в которой все тела движутся прямолинейно и равномерно, либо покоятся.
Неинерциальная система отсчета — система отсчёта, движущаяся с ускорением.
Рассмотрим разницу между этими системами отсчета на примере задачи.
Аэростат — летательный аппарат на картиночке ниже — движется равномерно и прямолинейно параллельно горизонтальной дороге, по которой равноускоренно движется автомобиль.
Выберите правильное утверждение:
Решение:
Система отсчёта, связанная с землёй, инерциальна. Да, планета движется и вращается, но для всех процессов вблизи планеты этим можно пренебречь. Во всех задачах систему отсчета, связанную с землей можно считать инерциальной.
Поскольку система отсчёта, связанная с землёй инерциальна, любая другая система, которая движется относительно земли равномерно и прямолинейно или покоится — по первому закону Ньютона тоже инерциальна.
Движение аэростата удовлетворяет этому условию, так как оно равномерное и прямолинейное, а равноускоренное движение автомобиля — нет. Аэростат — инерциальная система отсчёта, а автомобиль — неинерциальная.
Ответ: 1.
Инерция покоя
На столе лежит лист бумаги. На него поставили стакан и резко выдернули лист бумаги из-под него. Стакан почти не двинулся.
То, что стакан остался в состоянии покоя, можно объяснить законом инерции, так как «скорость остается постоянной, в том числе равной нулю». В данном случае инерция покоя — это способность тела сохранять состояние полного механического покоя и «сопротивляться» любым внешним воздействиям. То есть та часть закона инерции, в котором скорость равна нулю.
Так, например, если выбивать пыль из ковра, то в ковер-самолет ваш любимый предмет интерьера не превратится — вместе с пылью не улетит.
Инерция движения
В случае с движением мы берем ту часть первого закона Ньютона, в которой скорость постоянна, но не равна нулю. Здесь мы откроем способность тела к движению, которое было вызвано силой, прекратившей своё действие на тело.
Вернемся к самому началу:
Велосипедист наезжает на камень и падает с велосипеда. Благодаря инерции скорость велосипедиста сохраняется, несмотря на то, что сам велосипед не едет дальше.
Наездник слетает с лошади, если та остановилась. Это тоже происходит из-за инерции — скорость наездника остается постоянной, при этом сама лошадь останавливается.
Мир не идеален
К сожалению, а может быть и к счастью, мы не живем в мире, в котором все тела движутся прямолинейно и равномерно. Из-за этого инерция в реальной жизни невозможна, потому что всегда есть трение, сопротивление воздуха и прочие, препятствующие движению, факторы.
Пуля, вылетевшая из ружья, продолжала бы двигаться, сохраняя свою скорость, если бы на неё не действовало другое тело — воздух. Поэтому скорость пули уменьшается.
Велосипедист, перестав работать педалями, смог бы сохранить скорость своего движения, если бы на велосипед не действовало трение. Поэтому, если педали не крутить — скорость велосипедиста уменьшается, и он останавливается.
Инерция
Всего получено оценок: 131.
Всего получено оценок: 131.
Механика описывает движение и взаимодействие макроскопических тел. Одним из базовых понятий в этом разделе физики является понятие инерции. На его основе был сформулирован первый закон механики Ньютона, устанавливающий существование инерциальных систем отсчета. Определение термина «инерция» — сохранение телами скорости, если на них не действуют другие тела.
Явление инерции
Для любого человека привычно, что брошенный камень при отрыве от руки продолжает движение и летит самостоятельно, хотя сила руки на него уже не действует.
Явление, заключающееся в том, что тела сохраняют свою скорость, когда на них не действуют другие тела, называется явлением инерции.
Примерами инерции могут служить не только брошенные камни, но и любые другие предметы, движущиеся свободно и необязательно прямолинейно. Раскрученный маховик также вращается некоторое время по инерции, и на этой основе даже существуют игрушки с инерционным механизмом, которые могут довольно долго двигаться после запуска.
Явление инерции далеко не так очевидно, как кажется. Например, для легких тел, вроде пуха, инерция, казалось бы, отсутствует. Более того, со времен Аристотеля считалось, что для того, чтобы тело двигалось равномерно и прямолинейно, необходимо постоянное действие внешней силы.
Лишь в эпоху Возрождения появилось сомнение в правоте античных философов. Г. Галилей сформулировал закон инерции, который звучит следующим образом: в отсутствие влияния других тел тело всегда сохраняет либо состояние покоя, либо прямолинейного и равномерного движения. Поэтому такое движение, которое совершается телом без влияния других тел называется «движением по инерции». В дальнейшем это утверждение было обобщено И. Ньютоном в его первом законе механики.
Заблуждение античных философов базируется на том факте, что в реальном мире, как правило, невозможно создать условия, при которых тело не испытывало бы влияния других тел. Всегда существуют как минимум две силы, воздействующие на движущееся тело: сила тяжести и сила трения. И если влияние силы тяжести можно исключить, двигаясь перпендикулярно ее вектору, то силу трения исключить практически невозможно. Для больших скоростей и для тел большой поверхности (по сравнению с весом) существенное значение также приобретает сила сопротивления воздуха, поэтому формулы движения должны ее учитывать.
Инертность тел
При сравнении движения тел по инерции под действием сопротивления среды можно заметить, что это движение может быть различно, даже если сопротивление среды будет одинаковым.
Например, если взять металлический и пенопластовый шарики одинакового размера, то после броска металлический шарик пролетит значительно дальше пенопластового, хотя начальная скорость и размеры обоих шариков (а значит, и сила сопротивления) будут одинаковы. Различие в поведении шариков здесь объясняется тем, что они имеют различную инертность.
Инертность тел — это свойство, состоящее в том, что для изменения скорости тела требуется некоторое время, тем большее, чем больше инертность тела. Мерой инертности тел является специальная физическая величина — масса.
Именно поэтому металлический шарик пролетит дальше пенопластового: его масса больше, следовательно, его инертность также больше, и одной и той же силе сопротивления требуется больше времени для того, чтобы остановить его.
Рис. 3. Инертность тел.
Что мы узнали?
Инерция — это свойство всех тел, которое заключается в том, что они сохраняют свою скорость, если на них не действуют другие тела. Закон инерции был сформулирован Г. Галилеем и обобщен И. Ньютоном. Для изменения скорости тела обязательно требуется воздействие со стороны другого тела, и это воздействие должно быть тем длительнее, чем больше инертность первого тела. Мерой инертности является масса.
ИНЕРЦИЯ И МОМЕНТ ИНЕРЦИИ: базовые сведения
История понятия «инерция»
До эпохи Возрождения, в Средние века, в западной философии общепринятой была аристотелевская теория движения. Ученик Платона, древнегреческий философ Аристотель (384 – 322 гг. до н. э.) утверждал, что в отсутствии внешней силы все объекты остановятся, и что движущиеся объекты продолжают двигаться только до тех пор, пока есть побуждающая к движению сила.
Принцип движения по инерции, который возник у Аристотеля для «движений в пустоте», гласил, что объект имеет тенденцию сопротивляться изменению движения.
Окончательно от аристотелевской теории отказались в ходе ряда открытий, предшествовавших научной революции XVII века.
Термин «инерция», от латинского слова «безделье» или «лень» (лат. inertia), был впервые использован немецким математиком и астрономом Иоганном Кеплером (1571 – 1630 гг.) в его книге «Epitome Astronomiae Copernicanae», которая была опубликована в трех частях в 1617–1621 гг. Но Кеплер определял инерцию только как сопротивление движению, основываясь на старом предположении, что покой – это естественной состояние вещей, которое не нужно объяснять и к которому стремятся тела.
Покой и движение объединил единым принципом современник Кеплера Галилео Галилей (1564 — 1642) — итальянский физик, механик, астроном, философ и математик. Он первый, кто направил зрительную трубу в небо, превратив её в телескоп. В 1609 году он создал свой первый телескоп с трёхкратным увеличением. Галилео Галилей писал, что «если устранить все внешние препятствия, то тяжелое тело на сферической поверхности, концентрической Земле, будет поддерживать себя в том состоянии, в котором оно находилось; если его поместить в движение к западу (например), то оно будет поддерживать себя в этом движении».
Чтобы оспорить идею Аристотеля о естественности состояния покоя, Галилей проводил один из таких мысленных экспериментов. Если исключить силу трения, то шар, катящийся по склону оврага (холма), взлетит до той же высоты на противоположной стороне. Если второй склон постепенно наклонять, шар будет катиться все дальше и дальше и в горизонтальном положении склона будет катиться бесконечно долго.
Галилей сделал вывод, что «Тело, движущееся по ровной поверхности, будет продолжать движение в том же направлении с постоянной скоростью, если движение не будет нарушено».
Позднее, мысли Галилея будут уточнены и систематизированы Исааком Ньютоном. Исаак Ньютон (1642 – 1727) — английский физик, математик, механик и астроном, основатель классической физики. В своем труде «Математические начала натуральной философии» (Philosophiae Naturalis Principia Mathematica), впервые опубликованном в 1687 году, он изложил закон всемирного тяготения и три закона динамики.
Явление инерции, изначально сформулированное Галилеем, вошло в первый закон Ньютона.
Оговоримся, что согласно определению, законы Ньютона справедливы только для систем отсчета (система отсчета – это тело отсчета со связанной с ним системой координат, относительно которого можно вычислять положение тел, и система измерения времени, т.е. некоторые часы), которые принято называть инерциальными. Инерциальная система отсчета – это такая система, в которой ускорение тел зависит только от приложенных сил, а не свойством самой системы отсчета (наблюдателя) перемещаться с ускорением.
Посмотрим на второй закон Ньютона.
Чаще его записывают в виде:
так как в инерциальной системе отсчета сила является причиной ускорения тела.
Как видно из второй формулы, для тела неизменной массы ускорение тела (скорость изменения его скорости) прямо пропорционально силе, приложенной к телу (чем сильнее толкаем, тем быстрее тело разгоняется) и обратно пропорционально его массе (чем тяжелее тело, тем сложнее его разгонять).
Представим, что тело движется в вакууме и на него не действуют никакие силы (F=0). Значит и скорость его меняться не будет (a=0).
Инерция (лат. inertia — покой, постоянство, неизменность) – природное явление сохранения равномерного прямолинейного движения или состояния покоя любого тела, пока на него не действуют внешние силы или если действие сил скомпенсировано.
Инертность – свойство конкретного тела оставаться в покое или равномерно прямолинейно двигаться. От инертности зависит ускорение тела при приложении к нему внешних сил. Мерой количественного измерения инертности тела в прямолинейном движении является его масса. Больше масса – больше инертность тела, т.е. тем сложнее придать ему ускорение (разогнать или остановить).
Из-за большей чем у легковушки массы у грузовика инертность выше. Соответственно, и тормозной путь у него будет больше – нужно приложить большую силу, чтоб его остановить (хотя, можно поставить очень мощные тормоза). Говорить, что у грузовика больше инерция – некорректно.
Мерой инертности тела в прямолинейном движении выступает его масса. Больше масса – больше инертность тела.
Инерция, кинетическая энергия, работа
Приведем другой пример. Представь тяжелоатлета… Даже двух, которые решили поставить мировой рекорд и сдвинуть самолет. Им придется приложить немало сил, чтобы вначале разогнать самолет от нуля до некоторой скорости, а потом поддерживать эту скорость, преодолевая силу трения, направленную назад. Конечно, проще сдвинуть с места (преодолеть инерцию покоя) и разогнать до большой скорости тело меньшей массы, например, футбольный мяч. Инертность самолета во много раз больше инертности футбольного мяча.
А к какому трюку прибегает фокусник, чтобы в случае со скатертью все предметы остались на столе? Правильно, нужно выдернуть скатерть за наименьшее время. Чем меньше время, тем меньше энергии перейдет с силой трения на предметы и они просто не успеют разогнаться.
Энергия движущегося тела называется кинетической энергией и измеряется в Джоулях. Если тело неподвижно, кинетическая энергия равна нулю.
Чтобы разогнать тело массой m до нужной скорости V из состояния покоя (например, самолет), нужно выполнить работу, равную кинетической энергии разогнанного тела (без учета разных потерь):
Работа по изменению кинетической энергии тела совершается за счет приложения к нему некоторой силы – силы тяжести, силы трения, силы воздействия на него другого тела (тяжелоатлета-силача, дующего ветра, реактивной тяги ракетного двигателя и пр.).
Пусть силач разогнал до 0.1 м/с (10 сантиметров в секунду) легковую машину массой 1200 кг и самолет Ил-76 массой 88 500 кг в космосе (не будем учитывать силу трения). Тогда для преодоления инерции этих тел ему пришлось сжечь мышечной энергии на 6 Дж и 442,5 Дж соответсвенно. Т.е. на преодоление инерции покоя у самолета у спортсмена уйдет в 74 раза больше энергии, чем на автомобиль.
Чтобы остановить тело массой m, движущееся со скоростью V, нужно совершить обратную работу, равную отрицательному значению кинетической энергии этого тела:
Т.е. чем больше скорость тела и его масса, тем больше энергии на преодоление инерции движения надо затратить.
Если выключить мотор, машина под действием силы трения ее движущихся частей друг о друга, силы трения о воздух корпуса и силы трения колес об асфальт остановится сама. Но остановить машину можно и быстрее, увеличив силу трения с помощью тормозных дисков, т.е. выжав педаль тормоза.
При равной скорости масса грузовика намного больше, а значит больше его кинетическая энергия. Двигаясь накатом грузовик остановится дальше, чем легковой автомобиль – его инертность выше. Кстати, можно ли остановить грузовик быстрее легкового автомобиля и при каких условиях?
Момент инерции
Инерция проявляется не только для прямолинейного движения, но и при вращении тел. В двигателе есть специальное устройство – маховик (на рисунке справа маховик покрашен темно-серым цветом и имеет зубчики). Инерция его вращения помогает работать двигателю нормально. Энергия расширяющихся газов при воспламенении топлива толкает поршень вниз, а затем ему нужно идти вверх, выталкивая продукты сгорания. Без маховика поршень не смог бы провернуть коленвал без рывков. Двигатель без маховика заглохнет.
Ну а со спинерами и волчками знакомы многие.
Вот только в приведенных примерах форма тела не меняется. А изменится ли инертность тела при изменении его формы?
Вращение на фигурном катании
Многие могут вспомнить фигурное катание. Масса тела фигуриста за выступление не меняется. Но его скорость вращения мгновенно увеличивается, стоит прижать руки и ноги, и вытянуться в струнку. Т.е. при уменьшении радиуса тела скорость вращения увеличивается. Т.е. инертность тела должна уменьшиться? Давайте разбираться.
Вернемся к формулам. Скорость вращающегося тела описывается как произведение угловой скорости (омега) на радиус:
Скорость вращающегося тела
При этом кинетическая энергия вращающегося тела примет вид:
Синим цветом выделено произведение массы тела на радиус в квадрате. Эта величина называется моментом инерции вращающегося тела и обозначается латинской буквой I (и).
Мерой инертности вращающего тела выступает момент инерции, который зависит от массы тела и расстояния этой массы от центра вращения.
Представим, что девочка не только вращает груз над собой, но и идет. Тогда полная кинетическая энергия девочки с грузом примет вид:
Первая часть описывает кинетическую энергию двигающейся прямолинейно с некоторой скоростью девочки с грузом, а вторая – кинетическую энергию вращающегося груза. Полная кинетическая энергия — это сумма энергии прямолинейно движущегося тела и энергии вращающегося тела. Точно так же кинетическая энергия будет рассчитываться для движущегося по столу раскрученного волчка или съезжающего с наклонной плоскости цилиндра.
Так как вращающееся тело может иметь форму, отличную от точки или маленького шарика, то и формула момента инерции для более точных расчетов может принимать разный вид.
Пример.
Цилиндры одинаковой массы (m1 = m2), но разного радиуса (r1 Цилиндры одинаковой массы, но разного радиуса, скатываются с горки высотой h
В верхней точке кинетическая энергия обоих цилиндров будет равна нулю, так как скорость равна нулю. Потенциальная энергия будет одинаковой и максимальной.
При скатывании цилиндров по закону сохранения энергии потенциальная энергия переходит в кинетическую и в самой нижней точке будет равна нулю, так как высота равна нулю. А кинетическая энергия в нижней точке будет складываться из поступательной кинетической энергии и кинетической энергии вращающегося тела и у обоих тел также будет одинаковой, так как их потенциальные энергии были равны.
Но так как радиус первого тела меньше второго, то и момент инерции первого тела меньше второго и будет справедливо:
Тогда для кинетической энергии поступательного движения будет справедливо отношение:
Следовательно, скорость первого цилиндра должна быть выше скорости второго, и он скатится быстрее. Так как мерой инертности вращающегося тела является момент инерции, то первое тело с меньшим радиусом и меньшим моментом инерции будет обладать меньшей инертностью, чем второе. Разогнаться под действием каких-либо сил (силы тяжести) такому телу проще.
Вопросы
1. Посмотри на картинку с формулами для расчета момента инерции для тел разной формы. Как ты думаешь, какая формула лучше подходит для расчёта момента инерции маховика автомобиля. Варианты ответа: a, b, c, d, e, f, g, h, или i
Маховик автомобиля
2. Два волчка одинаковой массы раскрутили до одинаковой угловой скорости, но диаметр первого волчка меньше диаметра второго. Какой из них упадет раньше?
3. На рисунке показаны три варианта конструкции. Какой вариант машинки имеет наименьшую инертность, а какой максимальную? Почему?