в чем заключается метод соматической гибридизации растений

Соматическая гибридизация, ее особенности

В отличие от обычной гибридизации, где сливаются половые клетки (гаметы), в качестве родительских при парасексуальной гибридизации используются диплоидные клетки растений.

Техника парасексуальной гибридизации может позволить

-скрещивание отдаленных филогенетически растений (организмов)

-получение ассимметричных гибридов, несущих генный набор одного из родителей наряду с несколькими хромосомами, органеллами или цитоплазмой другого

-слияние трех и более клеток

-получение гибридов, представляющих сумму генотипов родителей,

-перевод мутаций в гетерозиготное состояние, что позволяет получать жизнеспособные формы при слиянии протопластов, т.к. мутагенез часто дает дефектное по морфогенезу растение

-получение растений, гетерозиготных по внеядерным гена
Впервые зрелый межвидовой гибрид, полученный в результате парасексуальной гибридизации протопластов 2 сортов табака (Nicotiana glauca, c 24 хромосомами и N.langsdorfii c 18 хромосомами), описан Карлсоном в 1972 г. Каллус амфиплоидного гибрида мог расти на безгормональной среде. Гибридное растение цвело.

С тех пор были получены жизнеспособные внутривидовые, межвидовые, межродовые гибриды.

Соматические гибриды по форме листьев и кустов, размеру клубней занимали промежуточное положение между культурными и дикими растениями. Вместе с тем гибрид, полученный в результате соматической гибридизации, оказался устойчивым к вирусу «У», чем отличался от полового гибрида.

Первая попытка по созданию межродовых гибридов принадлежит Г. Мельхерсу, создавшему в 1978 году гибрид картофель + томат, так называемый томатофель. Гибрид был стерилен, морфологически аномален: толстые корни, отсутствие типичных столонов, махровые цветки.

Было еще несколько попыток получения таких гибридов, но все растения стерильны. Эти эксперименты показали ограниченность применения парасексуальной гибридизации для прикладной селекции.

Первые работы по получению межсемейственных гибридов проведены К.Као и В.Веттером в 1976-77 гг. (соя + табак). Позднее в лаборатории Ю.Ю.Глебы провели аналогичные эксперименты пасленовые + бобовые и лилейные (горошек + табак и лук + табак). И.Ф.Каневскому удалось индуцировать морфогенез стеблеподобных тератом в культуре межсемейственных гибридов N.tabacum + Vicia faba.

Практически во всех случаях наблюдалась видоспецифичная элиминация хромосом одного из родителей. В культурах межсемейственных гибридов наблюдалось много многоядерных клеток, клеток с мини ядрами, в метафазах делений встречались гигантские хромосомы. Отмечена асинхронность в расхождении родительских хромосом в анафазе. Морфогенез у такого материала отмечен не был.
Соматическая гибридизация — это метод создания неполовых гибридов путем слияния изолированных про­топластов, полученных из соматических клеток. Гибридизация со­матических клеток дает возможность не только соединить в одном ядре гены далеких видов (родов, семейств) растений, между кото­рыми невозможно половое скрещивание, но и сочетать в гибрид­ной клетке цитоплазматические гены партнеров.

Другим способом получения соматических гибридов является электрослияние. Слияние, индуцируемое электрическими импульсами, можно объяснить следующим образом. Импульс короткой продолжительности вызывает диэлектрическое разрушение соприкасающихся мембран протопластов. Вокруг дырки возможен обмен липидными молекулами, образование липидных мостов, что в конце концов приводит к слиянию мембран. Это энергетически более выгодное состояние, чем существование двух поврежденных мембран. Процессы, сопровождающиеся обменом липидов, отражают особенности жидкой мозаичной структуры клеточной мембраны и могут быть связаны с ее текучестью.

В отличие от полового скрещивания, где имеет место передача цитоплазмы только от материнского организма, при соматической гибридизации в образовавшемся гибриде оба партнера имеют более или менее равный цитоплазматический статус. Слияние протопластов способствует объединению двух различных цитоплазм. В большинстве исследований слияние протопластов высших растений приводит к образованию либо гибрида, либо цибрида. Цибридное растение содержит цитоплазму обоих партнеров, ядро — одного. Образование растения с гибридной цитоплазмой и органеллами обоих партнеров, но содержащее в своих клетках ядро только одного вида, возможно в том случае, если после слияния протопластов не происходит соединения ядер и одно ядро дегенерирует.

Основной недостаток метода соматической гибридизации — низкая частота регенерации соматических гибридов, особенно межвидовых и межродовых. В связи с этим соматическую гибридизацию широко применяют у видов с высоким регенерационным потенциалом in vitro, прежде всего семейств Пасленовые, Капустные, Сельдерей­ные, Лилейные.

С помощью соматической гибридизации между культурными растениями и дикими видами были получены: сорта картофеля, устойчивые к вирусным заболеваниям, фитофторозу, колорадско­му жуку; томаты, устойчивые к вирусу табачной мозаики.

56. Термины: амфигаплоид, амфидиплоид

Аллополиплоидия-механизм, в результате которого бразуются аллополиплоиды (организм, являющийся результатом скрещивания хромосомных наборов разных видов)

Подобный гибрид был получен в 20-х годах прошлого века отечественным генетиком Карпеченко при скрещивании редьки (Raphanus sativus) с капустой (Brassica oleraceae). Оба вида имеют диплоидное число хромосом(18), относятся к разным родам. Растения, получаемые в результате скрещивания почти полностью стерильны.

С открытием колхицина получение подобных гибридов не представляет проблемы. Частным случаем аллополиплоидии является амфидиплоид.

Амфидиплоид

(от греч. amphí — с обеих сторон, diplóos — двойной и éidos — вид) (аллотетраплоид), гибридный организм, полученный скрещиванием двух разных видов (или родов) растений или животных; в его клетках сочетаются полные диплоидные наборы хромосом обоих видов (или родов). Пример амфидиплоида — ржано-пшеничный гибрид (тритикале):

♀Triticum durum(2n=28)x♂Secale cereale(2n=14)
F1(2n=21)
колхицин
Тритикале(2n=42)

Спонтанная аллополиплоидия сыграла большую роль в эволюции как диких, так и окультуренных растений.

Источник

Клеточная, генная инженерии. Методы Мичурина

Методы клеточной инженерии (получение соматических гибридов)

1. Соматическая гибридизация — это гибридизация, проведенная между протопластами, которые выделены из растительных соматических клеток. Для получения пригодных для гибридизации протопластов необходимо разрушить внешнюю оболочку клетки специальными ферментами.

2. Так был получен, например, помидофель (томтато) — гибрид томата и картофеля, у которого, как и положено родительским растениям, в земле находятся клубни (картофель), а на стеблях плоды (помидоры).

3. В результате гибридизации соматических клеток можно, во-первых, соединить в ядре гены растений, не имеющих близкого родства, во-вторых, слить цитоплазматические гены партнеров в гибридной клетке.

4. На питательной среде из гибридной растительной клетки можно выращивать клеточную массу — каллюс (или каллус), которая потом дифференцируются в обычное растение, имеющее все органы. Этот гибрид можно высадить в почву и стремительно размножать привычным образом.

Использование соматических мутаций

1. Эти мутации применяют в селекции растений, которые размножаются вегетативно. Такой вид размножения позволяет сберечь полезную соматическую мутацию, размножить любую гетерозиготную форму, которая имеет полезные для сельского хозяйства признаки.

2. Лишь вегетативное размножение позволяет сохранять свойства большого ряда плодово-ягодных культур. Дело в том, что в ходе полового размножения сорта, состоящие из гетерозигот, не сохраняют свои свойства, идет их расщепление.

Методы генной инженерии

1. Бактерия Bacillus thuringiensis нарабатывает эндотоксин (белок). Если бактерия оказывается в желудке насекомого, который вредит посевам, белок вызывает разрушение (лизис) желудочных стенок, вследствие чего насекомое гибнет.

2. В клетки растений исследователи ввели ген, который отвечает за синтез эндотоксина. Оказалось, что если на эти растения запустить гусениц тех самых вредных насекомых, то «доверчивые» гусеницы наедаются листвы, содержащей токсин, и гибнут. Удивительно, но белок смертельно опасен лишь для насекомых, он не оказывает влияния на желудки других животных и человека.

3. Так удалось вывести устойчивые к сельхозвредителям формы томата, картофеля, рапса, табака. Можно сказать, что это одно из первых важнейших практических достижений генной инженерии в селекции растений.

Методы селекции растений, открытые И. В. Мичуриным

1. Шесть десятков лет крупнейший русский биолог Иван Владимирович Мичурин отдал селекции растений. На первых этапах деятельности он намеревался добиться акклиматизации южных сортов в северных широтах. К сожалению, растения вымерзали, и тогда ученый начал разрабатывать методы селекции.

2. База Мичурина — сочетание тройки ведущих методов: отбор, гибридизация, воздействие различных условий окружающей среды на гибриды.

3. Отбор форм для гибридизации велся Мичуриным тщательно. Он производил скрещивание южных изнеженных сортов с «закаленными» северными, затем отбирал лучшие сеянцы и помещал их в достаточно суровые условия для «воспитания стойкости». Так удалось вывести, например, сорт яблок Славянка, гибрид неприхотливой северной Антоновки и южного гостя Ранета ананасного.

4. Мичурин много экспериментировал с сортами, произрастающими в разных регионах и не присущих тому месту, где он работал (город Козлов, сейчас Мичуринск). Так биолог вывел в 1908 году поздний, очень плодовитый сорт яблок Бельфлёр-китайка — от яблони Китайки крупноплодной, растущей в Сибири, и «американца» Бельфлёра желтого.

5. Также Мичурин трудился над созданием отдаленных гибридов — он скрестил, например, малину с ежевикой, рябину с боярышником.

Для устранения негативных последствий отдаленной гибридизации Иван Владимирович Мичурин использовал следующие приемы:

1. Метод вегетативного сближения. Он заключался в предварительной прививке одного вида на другой. В результате меняется химический состав тканей растения, включая генеративные органы. Это повышает вероятность прорастания в пестике пыльцевых трубок. Именно так удалось создать гибрид груши и рябины.

2. Опыление пыльцевой смесью для стимуляции прорастания пыльцевых трубок. «Своя» пыльца «дразнит» рыльце пестика, который начинает воспринимать и «чужую» пыльцу как «свою». Этим способом выведены гибриды яблони и груши, черемухи и вишни (цепарадус).

3. Метод посредника. Сначала Мичурин скрестил дикий персик Давида с диким миндалем, получив гибрид — миндаль Посредник. Затем Посредник был скрещен с культурным сортом персика. В результате получен морозоустойчивый «северный персик».

Источник

Соматическая гибридизация

в чем заключается метод соматической гибридизации растений. Смотреть фото в чем заключается метод соматической гибридизации растений. Смотреть картинку в чем заключается метод соматической гибридизации растений. Картинка про в чем заключается метод соматической гибридизации растений. Фото в чем заключается метод соматической гибридизации растений в чем заключается метод соматической гибридизации растений. Смотреть фото в чем заключается метод соматической гибридизации растений. Смотреть картинку в чем заключается метод соматической гибридизации растений. Картинка про в чем заключается метод соматической гибридизации растений. Фото в чем заключается метод соматической гибридизации растений в чем заключается метод соматической гибридизации растений. Смотреть фото в чем заключается метод соматической гибридизации растений. Смотреть картинку в чем заключается метод соматической гибридизации растений. Картинка про в чем заключается метод соматической гибридизации растений. Фото в чем заключается метод соматической гибридизации растений в чем заключается метод соматической гибридизации растений. Смотреть фото в чем заключается метод соматической гибридизации растений. Смотреть картинку в чем заключается метод соматической гибридизации растений. Картинка про в чем заключается метод соматической гибридизации растений. Фото в чем заключается метод соматической гибридизации растений

в чем заключается метод соматической гибридизации растений. Смотреть фото в чем заключается метод соматической гибридизации растений. Смотреть картинку в чем заключается метод соматической гибридизации растений. Картинка про в чем заключается метод соматической гибридизации растений. Фото в чем заключается метод соматической гибридизации растений

в чем заключается метод соматической гибридизации растений. Смотреть фото в чем заключается метод соматической гибридизации растений. Смотреть картинку в чем заключается метод соматической гибридизации растений. Картинка про в чем заключается метод соматической гибридизации растений. Фото в чем заключается метод соматической гибридизации растений

Разработка способов индукции слияния протопластов вместе с развитием экспериментальной техники культивирования клеток in vitro, дающей возможность получения изолированных протопластов, их культивирования и образования каллуса и в дальнейшем целого растения, сформировало новый очень интересный и перспективный метод гибридизации растений — парасексуальную, или соматическую, гибридизацию.

Сущность этого способа гибридизации заключается в том, что в качестве родительских используются не половые клетки (гаметы), а клетки тела (сомы) растений, из которых изолируют протопласты.

Соматическая гибридизация — это метод создания неполовых гибридов путем слияния изолированных про­топластов, полученных из соматических клеток. Гибридизация со­матических клеток дает возможность не только соединить в одном ядре гены далеких видов (родов, семейств) растений, между кото­рыми невозможно половое скрещивание, но и сочетать в гибрид­ной клетке цитоплазматические гены партнеров.

Другим способом получения соматических гибридов является электрослияние. Слияние, индуцируемое электрическими импульсами, можно объяснить следующим образом. Импульс короткой продолжительности вызывает диэлектрическое разрушение соприкасающихся мембран протопластов. Вокруг дырки возможен обмен липидными молекулами, образование липидных мостов, что в конце концов приводит к слиянию мембран. Это энергетически более выгодное состояние, чем существование двух поврежденных мембран. Процессы, сопровождающиеся обменом липидов, отражают особенности жидкой мозаичной структуры клеточной мембраны и могут быть связаны с ее текучестью.

В отличие от полового скрещивания, где имеет место передача цитоплазмы только от материнского организма, при соматической гибридизации в образовавшемся гибриде оба партнера имеют более или менее равный цитоплазматический статус. Слияние протопластов способствует объединению двух различных цитоплазм. В большинстве исследований слияние протопластов высших растений приводит к образованию либо гибрида, либо цибрида. Цибридное растение содержит цитоплазму обоих партнеров, ядро — одного. Образование растения с гибридной цитоплазмой и органеллами обоих партнеров, но содержащее в своих клетках ядро только одного вида, возможно в том случае, если после слияния протопластов не происходит соединения ядер и одно ядро дегенерирует.

Важным моментом в изучении индуцированного слияния двух неродственных протопластов является селективный маркер, используемый для идентификации продукта гетероплазматического слияния, так как эффект индуктора не специфичен и вызывает агрегацию и слияния протопластов как одного и того же вида, так и различных видов. Для идентификации гетероплазматического продукта могут служить пластиды. Например, в случае индуцируемого ПЭГ слияния протопластов сои и капусты гетерокарион получал хлоропласты от капусты и плотную цитоплазму и неокрашенные пластиды от протопластов сои.

При межродовом слиянии протопластов табака и моркови как селективные маркеры использовались зеленые хлоропласты табака и красные, содержащие антоциан, протопласты моркови. Четко различимы были продукты слияния при межвидовой гибридизации между протопластами двух видов Torenia. Протопласты Т. fournieri, содержащие антоциан, комбинировались с протопластами Т. baitlonii, содержащими только хромопласты или только хлоропласты. Кроме пластид могут быть использованы биохимические и генетические маркеры, такие, как изоферментный состав, структура нуклеиновых кислот, устойчивость к антибиотикам, число хромосом, кариотипы.

в чем заключается метод соматической гибридизации растений. Смотреть фото в чем заключается метод соматической гибридизации растений. Смотреть картинку в чем заключается метод соматической гибридизации растений. Картинка про в чем заключается метод соматической гибридизации растений. Фото в чем заключается метод соматической гибридизации растений

Основной недостаток метода соматической гибридизации — низкая частота регенерации соматических гибридов, особенно межвидовых и межродовых. В связи с этим соматическую гибридизацию широко применяют у видов с высоким регенерационным потенциалом in vitro, прежде всего семейств Пасленовые, Капустные, Сельдерей­ные, Лилейные.

С помощью соматической гибридизации между культурными растениями и дикими видами были получены: сорта картофеля, устойчивые к вирусным заболеваниям, фитофторозу, колорадско­му жуку; томаты, устойчивые к вирусу табачной мозаики.

Впервые зрелый межвидовой гибрид, полученный в результате парасексуальной гибридизации протопластов 2 сортов табака (Nicotiana glauca c 24 хромосомами и N.langsdorfii c 18 хромосомами), описан Карлсоном в 1972 г. Каллус амфиплоидного гибрида мог расти на безгормональной среде. Гибридное растение цвело. С тех пор были получены жизнеспособные внутривидовые, межвидовые, межродовые гибриды.

Осуществлено слияние протопластов культурного картофеля сорта Приекульский ранний (Solanum tuberosum) с протопластами дикого картофеля (S. chacoense). Известно, что у дикого картофеля клубни очень мелкие. Вместе с тем, растение устойчиво ко многим заболеваниям. Картофель сорта Приекульский ранний образует крупные клубни, но растения этого сорта восприимчивы к болезням. Размеры протопластов у этих растений разные. Соматические гибриды по форме листьев и кустов, размеру клубней занимали промежуточное положение между культурными и дикими растениями. Вместе с тем гибрид, полученный в результате соматической гибридизации, оказался устойчивым к вирусу «У», чем отличался от полового гибрида.

Первая попытка по созданию межродовых гибридов принадлежит Г. Мельхерсу, создавшему в 1978 году гибрид картофель + томат, так называемый томатофель. Гибрид был стерилен, морфологически аномален: толстые корни, отсутствие типичных столонов, махровые цветки. Было еще несколько попыток получения таких гибридов, но все растения стерильны. Эти эксперименты показали ограниченность применения парасексуальной гибридизации для прикладной селекции. Японскими исследователями (Х. Кисака с соавт., 1997) путем электрослияния протопластов ячменя и риса был получен межродовой соматический гибрид.

Протопласты риса получали из суспензионной культуры, а протопласты ячменя были изолированы из молодых листьев. Часть полученных каллусов сформировали зеленые участки и побеги. Только один побег сформировал корни, и это растение было успешно перенесено в почву. По морфологии было близко к растениям риса. Цитологический анализ показал, что растение имело и маленькие хромосомы от риса, и большие от ячменя. Были проанализированы также митохондриальная и хлоропластная ДНК. Растение содержало новые последовательности и в митохондриальной, и в хлоропластной ДНК, которые не обнаруживались ни в одном из родителей.

Была осуществлена гибридизация 2-х родов пасленовых дурмана и красавки. Удалось регенерировать растения. Во всех случаях выявлены хромосомы обоих родительских видов. Регенерировавшие растения были стерильны, похожи на дурман, но содержали небольшое количество хромосом красавки.

В других экспериментах сливали протопласты красавки с каллусными клетками китайского табака. Получили 12 клонов. В клетках всех клонов обнаружили хромосомные типы обоих родителей, через год только у двух клонов происходила полная элиминация хромосом красавки.

Морковь + сныть: из образовавшейся каллусной ткани через полгода регенерировали аномальные растения. Одно из них цвело, но у цветка отсутствовали пыльники и пестик.

Первые работы по получению межсемейственных гибридов проведены К.Као и В.Веттером в 1976-77 гг. (соя + табак). Позднее в лаборатории Ю.Ю.Глебы провели аналогичные эксперименты пасленовые + бобовые и лилейные (горошек + табак и лук + табак). И.Ф.Каневскому удалось индуцировать морфогенез стеблеподобных тератом в культуре межсемейственных гибридов N.tabacum + Vicia faba.

Практически во всех случаях наблюдалась видоспецифичная элиминация хромосом одного из родителей. В культурах межсемейственных гибридов наблюдалось много многоядерных клеток, клеток с мини ядрами, в метафазах делений встречались гигантские хромосомы. Отмечена асинхронность в расхождении родительских хромосом в анафазе. Морфогенез у такого материала отмечен не был.

Для отдаленных гибридов характерно:

1. Относительная стабильность гибридного состояния, при котором не наблюдается полной элиминации генетического материала одного из родителей.

2. Генетические перестройки (реконструкция и частичная элиминация хромосом).

3. Генетическая разнокачественность клонов гибридных клеток.

4. Ограниченная морфогенетическая способность.

Изучение межцарственных гибридов клеток «животное + растение» показало, что на этапе слияния видоспецифичность не проявляется, поэтому можно слить даже животную и растительную клетки. На более поздних этапах онтогенеза эти различия сказываются, что было установлено в экспериментах по слиянию протопластов арабидопсиса и табака с лимфоцитами человека. При этом происходило слияние цитоплазмы, ядра не сливались. Эдвард Коккинг параллельно проводил изучение ультраструктуры таких гибридов, работая с клетками амфибий и протопластами моркови. После объединения клеток ядра амфибии были окружены тонким слоем собственной цитоплазмы, но уже через 48 часов отмечалось полное смешивание цитоплазмы и регенерация клеточной стенки вокруг гетерокариона.

Источник

Соматическая гибридизация

Разработка способов индукции слияния протопластов вместе с развитием экспериментальной техники культивирования клеток in vitro, дающей возможность получения изолированных протопластов, их культивирования и образования каллуса и в дальнейшем целого растения, сформировало новый очень интересный и перспективный метод гибридизации растений — парасексуальную, или соматическую, гибридизацию.

Сущность этого способа гибридизации заключается в том, что в качестве родительских используются не половые клетки (гаметы), а клетки тела (сомы) растений, из которых изолируют протопласты.

Соматическая гибридизация — это метод создания неполовых гибридов путем слияния изолированных про­топластов, полученных из соматических клеток. Гибридизация со­матических клеток дает возможность не только соединить в одном ядре гены далеких видов (родов, семейств) растений, между кото­рыми невозможно половое скрещивание, но и сочетать в гибрид­ной клетке цитоплазматические гены партнеров.

Другим способом получения соматических гибридов является электрослияние. Слияние, индуцируемое электрическими импульсами, можно объяснить следующим образом. Импульс короткой продолжительности вызывает диэлектрическое разрушение соприкасающихся мембран протопластов. Вокруг дырки возможен обмен липидными молекулами, образование липидных мостов, что в конце концов приводит к слиянию мембран. Это энергетически более выгодное состояние, чем существование двух поврежденных мембран. Процессы, сопровождающиеся обменом липидов, отражают особенности жидкой мозаичной структуры клеточной мембраны и могут быть связаны с ее текучестью.

В отличие от полового скрещивания, где имеет место передача цитоплазмы только от материнского организма, при соматической гибридизации в образовавшемся гибриде оба партнера имеют более или менее равный цитоплазматический статус. Слияние протопластов способствует объединению двух различных цитоплазм. В большинстве исследований слияние протопластов высших растений приводит к образованию либо гибрида, либо цибрида. Цибридное растение содержит цитоплазму обоих партнеров, ядро — одного. Образование растения с гибридной цитоплазмой и органеллами обоих партнеров, но содержащее в своих клетках ядро только одного вида, возможно в том случае, если после слияния протопластов не происходит соединения ядер и одно ядро дегенерирует.

Важным моментом в изучении индуцированного слияния двух неродственных протопластов является селективный маркер, используемый для идентификации продукта гетероплазматического слияния, так как эффект индуктора не специфичен и вызывает агрегацию и слияния протопластов как одного и того же вида, так и различных видов. Для идентификации гетероплазматического продукта могут служить пластиды. Например, в случае индуцируемого ПЭГ слияния протопластов сои и капусты гетерокарион получал хлоропласты от капусты и плотную цитоплазму и неокрашенные пластиды от протопластов сои. При межродовом слиянии протопластов табака и моркови как селективные маркеры использовались зеленые хлоропласты табака и красные, содержащие антоциан, протопласты моркови. Четко различимы были продукты слияния при межвидовой гибридизации между протопластами двух видов Torenia. Протопласты Т. fournieri, содержащие антоциан, комбинировались с протопластами Т. baitlonii, содержащими только хромопласты или только хлоропласты. Кроме пластид могут быть использованы биохимические и генетические маркеры, такие, как изоферментный состав, структура нуклеиновых кислот, устойчивость к антибиотикам, число хромосом, кариотипы.

Основной недостаток метода соматической гибридизации — низкая частота регенерации соматических гибридов, особенно межвидовых и межродовых. В связи с этим соматическую гибридизацию широко применяют у видов с высоким регенерационным потенциалом in vitro, прежде всего семейств Пасленовые, Капустные, Сельдерей­ные, Лилейные.

С помощью соматической гибридизации между культурными растениями и дикими видами были получены: сорта картофеля, устойчивые к вирусным заболеваниям, фитофторозу, колорадско­му жуку; томаты, устойчивые к вирусу табачной мозаики.

Впервые зрелый межвидовой гибрид, полученный в результате парасексуальной гибридизации протопластов 2 сортов табака (Nicotiana glauca c 24 хромосомами и N.langsdorfii c 18 хромосомами), описан Карлсоном в 1972 г. Каллус амфиплоидного гибрида мог расти на безгормональной среде. Гибридное растение цвело. С тех пор были получены жизнеспособные внутривидовые, межвидовые, межродовые гибриды.

Осуществлено слияние протопластов культурного картофеля сорта Приекульский ранний (Solanum tuberosum) с протопластами дикого картофеля (S. chacoense). Известно, что у дикого картофеля клубни очень мелкие. Вместе с тем, растение устойчиво ко многим заболеваниям. Картофель сорта Приекульский ранний образует крупные клубни, но растения этого сорта восприимчивы к болезням. Размеры протопластов у этих растений разные. Соматические гибриды по форме листьев и кустов, размеру клубней занимали промежуточное положение между культурными и дикими растениями. Вместе с тем гибрид, полученный в результате соматической гибридизации, оказался устойчивым к вирусу «У», чем отличался от полового гибрида.

Первая попытка по созданию межродовых гибридов принадлежит Г. Мельхерсу, создавшему в 1978 году гибрид картофель + томат, так называемый томатофель. Гибрид был стерилен, морфологически аномален: толстые корни, отсутствие типичных столонов, махровые цветки. Было еще несколько попыток получения таких гибридов, но все растения стерильны. Эти эксперименты показали ограниченность применения парасексуальной гибридизации для прикладной селекции. Японскими исследователями (Х. Кисака с соавт., 1997) путем электрослияния протопластов ячменя и риса был получен межродовой соматический гибрид. Протопласты риса получали из суспензионной культуры, а протопласты ячменя были изолированы из молодых листьев. Часть полученных каллусов сформировали зеленые участки и побеги. Только один побег сформировал корни, и это растение было успешно перенесено в почву. По морфологии было близко к растениям риса. Цитологический анализ показал, что растение имело и маленькие хромосомы от риса, и большие от ячменя. Были проанализированы также митохондриальная и хлоропластная ДНК. Растение содержало новые последовательности и в митохондриальной, и в хлоропластной ДНК, которые не обнаруживались ни в одном из родителей.

в чем заключается метод соматической гибридизации растений. Смотреть фото в чем заключается метод соматической гибридизации растений. Смотреть картинку в чем заключается метод соматической гибридизации растений. Картинка про в чем заключается метод соматической гибридизации растений. Фото в чем заключается метод соматической гибридизации растений

Была осуществлена гибридизация 2-х родов пасленовых дурмана и красавки. Удалось регенерировать растения. Во всех случаях выявлены хромосомы обоих родительских видов. Регенерировавшие растения были стерильны, похожи на дурман, но содержали небольшое количество хромосом красавки.

В других экспериментах сливали протопласты красавки с каллусными клетками китайского табака. Получили 12 клонов. В клетках всех клонов обнаружили хромосомные типы обоих родителей, через год только у двух клонов происходила полная элиминация хромосом красавки.

Морковь + сныть: из образовавшейся каллусной ткани через полгода регенерировали аномальные растения. Одно из них цвело, но у цветка отсутствовали пыльники и пестик.

Первые работы по получению межсемейственных гибридов проведены К.Као и В.Веттером в 1976-77 гг. (соя + табак). Позднее в лаборатории Ю.Ю.Глебы провели аналогичные эксперименты пасленовые + бобовые и лилейные (горошек + табак и лук + табак). И.Ф.Каневскому удалось индуцировать морфогенез стеблеподобных тератом в культуре межсемейственных гибридов N.tabacum + Vicia faba.

Практически во всех случаях наблюдалась видоспецифичная элиминация хромосом одного из родителей. В культурах межсемейственных гибридов наблюдалось много многоядерных клеток, клеток с мини ядрами, в метафазах делений встречались гигантские хромосомы. Отмечена асинхронность в расхождении родительских хромосом в анафазе. Морфогенез у такого материала отмечен не был.

Для отдаленных гибридов характерно:

1. Относительная стабильность гибридного состояния, при котором не наблюдается полной элиминации генетического материала одного из родителей.

2. Генетические перестройки (реконструкция и частичная элиминация хромосом).

3. Генетическая разнокачественность клонов гибридных клеток.

4. Ограниченная морфогенетическая способность.

Изучение межцарственных гибридов клеток «животное + растение» показало, что на этапе слияния видоспецифичность не проявляется, поэтому можно слить даже животную и растительную клетки. На более поздних этапах онтогенеза эти различия сказываются, что было установлено в экспериментах по слиянию протопластов арабидопсиса и табака с лимфоцитами человека. При этом происходило слияние цитоплазмы, ядра не сливались. Эдвард Коккинг параллельно проводил изучение ультраструктуры таких гибридов, работая с клетками амфибий и протопластами моркови. После объединения клеток ядра амфибии были окружены тонким слоем собственной цитоплазмы, но уже через 48 часов отмечалось полное смешивание цитоплазмы и регенерация клеточной стенки вокруг гетерокариона.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *