в чем заключается принцип гюйгенса
Принцип Гюйгенса
Принцип Гюйгенса — Френеля — основной постулат волновой теории, описывающий и объясняющий механизм распространения волн, в частности, световых.
Содержание
Описание
Принцип Гюйгенса — Френеля является развитием принципа, который ввёл Христиан Гюйгенс в 1678 году: каждая точка поверхности, достигнутая световой волной, является вторичным источником световых волн. Огибающая вторичных волн становится фронтом волны в следующий момент времени. Принцип Гюйгенса объясняет распространение волн, согласующееся с законами геометрической оптики, но не может объяснить явлений дифракции. Огюстен Жан Френель в 1815 году дополнил принцип Гюйгенса, введя представления о когерентности и интерференции элементарных волн, что позволило рассматривать на основе принципа Гюйгенса — Френеля и дифракционные явления.
Принцип Гюйгенса — Френеля формулируется следующим образом:
Каждый элемент волнового фронта можно рассматривать, как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.
Густав Кирхгоф придал принципу Гюйгенса — Френеля строгий математический вид, показав, что его можно считать приближенной формой теоремы, называемой интегральной теоремой Кирхгофа (см. метод Кирхгофа).
Фронтом волны точечного источника в однородном изотропном пространстве является сфера. Амплитуда возмущения во всех точках сферического фронта волны, распространяющейся от точечного источника, одинакова.
Дальнейшим обобщением и развитием принципа Гюйгенса — Френеля является формулировка через интегралы по траекториям, служащая основой современной квантовой механики.
См. также
Примечания
Литература
Ссылки
Геометрическая оптика • Физическая оптика • Волновая оптика • Квантовая оптика • Нелинейная оптика • Теория испускания света • Теория взаимодействия света с веществом • Спектроскопия • Лазерная оптика • Фотометрия • Физиологическая оптика • Оптоэлектроника • Оптические приборы | |
Смежные направления | Акустооптика • Кристаллооптика |
---|
Общая (физическая) акустика • Геометрическая акустика • Психоакустика • Биоакустика • Электроакустика • Гидроакустика • Ультразвуковая акустика • Квантовая акустика (акустоэлектроника) • Акустическая фонетика (Акустика речи) | |
Прикладная акустика | Архитектурная акустика (Строительная акустика) • Аэроакустика • Музыкальная акустика • Акустика транспорта • Медицинская акустика • Цифровая акустика |
---|---|
Смежные направления | Акустооптика |
Полезное
Смотреть что такое «Принцип Гюйгенса» в других словарях:
принцип Гюйгенса — Принцип, согласно которому каждая точка волнового фронта рассматривается как элементарный источник колебаний [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN Huygens s principle … Справочник технического переводчика
Принцип Гюйгенса — Френеля — Рефракция волн по Гюйгенсу … Википедия
Принцип Гюйгенса-Френеля — Рефракция волн по Гюйгенсу Дифракция волн по Гюйгенсу Принцип Гюйгенса Френеля основной постулат волновой теории, описывающий и объясняющий механизм распространения волн, в частности световых. Принцип Гюйгенса Френеля является развитием… … Википедия
Принцип Гюйгенса–Френеля — Рефракция волн по Гюйгенсу Дифракция волн по Гюйгенсу Принцип Гюйгенса Френеля основной постулат волновой теории, описывающий и объясняющий механизм распространения волн, в частности световых. Принцип Гюйгенса Френеля является развитием… … Википедия
Принцип Гюйгенса—Френеля — Рефракция волн по Гюйгенсу Дифракция волн по Гюйгенсу Принцип Гюйгенса Френеля основной постулат волновой теории, описывающий и объясняющий механизм распространения волн, в частности световых. Принцип Гюйгенса Френеля является развитием… … Википедия
Принцип Гюйгенса—Френеля — основной постулат волновой теории, описывающий и объясняющий механизм распространения волн, в частности световых. Данный принцип является развитием принципа, который ввёл нидерландский учёный X. Гюйгенс (1629 1695) в 1678 г. В соответствии с ним… … Концепции современного естествознания. Словарь основных терминов
принцип Гюйгенса-Френеля — Hiuigenso principas statusas T sritis fizika atitikmenys: angl. Huygens principle vok. Huygenssches Prinzip, n rus. принцип Гюйгенса Френеля, m pranc. principe d’Huygens, m … Fizikos terminų žodynas
ГЮЙГЕНСА — ФРЕНЕЛЯ ПРИНЦИП — приближённый метод решения задач о распространении волн, особенно световых. Согласно этому принципу, первоначально введённому голл. учёным X. Гюйгенсом (Ch. Huygens; 1678), каждый элемент поверхности, к рой достигла в данный момент волна, явл.… … Физическая энциклопедия
Гюйгенса — Френеля принцип — Рефракция волн по Гюйгенсу Дифракция волн по Гюйгенсу Принцип Гюйгенса Френеля основной постулат волновой теории, описывающий и объясняющий механизм распространения волн, в частности световых. Принцип Гюйгенса Френеля является развитием… … Википедия
В чем заключается принцип гюйгенса
Законы отражения и преломления света можно вывести из одного общего принципа, описывающего поведение волн. Этот принцип впервые был выдвинут современником Ньютона Христианом Гюйгенсом.
Принцип Гюйгенса. Согласно принципу Гюйгенса каждая точка среды, до которой дошло возмущение, сама становится источником вторичных волн. Для того чтобы, зная положение волновой поверхности в момент времени t, найти ее положение в следующий момент времени t +Δt, нужно каждую точку волновой поверхности рассматривать как источник вторичных волн. Поверхность, касательная ко всем вторичным волнам, представляет собой волновую поверхность в следующий момент времени (рис. 94). Этот принцип в равной мере пригоден для описания распространения волн любой природы: механических, световых и т. д. Гюйгенс сформулировал его первоначально именно для световых волн.
Для механических волн принцип Гюйгенса имеет наглядное истолкование: частицы среды, до которых доходят колебания, в свою очередь, колеблясь, приводят в движение соседние частицы среды, с которыми они взаимодействуют.
Закон отражения. С помощью принципа Гюйгенса можно вывести закон, которому подчиняются волны при отражении от границы раздела сред.
Угол а между падающим лучом и перпендикуляром к отражающей поверхности в точке падения называют углом падения.
Так как AD=СВ и треугольники ADB и АСВ прямоугольные, то ∠ DBA = ∠CAB и ϒ=∠DBA как углы с перпендикулярными сторонами. Следовательно, угол отражения равен углу падения:
Кроме того, как вытекает из построения Гюйгенса, падающий луч, луч отраженный и перпендикуляр, восставленный в точке падения, лежат в одной плоскости. Эти два утверждения представляют собой закон отражения света.
Если обратить направление распространения световых лучей, то отраженный луч станет падающим, а падающий — отраженным. Обратимость хода световых лучей — их важное свойство.
Сформулирован общий принцип распространения волн любой природы — принцип Гюйгенса. Этот принцип позволяет с помощью простых геометрических построений находить волновую поверхность в любой момент времени по известной волновой поверхности в предшествующий момент. Из принципа Гюйгенса выведен закон отражения волн.
Измерение скорости света
Механические модели волн. 1.
Дифракция света. Принцип Гюйгенса-Френеля. Зоны Френеля
Дифракция света – это явление отклонения света от прямолинейного направления его распространения во время прохождения рядом с препятствиями.
Из опыта видно, что определенные условия влияют на захождение геометрической тени на область.
Когда на пути встречается препятствие в виде диска, шарика или круглого отверстия, тогда экран, расположенный на большом расстоянии, покажет дифракционную картину, то есть систему чередующихся светлых и темных колец. При отверстии линейного характера (щели или нити) экран показывает параллельные дифракционные полосы.
Принцип Гюйгенса-Френеля
Существование дифракционных явлений было задолго до времен Ньютона. Объяснение, основанное на корпускулярной теории, не давало должных результатов. Одним из первых объяснений явления дифракции, основанное на волновых представлениях, было дано Т. Юнгом. Еще в 1818 году была известна и развита количественная теория дифракционных явлений О. Френеля. Принцип Гюйгенса был заложен в основу. Он только дополнил при помощи идеи об интерференции вторичных волн.
Первоначальный вид данного принципа давал возможность нахождения положения фронтов в последующие моменты времени, иначе говоря, определял направление распространения волны. Это и есть принцип геометрической оптики. Впоследствии гипотеза Гюйгенса об огибающих вторичных волнах были заменены Френелем с помощью физически ясного положения, тогда вторичные волны в точке наблюдения интерферировали друг с другом.
Принципом Гюйгенса-Френеля считалась гипотеза, которая была со временем подтверждена. При решении задач, где необходимо использовать данный принцип, получение результата достаточно точное. На иллюстрации изображен принцип Гюйгенса-Френеля.
Предположим, что поверхность S – положение волнового фронта в некоторый момент. Из теории волн известно, что он является поверхностью, где в заданных точках происходит колебание с одинаковым значением фазы. Волновыми фронтами плоской волны считают семейством параллельных плоскостей, которые перпендикулярно направлены относительно распространения волны. Волновые фронты сферической волны, которые испускаются при помощи точечного источника, относят к концентрическим сферам.
Для примера ниже приведена дифракционная задача прохождения плоской монохроматической волны, которая исходит от удаленного источника через отверстие с радиусом R непрозрачного экрана.
Чтобы расчеты были облегченными, волновая поверхность падающей волны разбивается на кольцевые зоны, называемыми зонами Френеля, исходя из правила: расстояния от границ соседних зон к точке Р имеют отличие на половину волны.
Зоны Френеля. Интерференционный максимум
Отличие от двух соседних точек расстоянием λ 2 говорит о том, что колебания, возбуждаемые этими зонами в состоянии противофазы. Соседние волны начинают гасить друг друга, а это приводит к тому, что суммарная амплитуда в точке запишется как:
Выражения в скобках равняются нулю, значит, амплитуда, вызванная волновым фронтом, равняется половине действий первой зоны.
Полученные пластинки обладают свойством фокусировки света, поэтому их называют зонными пластинками.
Круглый диск дает понять, что при дифракции зоны Френеля от 1 до m будут в закрытом состоянии. Отсюда получаем, что формула амплитуды колебаний примет вид:
Так как оптический диапазон имеет короткую волну, тогда соответственно зона Френеля также мала. Отчетливее проявление дифракционных явлений заметно при небольшом количестве зон на препятствии.
Получим формулы вида:
Когда количество зон Френеля из препятствия увеличивается, тогда дифракционные явления становятся незаметными:
Определение границы применимости геометрической оптики возможно при помощи заданного неравенства. При выполнении данного условия узкий пучок света может быть сформирован.
Отсюда следует вывод, что волновая оптика – это предельный случай геометрической.
При расчете видно, что радиусы ρ m зон Френеля на волне сферического фронта запишется, как
Выводы по теории Френеля справедливы.
Дифракция и интерференция света применима к любым волнам, так как имеется общность закономерностей. Начало XIX века – это было время, когда ученые только начинали изучать волны, а физическая природа света еще не была раскрыта.
В чем заключается принцип теории Гюйгенса Френеля
Как известно, свет проявляет свойства, волны и частицы. Одна из теорий, описывающих его поведение — это волновая теория света. Важнейший постулат этой теории — принцип Гюйгенса-Френеля. Он описывает и объясняет распространение волн, частным случаем которых и является свет — электромагнитное излучение в оптическом диапазоне.
Суть принципа Гюйгенса-Френеля
Это утверждение объясняет и описывает то, как распространяются колебания, например, свет. Оно состоит из двух частей. Первую часть (принцип Гюйгенса) предложил Христиан Гюйгенс в 1678 году. Он предположил, что при распространении излучения из каждой точки волнового фронта начинают исходить новые сферические волны.
Волновой фронт — это поверхность, на которой возмущение находится в одинаковой фазе. Проще говоря, это граница пространства, в котором уже распространилось возмущение. Например, если бросить камень в воду, пойдут круги — волны. Их фронт в этом случае — это самый внешний круг.
Огюстен Жан Френель в 1815 году развил предположение Гюйгенса.
Важно! Его дополнение заключается в том, что поле, получившееся при распространении возмущения, создается интерференцией вторичных колебаний, которые имеют одинаковую амплитуду. Огибающая вторичных волн дает положение волнового фронта через небольшой промежуток времени.
Интерференция — это наложение волн друг на друга. При этом в одних участках колебания они взаимно усиливают друг друга, в других ослабляют. Поэтому для света получается картина из светлых и темных полосок. Пример этого кольца Ньютона, картина из концентрических кругов, получающаяся, если плоско-выпуклую линзу положить на стеклянную пластинку.
Чтобы можно было наблюдать картину интерференции, излучение должно быть когерентным. Это значит, что оно должно иметь постоянную разность фаз и давать колебания такой же частоты, если их сложить.
Утверждение, сделанное Гюйгенсом, помогало определить только направление распространения возмущения и объясняло распространение света, как его описывает геометрическая оптика. Дополнение принципа Гюйгенса позволяет рассчитывать амплитуду и интенсивность.
Это интересно! Какие бывают системы отсчета в физике и что это такое
Краткая формулировка
Если говорить кратко, этот постулат заключается в следующем. Колебания в любой точке пространства — это результат интерференции возмущений, излученных точками на волновой поверхности.
Для любой точки пространства колебания — это наложение вторичных когерентных колебаний, излучаемых точками волнового фронта. Таким образом, в некоторых задачах можно один источник заменить на несколько одинаковых вторичных источников.
Применение
Рассматриваемое утверждение дает возможность объяснить различные оптические явления:
С помощью принципа Гюйгенса-Френеля можно рассчитать амплитуду и интенсивность светового излучения. Для этого используются методы зон Френеля.
Зоны Френеля
Это утверждение важно для решения задач по дифракция света по принципу Гюйгенса-Френеля. Строгое решение таких задач математически очень сложно, поэтому пользуются приближенными методами.
Благодаря открытиям Гюйгенса и Френеля в таких задачах можно заменить один первичный источник совокупностью вторичных источников.
Это существенно облегчает задачу, например, для сферического случая. Такой метод расчета называется методом зон Френеля.
Важно! Зоны Френеля — это участки, на которые делят поверхность, чтобы упростить расчет, например, амплитуды колебаний. На зоны можно разбить любую поверхность, через которую проходит свет.
Сферический случай
В случае сферической волны зоны Френеля выглядят как кольца. Для произвольной точки М их можно построить, проведя из этой точки сферы радиусы, различающиеся на 1/2 длины волны.
Для сферического случая можно посчитать радиус зоны. Это внешний радиус кольца.
Площади зон Френеля с небольшими номерами примерно одинаковы. Они не зависят от номера зоны m. Они считаются как разница площадей сегментов сферы. Если не углубляться в детали, площади зон Френеля в этом случае находят так. Нужно умножить длину волны на радиус сферического волнового фронта R, на расстояние до точки наблюдения a и на число пи, а затем поделить на сумму R и a.
Зоны Френеля находят применение в зонных пластинках со светлыми и темными кольцами-радиусами, соответствующими размерам зон. Они работают аналогично собирающей линзе.
Это интересно! Квантовые постулаты Нильса Бора: кратко об основных положениях
Дифракция
С помощью этого постулата объясняется дифракция света по принципу Гюйгенса-Френеля — огибание ими небольших предметов. Для света он дает обоснование того, почему возмущения распространяются и в область геометрической тени. Если бы они не огибали предметы, мы бы никогда не увидели полутени, все тени были бы резкими, как предполагает геометрическая оптика. Но реальная картина отличается от предположений геометрической оптики.
Пример — плоская волна, падающая на плоскость с отверстием. Когда она проходит через отверстие, все точки фронта излучают вторичные сферические колебания. С помощью построения огибающей увидим, что фронт волны оказывается там, куда согласно геометрической оптике свет попадать не должен.
Френель обосновал явление дифракции света по принципу Гюйгенса-Френеля и создал метод ее расчета. Развив принцип Гюйгенса, он установил, что:
Дифракция на прямоугольной щели
Прямоугольную щель можно поделить на N зон в виде узких полосок, параллельных ее длинной стороне. Если наблюдатель находится далеко от источника, то задача сводится к расчету интерференции от N одинаковых источников.
В таком случае интерференционная картина выглядит как светлые и темные полосы. Наиболее яркая светлая полоса — главный максимум — находится в центре.
Преломление
Когда свет попадает из одной среды в другую, например, из воздуха в воду, он меняет направление, т.е. преломляется. Согласно принципу Гюйгенса-Френеля на границе сред из каждой точки исходит вторичное излучение.
Из принципа Гюйгенса можно получить, что показатель преломления равен отношению скоростей светового колебания в одной и другой среде. Также можно найти и угол, на который отклоняется свет.
Это интересно! Изучаем термины: энтропия – что же это такое простыми словами
Видео
В интернете можно найти видео, демонстрирующие, как работает принцип Гюйгенса-Френеля. Например, наглядная демонстрация для отражения плоской волны от поверхности доказывает, что угол падения и угол отражения равны.
Если волна падает на плоскость, отражаясь от нее, различные точки волновой поверхности доходят до плоскости неодновременно. Начинают распространяться вторичные колебания.
Касательная к ним — это и есть волновой фронт отраженного колебания. Решив простую геометрическую задачу о равенстве треугольников, можно установить, что углы, под которыми излучение падает и отражается, равны.
Можно построить изображение источника в плоском зеркале. Фронт отраженного возмущения будет сферой с центром в некоторой точке. Эта точка и будет мнимым изображением плоского источника в зеркале.
Можно найти видео, иллюстрирующие и другие физические явления. Например, можно пронаблюдать зоны Френеля для электромагнитного колебания. Также можно найти лекции, посвященные принципу Гюйгенса-Френеля и другим вопросам оптики.
Это интересно! Формулировки законов Исаака Ньютона: кратко и понятно
Полезное видео
Заключение
Принцип Гюйгенса-Френеля дает возможность объяснить такие оптические явления, как рефракцию, дифракцию, распространение света по прямой, интерференцию. С его помощью можно приближенно решать задачи оптики, которые очень трудно решить точными методами. Это утверждение — основной постулат волновой теории и применимо не только к распространению светового излучения, но и к другим волновым процессам.
Принцип Гюйгенса
Представьте себе волну на поверхности водоема. Проще всего, казалось бы, описать волновое движение воды чисто механически — рассчитать силы гидродинамического давления, действующие на частицы водной поверхности снизу, и противодействующие им силы гравитационного притяжения, суммарное воздействие которых и приводит к тому, что поверхность ритмично колышется вверх-вниз. Однако в конце XVII века голландский физик Христиан Гюйгенс представил себе волновую картину несколько по-иному и вывел, благодаря этому, мощный принцип, в равной мере применимый к любым волнам — начиная от волн на водной поверхности и заканчивая гамма-излучением далеких галактик.
Смысл принципа Гюйгенса проще всего понять, если представить себе, что гребень волны на водной поверхности на мгновение застыл. Теперь представьте, что в этот миг вдоль всего фронта волны в каждую точку гребня брошено по камню, в результате чего каждая точка гребня становится источником новой круговой волны. Практически всюду вновь возбужденные волны взаимно погасятся и не проявятся на водной поверхности. И лишь вдоль фронта исходной волны вторичные маленькие волны взаимно усилятся и образуют новый волновой фронт, параллельный предыдущему и отстоящий от него на некоторое расстояние. Именно по такой схеме, согласно принципу Гюйгенса, и распространяется волна.
Так почему столь парадоксальный, казалось бы, взгляд на столь обычное природное явление, как распространение волн, оказывается полезен ученым? Представьте, что будет при столкновении волны с препятствием на пути ее распространения. Вернемся к примеру волны на водной поверхности и представим, что волна ударилась о бетонный волнорез под углом к нему. Согласно принципу Гюйгенса, из тех точек волнового фронта, которые пришлись на волнорез, вторичные волны распространяться не будут, а из остальных будут. В результате волна продолжит свой путь и восстановится позади волнореза. То есть, фактически, при столкновении с препятствием волна спокойно огибает его, и любой моряк вам это подтвердит. (Это свойство волн называется дифракцией.)
Имеется и целый ряд других полезных применений принципа Гюйгенса при рассмотрении волновых явлений — порой весьма неожиданных. Он широко используется в волновой оптике и в телекоммуникационной инженерии, где волны (световые и радио- соответственно) регулярно сталкиваются с препятствиями на пути их распространения и огибают их.
К этому открытию Гюйгенса привели занятия астрономией, для развития которой он сделал немало, в частности, став в 1655 году первооткрывателем Титана — самого большого спутника Сатурна. Автоматическая космическая станция НАСА «Кассини» в 2004 году должна достигнуть Сатурна и отправить на поверхность Титана спускаемый аппарат для исследования состава его атмосферы и грунта. Этот спускаемый аппарат называется «Гюйгенс». Так наука чтит своих основателей.