в чем заключается суть квантовой гипотезы планка
В чем заключается суть квантовой гипотезы планка
Гипотеза Планка о квантах
Классическая электродинамика дала серьезный сбой, когда ее попытались использовать для описания излучения нагретого тела (так называемого теплового излучения).
Суть проблемы состояла в том, что простая и естественная электродинамическая модель теплового излучения приводила к бессмысленному выводу: любое нагретое тело, непрерывно излучая, должно постепенно потерять всю свою энергию и остыть до абсолютного нуля. Однако ничего подобного не наблюдается.
В ходе решения этой проблемы Макс Планк высказал свою знаменитую гипотезу.
Гипотеза о квантах. Электромагнитная энергия излучается и поглощается не непрерывно, а отдельными неделимыми порциями квантами. Энергия кванта пропорциональна частоте излучения:
Принятие этой гипотезы позволило Планку построить теорию теплового излучения, прекрасно согласующуюся с экспериментом. Располагая известными из опыта спектрами теплового излучения, Планк вычислил значение своей постоянной:
Успешность гипотезы Планка наводила на мысль, что законы классической физики неприменимы к малым частицам вроде атомов или электронов, а также к явлениям взаимодействия света и вещества. Подтверждением данной мысли как раз и послужило явление фотоэффекта.
Фотоэффект это выбивание электронов из вещества падающим светом. Явление фотоэффекта было открыто Генрихом Герцем в 1887 году в ходе его знаменитых экспериментов по излучению электромагнитных волн.
Герц, однако, был поглощен исследованием электромагнитных волн и не принял данный факт во внимание. Год спустя фотоэффект был независимо открыт русским физиком Александром Григорьевичем Столетовым. Тщательные экспериментальные исследования, проведенные Столетовым в течение двух лет, позволили сформулировать основные законы фотоэффекта.
В своих экспериментах А.Г.Столетов использовал фотоэлемент собственной конструкции.
Сейчас к катоду подсоединен «минус», а аноду «плюс», но можно сделать и наоборот (и эта перемена знака существенная часть опытов Столетова). Напряжению на электродах приписывается тот знак, который подан на анод. В данном случае, например, напряжение U положительно.
В опытах Столетова можно независимо изменять три величины: анодное напряжение,
интенсивность света и его частоту.
Рис. 1. Фотоэлемент Столетова
З ависимость фототока от напряжения
Меняя величину и знак анодного напряжения, можно проследить, как меняется фототок. График этой зависимости, называемый характеристикой фотоэлемента, представлен на рис. 2.
Будем постепенно увеличивать напряжение, т. е. двигаться слева направо вдоль оси U из отрицательных значений в положительные.
Таким образом, величина задерживающего напряжения позволяет определить максимальную кинетическую энергию фотоэлектронов.
При небольшом превышении задерживающего напряжения появляется слабый фототок. Его формируют электроны, вылетевшие с максимальной кинетической энергией почти точно вдоль оси колбы (т. е. почти перпендикулярно катоду): теперь электронам хватает этой энергии, чтобы добраться до анода с ненулевой скоростью и замкнуть цепь. Остальные электроны, которые имеют меньшие скорости или полетели в сторону от анода, на анод не попадают.
При повышении напряжения фототок увеличивается. Анода достигает большее количество электронов, вылетающих из катода под все большими углами к оси колбы. Обратите внимание, что фототок присутствует при нулевом напряжении!
Когда напряжение выходит в область положительных значений, фототок продолжает возрастать, т.к. электрическое поле теперь разгоняет электроны, поэтому все большее их число получают шанс оказаться на аноде. Однако достигают анода пока еще не все фотоэлектроны. Например, электрон, вылетевший с максимальной скоростью перпендикулярно оси колбы (т. е. вдоль катода), хоть и развернется полем в нужном направлении, но не настолько сильно, чтобы попасть на анод.
Первый закон фотоэффекта: Число электронов, выбиваемых из катода за секунду, пропорционально интенсивности падающего на катод излучения (при его неизменной частоте).
Чем больше энергии несет излучение, тем ощутимее наблюдаемый результат.
Теперь будем изучать зависимость максимальной кинетической энергии фотоэлектронов от частоты и интенсивности падающего света. По формуле (3) нахождение максимальной кинетической энергии выбитых электронов фактически сводится к измерению задерживающего напряжения.
Сначала меняем частоту излучения при фиксированной интенсивности. Получается такой график (рис. 3):
Как видим, существует некоторая частота ν0, называемая красной границей фотоэффекта, разделяющая две принципиально разные области графика. Если ν
Если же ν > ν 0, то максимальная кинетическая энергия фотоэлектронов линейно растет с частотой.
Теперь, наоборот, фиксируем частоту и меняем интенсивность света. Если при этом ν ν0: максимальная кинетическая энергия фотоэлектронов от интенсивности света не зависит.
Все эти факты нашли отражение во втором и третьем законах фотоэффекта. Рис. 3. Зависимость энергии
фотоэлектронов от частоты света
Второй закон фотоэффекта: Максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и не зависит от его интенсивности.
Третий закон фотоэффекта: Для каждого вещества существует красная граница фотоэффекта наименьшая частота света ν0, при которой фотоэффект еще возможен. При ν
В чем заключается суть квантовой гипотезы планка
Тема: Квантовая физика
Урок: Квантовая гипотеза Планка
1. Введение
Революция физики совпала с началом XX века. К концу XIX века ученые считали, что построение физической картины мира практически закончено и следующим поколениям ученых останется только уточнять цифры после запятых в физических константах.
Лорд Кельвин (Рис. 1): «Над физикой стоит ясное небо, все законы физики уже открыты, осталось только два облачка».
Рис. 1. Лорд Кельвин
Первым таким облачком Кельвин считал распространение электромагнитных волн в вакууме с постоянной скоростью без какой-либо среды. Через пять лет появилась теория относительности Эйнштейна. Эта теория заставила изменить представление о пространстве и времени, в котором мы живем.
Второе облачко, по словам Кельвина, – это спектр излучения нагретых тел. Если тело имеет высокую температуру, то оно может стать источником видимого излучения. Трудность состояла в том, что теоретическая физика не могла объяснить спектр излучения нагретого тела. В начале ХХ века эту трудность преодолели, тепловое излучение нагретых тел получило свое объяснение, из этого объяснения появилась новая область физики – квантовая механика.
Английские ученые Релей и Джинс предприняли попытку объединить законы теплового излучения в один. Этот закон очень хорошо подтверждал экспериментальные данные, но он соответствовал только средней части спектра излучения для желтых и зеленых лучей. Когда происходило смещение в сторону синих, фиолетовых и ультрафиолетовых лучей, то этот закон нарушался.
Из закона Релея-Джинса, следовало, что чем короче длина волны, тем большей должна быть интенсивность теплового излучения (Рис. 2). Ничего подобного на опыте не наблюдалось. А при переходе к коротким волнам, интенсивность должна была расти и вовсе неограниченно, но этого не происходит.
Рис. 2. Закон Релея-Джинса
Нет, и не может быть никакого неограниченного роста интенсивности волн. Если какой-либо физический закон приводит к слову «неограниченно» – это его крах.
Физики это создавшееся положение назвали ультрафиолетовой катастрофой.
В конце XIX века физики не могли предположить, что это катастрофа не частного закона излучения, а катастрофа раздела классической физики.
С 1896 года Макс Планк (Рис. 3) заинтересовался проблемами теплового излучения тел. Любое тело, содержащее тепло, испускает электромагнитное излучение. Если тело достаточно горячее, то это излучение становится видимым.
При повышении температуры тело раскаляется докрасна, затем становится оранжево-желтым, и в конце концов – белым (Рис. 4–6).
Рис. 4. Цветность чернотельного излучения
Рис. 5. Цветность чернотельного излучения
Рис. 6. Цветность чернотельного излучения
Многократно проверенные законы электромагнетизма Максвелла не применимы к коротким волнам. Это удивительно, так как эти законы прекрасно описывают распространение радиоволн антенной.
Именно на основании этих законов было предсказано существование электромагнитных волн.
Электродинамика Максвелла приводила к бессмысленному выводу: нагретое тело в результате постоянного излучения электромагнитных волн должно было охладиться до нуля.
С точки зрения классической физики теплового равновесия между веществом и излучением существовать не может. На опыте доказано, что нагретое тело не тратит всю свою энергию на излучение электромагнитных волн.
В 1900 году Макс Планк выдвинул квантовую гипотезу.
Нагретое тело испускает и поглощает свет не непрерывно, а определенными конечными порциями энергии – квантами (квант (от лат. quantum) – количество).
Энергия каждой порции прямо пропорциональна частоте излучения.
универсальная Планка ( h ) – постоянная универсальная величина.
Энергия квантов разного цвета имеет разное значение (Рис. 7).
Рис. 7. Энергия квантов
Энергия светового потока определяется частотой излучения и количеством квантов в потоке.
Новая теория объясняла экспериментальные данные.
Формула Макса Планка позволяет определять различные характеристики квантов электромагнитного изучения.
Решим задачу (Рис. 8–10):
Максимальная длина волны видимой части света соответствует красному цвету (760 нм).
Рис. 9. Решение задачи 1
подставив числа в формулу, получим результат:
Рис. 10. Решение задачи 1
Решим еще одну задачу (Рис. 11–12):
Рис. 12. Решение задачи 2
Для определения вида, к которому следует отнести излучение, понадобится электромагнитная шкала (Рис. 13):
Рис. 13. Электромагнитная шкала
Ответ задачи: рентгеновское излучение.
После открытия Планка начала развиваться новая и самая современная физическая теория – квантовая теория. Ее развитие продолжается и сейчас.
Квантовая гипотеза Планка и излучение черного тела
Физика > Квантовая гипотеза Планка и излучение черного тела
Узнайте, в чем состоит гипотеза Планка о квантах – мощность, энергия и спектр излучения черного тела. Читайте, как выглядит постоянная и формула Планка.
Черное тело создает излучение. Планк описал его, предположив, что имеет дело с квантами.
Задача обучения
Основные пункты
Термины
Давайте разберемся в чем состоит гипотеза Планка о квантах. При тепловом балансе черное тело выпускает электромагнитные лучи – излучение абсолютно черного тела. Отличается характерным непрерывающимся частотным спектром, основывающимся исключительно на температурном показателе тела. В 1901 году Макс План сумел точно охарактеризовать лучи, предположив, что столкнулся с квантами. Его квантовая гипотеза стала новаторской и первым шагом в появлении современной физики.
Объяснение характеристик излучения черного тела стало главным камнем преткновения для теоретической физики конца 19-го века. Основанные на классических теория прогнозы не могли объяснить спектры излучения черного тела, которые проявлялись в экспериментах. С проблемой разобрался Макс Планк в 1901 году, создав закон излучения черного тела. Он сказал, что электромагнитное излучение формируется в квантах. Формула квантовой гипотезы Планка записывалась как:
Стандартный спектр черного тела при различных температурных показателях. По мере снижения температуры, пик кривой излучения смещается к более низким интенсивностям и длинным волнам. Черная линия – предсказание классической теории для объекта с 5000К. Здесь видно катастрофическое несоответствие при более коротких длинах волн
Теперь вы знаете, в чем заключается гипотеза Планка и как выглядит энергия и спектр излучения абсолютно черного тела. Отметьте, что спектральное излучение основывается на двух переменных: длина волны и температурный показатель. Излучение обладает определенным спектром и интенсивностью, основывающихся исключительно на температуре. Законы излучения черного тела Планка отлично характеризуют радиационные свойства объектов.
Квантовая теория Планка
Вы будете перенаправлены на Автор24
Окружающий нас мир сегодня кардинально отличается по технологиям от всего, что было привычно в обществе еще сотню лет назад. Все это стало вероятным только благодаря тому, что на заре двадцатого столетия исследователи смогли преодолеть барьер и осознать, наконец: любой элемент в самом маленьком масштабе действует не непрерывно. А открыл эту уникальную эру своей гипотезой талантливый ученый – Макс Планк.
Рисунок 1. Квантовая гипотеза Планка. Автор24 — интернет-биржа студенческих работ
Именем указанного физика названы:
Изображение Планка было напечатано на купюрах и выбито на монетах. Такая выдающаяся личность своими предположениями смогла покорить общество и стать узнаваемым ученым еще при жизни.
Макс Планк родился в середине девятнадцатого столетия в обычной небогатой немецкой семье. Его предки были служителями церкви и хорошими юристами. Высшее образование физик получил достаточно хорошее, но коллеги-исследователи в шутку называли его «самоучкой». Ключевые знания он получил посредством получения информации из книг.
Формирование теории Планка
Гипотеза Планка родилась из концепций, которые он изначально вывел теоретически. В своих научных работах он пытался описать принцип «наука важнее всего», а во время первой мировой войны ученый не потерял важные связи с зарубежными коллегами из небольших стран Германии. Неожиданные приход нацистов застал Планка его на должности руководителя большой научной группы – и исследователь стремился защитить своих коллег, помогал своим сотрудникам выехать за границу и сбежать от режима.
Готовые работы на аналогичную тему
Так что квантовая теория Планка была не единственной, за что его уважали. Стоит отметить, что ученый никогда не высказывал свое мнение в отношении действий Гитлера, очевидно осознавая, что может нанести не только себе вред, но и тем, кто нуждался в его помощи. К сожалению, многие представители научного мира не приняли такой позиции Планка и полностью прекратили переписку с ним. У него было пятеро детей, и только самый младший смог пережить отца. При этом современники подчеркивают, что только дома физик был самим собой – искренним и справедливым человеком.
Еще с юношеских лет ученый был вовлечен в изучение принципов термодинамики, которые гласят, что любой физический процесс идет исключительно с увеличением хаоса и уменьшением массы или массы.
Планк является первым, кто грамотно сформулировал определение термодинамической системы (в терминах энтропии, которая может наблюдаться только в этой концепции).
Позже именно эта научная работа привела к тому, что была создана известная гипотеза Планка. Также он смог разделить физику и математику, разработав комплексный математический раздел. До талантливого физика все естественные науки имели смешанные корни, а эксперименты проводились на элементарном уровне одиночками в лабораториях.
Гипотеза о квантах
Исследуя энтропию электрических и магнитных волн в пределах терминов осцилляторов и опираясь на научные данные, Планк представил общественности и другим ученым универсальную формулу, которая впоследствии будет названа в честь своего создателя.
Новое уравнение связывало между собой:
После официального представления данной формулы коллеги Планка под руководством Рубенса в течение нескольких дней ставили эксперименты, чтобы с научной точки зрения подтвердить эту теорию. В результате, она оказалась абсолютно верной, но, чтобы обосновать теоретически вытекающую из этого уравнения гипотезу и при этом не допустить математических сложностей, ученому пришлось признать, что электромагнитная энергия излучается отдельными порциями, а не непрерывным потоком, как считалось ранее. Такой метод окончательно разрушил все существующие представления о твердом физическом теле. Квантовая теория Планка совершила настоящую революцию в физике.
Современники считают, что изначально исследователь не осознавал значимость сделанного им открытия. Некоторое время представленная им гипотеза использовалась только как удобное решение для сокращения количества математических формул для вычисления. При этом Планк, как и его коллеги, применяли в своей работе непрерывные уравнения Максвелла.
Использования теории Планка
Благодаря закону Планка общественность получила весомый аргумент в пользу так называемой гипотезы Большого Взрыва, которая объясняет расширение и возникновение Вселенной в результате мощного взрыве с крайне высокой температурой.
Считается, что на ранних этапах своего становления наша Вселенная была полностью заполнена неким излучением, спектральное свойство которого должно совпадать с лучеиспусканием черного тела.
С тех пор мир только расширялся, а затем остыл до нынешней температуры. То есть, излучение, которое на сегодняшний день распространяется во Вселенной, по своему составу должно быть аналогичным альфа-излучению черного вещества с определенной температурой. В 1965 году Вильсон обнаружили данное излучение на длине магнитной волны 7.35 см, которое постоянно падает на нашу планету с одинаковой энергией абсолютно во всех направлениях. Вскоре стало понятно, что это явление может испускать только черное тело, которое возникло после Большого Взрыва. Итоговые показатели измерений свидетельствуют о том, что температура указанного вещества на сегодняшний день составляет 2,7 К.
В итоге на Землю попадает всего лишь половина излучения, которое приходит от Солнца, так как вторая половина будет направляться в противоположную от планеты сторону. Согласно расчетам ученым, средняя температура Земли снизится на 50 K (это температура ниже самой точки замерзания воды).
Зарождение квантовой теории. Гипотеза Планка.
Зарождение квантовой теории
В конце XIX в. многие ученые считали, что развитие физики завершилось по следующим причинам:
Теория относительности А. Эйнштейна потребовала коренного пересмотра понятии пространства и времени. Специальные опыты подтвердили справедливость гипотезы Дж. Максвелла об электромагнитной природе света. Можно было предположить, что излучение электромагнитных волн нагретыми телами обусловлено колебательным движением электронов. Но это предположение нужно было подтвердить сопоставлением теоретических и экспериментальных данных.
Для теоретического рассмотрения законов излучений использовали модель абсолютно черного тела, т. е. тела, полностью поглощающего электромагнитные волны любой длины и, соответственно, излучающего все длины электромагнитных волн.
Австрийские физики И. Стефан и Л. Больцман экспериментально установили, что полная энергия Е, излучаемая за 1 с абсолютно черным телом с единицы поверхности, пропорциональна четвертой степени абсолютный температуры Т:
Этот закон был назван законом Стефана — Больцмана. Он позволил вычислить энергию излучения абсолютно черного тела по известной температуре.
Пример экспериментально полученных кривых распределения энергии в спектре излучения черного тела.
При заданном значении температуры Т интенсивность излучения черного тела максимальна и соответствует определенному значению длины волны l. Немецкий физик В. Вин обнаружил, что при изменении температуры длина волны, на которую приходится максимальная энергия Еmax, убывает обратно пропорционально температуре, поэтому (закон Вина). Используя законы термодинамики, В. Вин получил закон распределения энергии в спектре черного тела, который совпадал с экспериментальными результатами лишь в области больших частот.
Английский физик Дж. Рэлей сделал попытку более строгого теоретического вывода закона распределения энергии. по закон приводил к хорошему совпадению с опытами в области малых частот. По этому закону интенсивность излучения должна возрастать пропорционально квадрату частоты. Следовательно, в тепловом излучении должно быть много ультрафиолетовых и рентгеновских лучей, чего на опыте не наблюдалось. Затруднения в согласовании теории с результатами эксперимента получили название ультрафиолетовой катастрофы.
Законы электромагнетизма, полученные Максвеллом, оказались не в состоянии объяснить форму кривой распределения интенсивности в спектре абсолютно черного тела. При удалении от этого значения интенсивность электромагнитного излучения плавно убывает.
Гипотеза Планка
Стремясь преодолеть затруднения классической теории при объяснении излучения черного тела, М. Планк в 1900 г. высказал гипотезу: атомы испускают электромагнитную энергию от дельными порциями —квантами. Энергия Е
Иногда удобно измерять энергию и постоянную Планка вэлектронвольтах.
Таким образом, М. Планк указал путь выхода из трудностей, с которыми столкнулась теория теплового излучения, после чего начала развиваться современная физическая теория, называемая квантовой физикой.