в чем заключается роль белков в клетке
В чем заключается роль белков в клетке
Белки (протеины, полипептиды) – сложные высокомолекулярные органические вещества, состоящие изL-аминокислот, соединенных пептидной связью в цепочку. Простые белки – протеины – состоят только из аминокислот. В состав сложных белков – протеидов – помимо аминокислот входят нуклеиновая и фосфорная кислоты, углеводы и другие вещества.
Белок является важным компонентом каждой клетки в организме. Также белок используется организмом для создания и восстановления тканей, производства ферментов, гормонов и других химических веществ, необходимых для нормальной жизнедеятельности организма. Функции белка в организме разнообразны: транспортная, защитная, структурная, двигательная, рецепторная и другие.
Белок является важным компонентом костей, мышц, хрящей, кожи и крови. Волосы и ногти в основном состоят из белка.Как и жир, и углеводы, белок является макроэлементом, то есть организм нуждается в относительно больших его количествах. Но, в отличие от жиров и углеводов, организм не накапливает белок и не имеет его резервов.
Ряд аминокислот, из которых состоят белки, не синтезируются в организме человека (так называемые незаменимые аминокислоты), а поступают только с белковой пищей. В процессе пищеварения ферменты разрушают белки до аминокислот, которые, в свою очередь, используются длясинтеза собственных белков организма или подвергаются дальнейшему распаду для получения энергии.
Усвояемость белка – это показатель, характеризующий долю абсорбированного в организме азота от общего количества, потребленного с пищей. Биологическая ценность – показатель качества белка, характеризующий степень задержки азота и эффективность его утилизации для растущего организма или для поддержания азотистого равновесия у взрослых. Качество белка определяется наличием в нем полного набора незаменимых аминокислот в определенном соотношении как между собой, так и с заменимыми аминокислотами.
Наибольшей биологической ценностью обладают белки животного происхождения. В белках растительного происхождения обычно отсутствует от одной до нескольких незаменимых кислот. Также усвояемость растительных белков ниже, чем животных (так, например, усвояемость белков мяса/рыбы составляет 93-95 %, а усвояемость бобовых – 70 %).
Потребность в белке зависит от возраста, пола, характера трудовой деятельности. Физиологическая потребность в белке для взрослого населения составляет от 65 до 117г/сутки для мужчин, и от 58 до 87г/сутки для женщин. Физиологические потребности в белке детей до 1года – 2,2—2,9г/кг массы тела, а для детей старше 1года от 36 до 87г/сутки.
Лучшими источниками белка, содержащими все необходимые аминокислоты, в том числе и незаменимые, являются продукты животного происхождения: молоко и молочные продукты, мясо, яйца, рыба и морепродукты. К растительным продуктам, богатым белками, относятся спирулина, соя, фасоль, чечевица, горох, шпинат, киноа.
Основные функции белков в клетке
Благодаря сложности, разнообразию форм и состава, белки играют важную роль в жизнедеятельности клетки и организма в целом.
Белок — это отдельный полипептид или агрегат нескольких полипептидов, выполняющий биологическую функцию.
Полипептид — понятие химическое. Белок — понятие биологическое.
В биологии функции белков можно разделить на следующие виды:
1. Строительная функция
Белки участвуют в образовании клеточных и внеклеточных структур. Например:
2. Транспортная функция
Некоторые белки способны присоединять различные вещества и переносить их к различным тканям и органам тела, из одного места клетки в другое. Например:
Белки транспортируют в крови катионы кальция, магния, железа, меди и другие ионы.
3. Регуляторная функция
Большая группа белков организма принимает участие в регуляции процессов обмена веществ. Гормоны белковой природы принимают участие в регуляции процессов обмена веществ. Например:
4. Защитная функция
5. Двигательная функция
6. Сигнальная функция
7. Запасающая функция
8. Энергетическая функция
9. Каталитическая (ферментативная) функция
Ферменты, или энзимы, — особый класс белков, являющихся биологическими катализаторами. Благодаря ферментам биохимические реакции протекают с огромной скоростью. Вещество, на которое оказывает свое действие фермент, называют субстратом.
Ферменты можно разделить на две группы:
10. Функция антифириза
11. Питательная (резервная) функция.
Решай задания и варианты по биологии с ответами
Научная электронная библиотека
§ 3.1.3. Понятие о цитологии
Цитология – раздел биологии, изучающий жизнедеятельность клетки.
Множество простейших и микроорганизмов представляют собой существующие отдельно друг от друга клетки. Тела многоклеточных организмов построены из огромного числа клеток. Независимо от того, представляет собой клетка целостную живую систему, либо ее часть, она наделена набором признаков и свойств, характерных для всех клеток.
Клетка состоит из простых и сложных молекул белков, нуклеиновых кислот (ДНК и РНК), липидов, углеводов, минеральных веществ и, конечно же, воды. Белкам и нуклеиновым кислотам принадлежит основная роль в синтезе из простых микромолекул сложных макромолекул, в освобождении и превращении энергии из поступающих в клетку веществ.
Клетка – основная структурно-функциональная единица живого. Клетка – биологически автономная система, способная самостоятельно осуществлять все процессы, присущие живой материи (рост, размножение, раздражимость и т. д.)
Впервые клетку наблюдал Р. Гук (1665 г., Англия) на срезах пробки через систему линз. Дальнейшее ведение микроскопических исследований принадлежит члену Королевского общества Неемии Грю (1641–1712 гг.), который собрал первый микроскоп в. Общие результаты своих исследований он изложил в четырехтомном трактате, опубликованном в 1682 г. Трактат этот носил длинное название «Анатомия растений с изложением философской истории растительного мира и несколько других докладов, прочитанных перед Королевским обществом».
Но изучение срезов тканей растительных и животных организмов в 17–18 веках носили описательный характер. Более подробное изучение жизнедеятельности клетки началось с усовершенствованием увеличительной техники в 19 веке. Немецкие ученые М. Шлейден и Т. Шванн (1839 г.) сопоставили ткани растительных и животных организмов, обнаружили общий принцип строения и роста тех и других клеток.
Позднее, благодаря открытию процессов роста и деления, а также ряда биохимических процессов клетки, сформировалась клеточная теория.
Основные положения классической клеточной теории:
1. Клетка – наименьшая структурная единица живого.
2. Все живые организмы состоят из клеток (одной – одноклеточный организм, или множества – многоклеточный организм)[34].
3. Несмотря на огромное разнообразие внешних форм, все клетки сходны между собой по внутреннему строению, химическому составу и принципам жизнедеятельности.
4. «Клетка от клетки». Новые (дочерние) клетки возникают в результате деления исходной (материнской) клетки.
Клетки многоклеточного организма объединяются в ткани, ткани – в органы, органы в системы органов.
Все вещества, входящие в состав клетки (и живого организма в целом) принято делить на две группы – группу неорганических веществ и группу органических веществ (рис. 3.4):
Рис. 3.4. Простейшая классификация веществ живых организмов.
Неорганические вещества в живой клетке представлены, прежде всего, водой, а также микро- и макроэлементами, присутствующими в составе различных солей
Воды в организме содержится, в среднем 83 %. Функции воды:
а) Вода является прекрасным растворителем. Вещества, растворенные в воде, проникают в клетку, обеспечивая ее питание.
б) Продукты обмена выводятся из организма также в виде водных растворов (см. раздел «Цитоплазма»).
в) Вода поддерживает тургор (упругость) клетки.
г) Все биохимические процессы (окисление – восстановление, синтез – разложение, каталитические реакции и т. д.) происходят в водной среде.
д) Кроме того, вода обладает большой теплоемкостью и теплопроводностью, что обеспечивает гармоничное распределение и сохранение тепла в организме.
Примеры микро- и макроэлементов приведены на рис. 3.5.
Рис. 3.5. Микроэлементы и макроэлементы живого организма
Органические вещества живой клетки представляют: липиды, углеводы, белки, нуклеиновые кислоты.
Липиды – производные высших жирных кислот, химический состав которых можно представить формулой СmHnOl. К липидам, в частности, относятся жиры, химический состав которых подробно рассматривается в курсе органической химии. При этом, жидкие жиры (масла) чаще растительного происхождения (исключение – рыбий жир), твёрдые – животного происхождения (исключение – пальмовое масло).
1. Строительная. Липиды входят в состав всех биологических мембран.
2. Энергетическая. Липиды являются источником энергии для организма. При окислении 1 г липидов до СО2 и Н2О выделяется 39 кДж энергии:
[35].
Выделяющаяся при этом вода называется метаболической.
3. Теплоизоляционная. Липиды – отличный теплоизолятор. Эта функция играет большую роль при адаптации организмов к холодной среде обитания, например, моржей и тюленей в холодных водоёмах.
4. Влагообеспечивающая. Как видно из функции 2, жиры служат дополнительным источником воды в организме. Эта функция особенно важна для обитателей засушливых зон.
Углеводы, входящие в состав живых клеток, подразделяют на простые и сложные (рис. 3.6)
Рис. 3.6. Простейшая классификация углеводов, входящих в состав живых клеток
1. Энергетическая. Основным источником энергии для организма являются простые сахариды. Важнейшим из них является глюкоза. При окислении 1 г глюкозы освобождается 17,6 кДж энергии. Некоторые сложные углеводы представляют собой дополнительный запас энергии. В частности, организм получает значительное количество энергии для жизнедеятельности при окислении полимерных молекул крахмала (в телах растений) или гликогена (в телах животных).
2. Строительная. Сложные углеводы являются строительным материалом для некоторых живых организмов. Например, целлюлоза входит в состав древесины, а хитин – в наружный скелет насекомых.
Белки – сложные полимеры. На долю белков приходится 50 % от сухой массы живого организма. Белки – уникальная природная форма, из которой состоят все живые организмы планеты. В организме человека встречаются 5 млн типов белков, отличающихся не только друг от друга, но и от белков других организмов. Белки состоят из аминокислот (мономеры), соединенных друг с другом в определенной последовательности, присущей только определенному организму. Всего известно 20 разновидностей аминокислот. В молекуле белка эти аминокислоты соединены друг с другом прочной пептидной связью[36]. В состав 1 молекулы белка входят от 51 до нескольких сотен аминокислот.
1. Строительная. Белки входят в состав всех вещественных биологических структур: клеток, тканей, органов, крови (рис. 3.7).
Рис. 3.7. Простейшая классификация белков, реализующих строительную функцию
2. Каталитическая. Группа белков, являющихся катализаторами биохимических процессов, называется ферментами. Некоторые ферменты ускоряют протекание реакций в десятки и сотни тысяч раз. Схема работы ферментов с субстратами – веществами, вступающими в биохимический процесс, приведена на рис. 3.8.
3. Транспортная. Существует ряд белков, транспортирующих вещества к различным тканям (например, гемоглобин – белок, переносящий кислород к клеткам) и удаляющих продукты обмена. Многие молекулы (например, сахара) не способны проникнуть в клетку без помощи специфических белков-переносчиков.
Рис. 3.8. Схема работы ферментов:
а – сближение субстратов (С) с ферментом.; б – образование
фермент-субстратного комплекса; в – превращение субстратов
в продукты реакции (ПР); г – разъединение продуктов реакции и фермента
4. Гормональная. Гормоны – биологически активные вещества, вырабатываемые железами внутренней секреции и регулирующие физиологические процессы в организме. При недостатке гормонов возникают патологические изменения, приводящих к заболеваниям и даже гибели организма. Некоторые из гормонов являются белками.
5. Защитно-иммунная. Белки, входящие в состав иммунных клеток (лейкоцитов) обеспечивают защиту от бактерий и вирусов. Эти белки (антитела) связываются с чужеродными организму веществами, образуя комплекс, который затем удаляется из организма
7. Двигательная. Некоторые из белков, входящих в состав мышц способны сокращаться, а, значит, приводить организм в движение.
8. Энергетическая. Иногда, хотя и достаточно редко, белки могут служить дополнительным источником энергии. При окислении 1 г белка освобождается 17,6 кДж.
Нуклеиновые кислоты в живых клетках представлены двумя типами: дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (ДНК).
Современная структурная модель ДНК была впервые предложена американским биологом Дж. Уотсоном совместно с английским физиком Ф. Криком в 1953 году и представляет собой две полинуклеотидные цепи, соединённых водородными связями и закрученные в спираль. В каждой цепочке содержится от пятисот до нескольких сотен тысяч нуклеотидов. Условная схема строения нуклеотида представлена на рис. 3.9.
В нуклеотидах ДНК остаток фосфорной кислоты и дезоксирибоза – неизменные составляющие, в то время как азотистых оснований существует 4 разновидности: аденин, гуанин, цитозин и тимин. Поэтому каждый нуклеотид принято обозначать тем же названием, что и азотистое
основание, входящее в его состав (аденин, гуанин, цитозин, тимин). Поскольку водородные связи в ДНК могут возникать только попарно, по принципу комплементарности: аденин (А) связывается только с тимином (Т), гуанин (Г) – только с цитозином (Ц), то, зная последовательность одной цепи, можно составить последовательность второй цепи.
Рис. 3.9. Схема строения нуклеотида ДНК
При определённых условиях, перед делением клетки, ДНК объединяется с многочисленными белками в единый комплекс, который называется хромосома (рис. 3.10).
Рис. 3.10. Строение реплицированной (удвоенной) хромосомы
Уникальность дезоксирибонуклеиновой кислоты состоит в том, что её молекула является хранилищем сведений о составе всех белков, вырабатываемых организмом, а, значит, содержит в себе информацию обо всех его внешних и внутренних признаках, причём, передаваемую из поколения в поколение от родителей – потомству. Биологическая передача сведений потомству о своих признаках осуществляется благодаря репликации ДНК.
Репликация ДНК – это процесс её удвоения, протекающий с участием специальных ферментов при подготовке клетки к делению. Репликацию можно условно разделить на три стадии (рис. 3.11):
1. Раскручивание двойной спирали ДНК с одного конца под действием фермента.
2. Достраивание по принципу комплементарности новых цепей на разъединившихся прежних цепях.
3. Окончательное формирование двух новых ДНК. В каждой из них одна цепь принадлежала прежней ДНК, а вторая достроена по принципу комплементарности.
Рис. 3.11. Схема репликации ДНК:
а – раскручивание двойной спирали ДНК; б – достраивание новых цепей
на разъединившихся прежних цепях; в – окончательное формирование двух новых ДНК
Таким образом, при делении клетки обе дочерние клетки получают совершено одинаковые ДНК.
Также как и ДНК, молекула рибонуклеиновой кислоты (РНК) представляет собой полинуклеотидную цепь. В отличие от ДНК она одноцепочечная и содержит намного меньше нуклеотидов. Другим существенным отличием РНК от ДНК является химический состав нуклеотидов: нуклеотиды РНК содержат остаток рибозы вместо дезоксирибозы (рис. 3.12) и вместо тимина в составе нуклеотидов РНК находится урацил.
Основная функция РНК – участие в синтезе белковых молекул. В зависимости от характера этого участия РНК подразделяют на матричные или информационные (мРНК), транспортные (тРНК), рибосомальные (рРНК):
– мРНК копирует с ДНК информацию о структуре белка, который нужно синтезировать и доставляет её к месту синтеза;
– (тРНК) – доставляет необходимые аминокислоты и в определенном порядке к месту синтеза белка;
– (рРНК) – входят в состав рибосом – внутриклеточных частиц, на которых и происходит синтез белка. Иногда рибосомы называют главными «рабочими» синтеза белка.
Участок ДНК, содержащий сведения о первичной структуре одного определённого белка, называется геном. Совокупность всей информации обо всех белках, хранящаяся в ДНК иногда называют генетической программой. Последовательность нуклеотидов ДНК определяет аминокислотную последовательность молекулы белка. Эта зависимость между молекулой ДНК и строением белковой молекулы называется генетический код. Генетический код известен для всех 20 аминокислот.
Рис. 3.12. Схема строения нуклеотида РНК
Процесс передачи информации генетического кода в конкретный белок протекает следующим образом:
1. С помощью специальных ферментов на поверхности гена формируется комлементарная цепь матричной РНК. В данном случае ген является матрицей с которой делается слéпок – м-РНК.
2. Образовавшаяся м-РНК перемещается к месту синтеза белка – к рибосомам.
3. Сюда же к месту сборки белковой молекулы «доставляются» посредством тРНК определенные аминокислоты, последовательность построения которых записана на мРНК. Набору из трёх азотистых оснований, который называется триплет нуклеотидов или кодон, соответствует одна и только одна аминокислота. Например, возле нуклеотидной последовательности ГГЦ может закрепиться только глицин
а возле кодона ГЦУ – только аланин
Всего в построении белковой молекулы участвует 20 различных аминокислот.
4. Между располагающимися в строго определённой последовательности аминокислотами образуется пептидная связь
и постепенно формируется молекула белка. Следует подчеркнуть, что синтез белковых молекул осуществляется при активном участии огромного количества всевозможных ферментов.
1. Что такое клетка? В чем заключается ее биологическое значение?
2. В чем заключаются основные положения клеточной теории Шлейдена – Шванна?
3. Какие вещества неорганической природы включены в состав клетки? Объясните их значение.
4. Какое значение для клетки имеют органические вещества: липиды, углеводы и белки?
5. Что такое ДНК? Расскажите о ее строении. Каково значение ДНК для клетки?
6. О чем гласит принцип комплементарности в построении молекулы ДНК?
Произвести достройку молекулы ДНК: А-Г-Г-Г-Ц-А-Т-Г-Т-Т-А-Ц-Г-Ц.
7. Задача: в молекуле ДНК 19 % цитозина. Определить количество остальных нуклеотидов.
8. В чем биологический смысл репликации ДНК?
9. В чем особенности строения РНК? Какие виды РНК встречаются в клетке и какую функцию осуществляют?
10. Каким образом происходит реализация генетической программы?
В чем ее биологический смысл?
В чем заключается роль белков в клетке
Белки — это высокомолекулярные соединения (биополимеры), мономерами которых яв ляются аминокислоты, соединенные пептидными связями.
Аминокислотой называют органическое соединение, имеющее карбоксильную и амино группу, а также радикал. В природе встречается около 200 аминокислот, которые различаются взаимным расположением функциональных групп и радикалами, но только 20 из них входят в состав белков. Такие аминокислоты называют протеиногенными.
Не все протеиногенные аминокислоты могут синтези роваться в организме человека. Аминокислоты, которые образуются в организме человека в необходимом коли честве, называют заменимыми (их насчитывается 12), а аминокислоты, которые не синтезируются и должны поступать с пищей, — незаменимыми (8). К незамени мым аминокислотам относят валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и фенилаланин.
Уровни структурной организации белка.
У белков различают первичную, вторичную, третичную и четвертичную структуры.
Первичная структура белка — это последовательность аминокислот, соединенных пептидной связью. Особенности аминокислотного состава белка обусловливают его пространственную укладку — возникновение вторичной и третичной структур. Изменение расположения хотя бы одной аминокислоты в первичной структуре влечет за собой измене ние более высоких структур, а также свойств белка в целом.
Вторичная структура представляет собой упорядоченную пространственную структуру белковой молекулы в виде спиралей или складок, поддерживаемых водородными связями, которые возникают между атомами кислорода и водорода. Болееменее длинные участки со вторичной структурой имеют, например, кератины волос и ногтей, фиброин шелка.
Четвертичная структура — это про странственная организация нескольких глобул, которая поддерживается слабы ми взаимодействиями (гидрофобными, ионными, водородными и др.). Четвертичная структура характер на для гемоглобина и хлорофилла.
По форме молекулы различают фи бриллярные и глобулярные белки. Первые из них вытянуты, как, например, колла ген соединительной ткани или кератины волос и ногтей. Глобулярные же белки имеют форму глобулы, как миоглобин мышц.
Белки выполняют в клетке ряд функций: пластическую (строительную), каталитическую (ферментативную), энергетическую, сигнальную (рецепторную), сократительную (двигательную), транспортную, защитную, регуляторную и запасающую. Строительная функция белков связана с их наличи ем в клеточных мембранах и структурных компонентах клетки. Энергетическая обусловлена тем, что при расщеплении 1 г белка высвобождается 17,2 кДж энер гии. Белки — рецепторы мембран принимают участие в восприятии сигналов окружающей среды и их пе редаче в клетке, а также в межклеточном узнавании. Без белков невозможно движение клеток и организмов в целом. Они составляют основу жгутиков и ресничек, а также обеспечивают сокращение мышц и перемеще ние внутриклеточных компонентов. В крови человека и многих животных белок гемоглобин переносит кисло род и часть углекислого газа, другие белки транспортируют ионы и электроны. Защитная роль белков связана с иммунитетом: белок интерферон способен уничтожать многие вирусы, а белкиантитела участвуют в иммун ных реакциях. Среди белков и пептидов есть регулято ры, например, гормон поджелудочной железы, инсулин, регулирующий концентрацию глюкозы в крови. У неко торых организмов белки могут откладываться в запас, как у бобовых в семенах, или у птиц и пресмыкающихся в яйцах.