в чем заключается химико термическая обработка стали

Назначение и виды химико-термической обработки

в чем заключается химико термическая обработка стали. Смотреть фото в чем заключается химико термическая обработка стали. Смотреть картинку в чем заключается химико термическая обработка стали. Картинка про в чем заключается химико термическая обработка стали. Фото в чем заключается химико термическая обработка стали в чем заключается химико термическая обработка стали. Смотреть фото в чем заключается химико термическая обработка стали. Смотреть картинку в чем заключается химико термическая обработка стали. Картинка про в чем заключается химико термическая обработка стали. Фото в чем заключается химико термическая обработка стали в чем заключается химико термическая обработка стали. Смотреть фото в чем заключается химико термическая обработка стали. Смотреть картинку в чем заключается химико термическая обработка стали. Картинка про в чем заключается химико термическая обработка стали. Фото в чем заключается химико термическая обработка стали в чем заключается химико термическая обработка стали. Смотреть фото в чем заключается химико термическая обработка стали. Смотреть картинку в чем заключается химико термическая обработка стали. Картинка про в чем заключается химико термическая обработка стали. Фото в чем заключается химико термическая обработка стали

в чем заключается химико термическая обработка стали. Смотреть фото в чем заключается химико термическая обработка стали. Смотреть картинку в чем заключается химико термическая обработка стали. Картинка про в чем заключается химико термическая обработка стали. Фото в чем заключается химико термическая обработка стали

в чем заключается химико термическая обработка стали. Смотреть фото в чем заключается химико термическая обработка стали. Смотреть картинку в чем заключается химико термическая обработка стали. Картинка про в чем заключается химико термическая обработка стали. Фото в чем заключается химико термическая обработка стали

Химико-термической обработкой называют процесс, представляющий собой сочетание термического и химического воздействия с целью изменения состава, структуры и свойств поверхностного слоя стали.

Цель химико-термической обработки: повышение поверхностной твердости, износостойкости, предела выносливости, коррозионной стойкости, жаростойкости (окалиностойкости), кислотоустойчивости.

Наибольшее применение в промышленности получили следующие виды химико-термической обработки: цементация; нитроцементация; азотирование; цианирование; диффузионная металлизация.

Цементация– это процесс поверхностного насыщения углеродом, произведенный с целью поверхностного упрочнения деталей.

В зависимости от применяемого карбюризатора цементация подразделяется на три вида: цементация твердым карбюризатором; газовая цементация (метан, пропан, природный газ).

Газовая цементация. Детали нагревают до 900–950ºС в специальных герметически закрытых печах, в которые непрерывным потоком подают цементующий углеродосодержащий газ [естественный (природный) или искусственный].

Процесс цементации в твердом карбюризаторезаключается в следующем. Детали, упакованные в ящик вместе с карбюризатором (смесь древесного угля с активизатором), нагревают до определенной температуры и в течении длительного времени выдерживают при этой температуре, затем охлаждают и подвергают термической обработке.

Цементации любым из рассмотренных выше способов подвергаются детали из углеродистой и легированной стали с содержанием углерода не более 0,2%. Цементация легированных сталей, содержащих карбидообразующие элементы Cr, W, V, дает особо хорошие результаты: у них, кроме повышения поверхностной твердости и износостойкости, увеличивается также предел усталости.

Азотирование– это процесс насыщения поверхностного слоя различных металлов и сплавов, стальных изделий или деталей азотом при нагреве в соответствующей среде. Повышается твердость поверхности изделия, выносливости, износостойкости, повышение коррозионной стойкости.

Цианирование–.насыщение поверхностного слоя изделий одновременно углеродом и азотом.

В зависимости от используемой среды различают цианирование: в твердых средах; в жидких средах; в газовых средах.

В зависимости от температуры нагрева цианирование подразделяется на низкотемпературное и высокотемпературное.

Цианирование в жидких средах производят в ваннах с расплавленными солями.

Цианирование в газовых средах (нитроцементация ). Процесс одновременного насыщения поверхности детали углеродом и азотом. Для этого детали нагревают в среде, состоящей из цементующего газа и аммиака, то есть нитроцементация совмещает в себе процессы газовой цементации и азотирования.

Диффузионное насыщение металлами и металлоидами

Существуют и применяются в промышленности способы насыщения поверхности деталей различными металлами (алюминием, хромом и др.) и металлоидами (кремнием, бором и др.) Назначение такого насыщения – повышение окалиностойкости, коррозионностойкости, кислотостойкости, твердости и износостойкости деталей. В результате поверхностный слой приобретает особые свойства, что позволяет экономить легирующие элементы.

Алитирование – процесс насыщения поверхностного слоя стали алюминием для повышения жаростойкости (окалиностойкости) и сопротивления атмосферной коррозии.

Алитирование проводят в порошкообразных смесях, в ваннах с расплавленным алюминием, в газовой среде и распыливанием жидкого алюминия.

Хромирование– процесс насыщения поверхностного слоя стали хромом для повышении коррозионной стойкости и жаростойкости, а при хромировании высокоуглеродистых сталей – для повышения твердости и износостойкости.

Силицирование– процесс насыщения поверхностного слоя детали кремнием для повышения коррозионной стойкости и кислотостойкости. Силицированию подвергают детали из низко- и среднеуглеродистых сталей, а также из ковкого и высокопрочного чугунов.

Борирование – процесс насыщения поверхностного слоя детали бором. Назначение борирования – повысить твердость, сопротивление абразивному износу и коррозии в агрессивных средах, теплостойкость и жаростойкость стальных деталей. Существует два метода борирования: жидкостное электролизное и газовое борирование.

в чем заключается химико термическая обработка стали. Смотреть фото в чем заключается химико термическая обработка стали. Смотреть картинку в чем заключается химико термическая обработка стали. Картинка про в чем заключается химико термическая обработка стали. Фото в чем заключается химико термическая обработка стали

Сульфидирование– процесс насыщения поверхностного слоя стальных деталей серой для улучшения противозадирных свойств и повышения износостойкости деталей.

Сульфоцианирование – процесс поверхностного насыщения стальных деталей серой, углеродом и азотом. Совместное влияние серы и азота в поверхностном слое металла обеспечивает более высокие противозадирные свойства и износостойкость по сравнению насыщение только серой.

Источник

Химико-термическая обработка стали

в чем заключается химико термическая обработка стали. Смотреть фото в чем заключается химико термическая обработка стали. Смотреть картинку в чем заключается химико термическая обработка стали. Картинка про в чем заключается химико термическая обработка стали. Фото в чем заключается химико термическая обработка стали в чем заключается химико термическая обработка стали. Смотреть фото в чем заключается химико термическая обработка стали. Смотреть картинку в чем заключается химико термическая обработка стали. Картинка про в чем заключается химико термическая обработка стали. Фото в чем заключается химико термическая обработка стали в чем заключается химико термическая обработка стали. Смотреть фото в чем заключается химико термическая обработка стали. Смотреть картинку в чем заключается химико термическая обработка стали. Картинка про в чем заключается химико термическая обработка стали. Фото в чем заключается химико термическая обработка стали в чем заключается химико термическая обработка стали. Смотреть фото в чем заключается химико термическая обработка стали. Смотреть картинку в чем заключается химико термическая обработка стали. Картинка про в чем заключается химико термическая обработка стали. Фото в чем заключается химико термическая обработка стали

в чем заключается химико термическая обработка стали. Смотреть фото в чем заключается химико термическая обработка стали. Смотреть картинку в чем заключается химико термическая обработка стали. Картинка про в чем заключается химико термическая обработка стали. Фото в чем заключается химико термическая обработка стали

в чем заключается химико термическая обработка стали. Смотреть фото в чем заключается химико термическая обработка стали. Смотреть картинку в чем заключается химико термическая обработка стали. Картинка про в чем заключается химико термическая обработка стали. Фото в чем заключается химико термическая обработка стали

К ХТО относятся такие термические процессы в искусственно созданной активной среде, которые приводят к изменению химического состава, а вместе с тем и свойств поверхностного слоя обрабатываемого металла. Химико-термическая обработка заключается в нагреве изделия до определенной температуры в химически активной среде, некоторой выдержке при этой температуре и последующем охлаждении. При этом развиваются такие процессы, которые обеспечивают поступление к обрабатываемой поверхности изделия активных атомов того или иного вещества. Эти атомы адсорбируются на поверхности металла и, проникая в решетку, насыщают его поверхностные слои.

Таким образом, в основе химико-термической обработки лежат диффузионные процессы. Диффузионные процессы в твердом состоянии идут весьма медленно и поэтому, несмотря на длительность химико-термической обработки, диффундирующее вещество проникает на небольшую глубину.

Обычно химико-термическую обработку применяют к различным деталям машин и приборов с целью повышения их поверхностной твердости, износоустойчивости, усталостной прочности, антикоррозионных свойств и жаростойкости.

Процесс насыщения поверхности детали можно условно разбить на 3 стадии:

· создание активных атомов;

· перенос активных атомов к поверхности детали, взаимодействие их с поверхностью;

· диффузия активных атомов в глубь металлов.

Все эти 3 стадии процесса идут последовательно, и поэтому общая скорость ХТО определяется скоростью одной из стадий, идущей наиболее медленно.

1. ХТО с насыщением неметаллами (С, N, Si, B);

2. ХТО с насыщением металлами (Cr, Ni, Ti, Zn);

3. Многокомпонентная ХТО.

Основные виды ХТО разработаны и применяются для стальных деталей. В зависимости от основного насыщенного компонента эти виды называют:

Технологический процесс насыщения поверхности детали может происходить по-разному:

· способ насыщения из порошковых засыпок, т.е. деталь засыпают порошками, содержащими нужные элементы. Способ самый универсальный, наиболее доступный. Однако производительность его недостаточна и необходима потребность в большом количестве порошка;

· насыщение из газовой фазы. Детали помещают в специальные печи с контролируемой газовой атмосферой. Детали на конвейере проходят через печь и после выхода в ряде случаев сразу закаливаются. Достоинства: высокая производительность, стабильное качество. Применяется при массовом изготовлении.

· насыщение из жидкой среды. При этом способе детали помещают в расплавы солей, щелочей, металлов, содержащих нужный элемент.

· насыщение из пасты. Этот способ применяется для местного насыщения детали легирующими элементами.

· насыщение в вакууме. Деталь помещают в вакуумную камеру, нагревают и конденсируют на нее атомы легирующих элементов. Применяется для специальных деталей или детали, которые не должны окисляться.

Структура поверхностного слоя в деталях, образующихся при ХТО, зависит от типа взаимодействия насыщающего элемента с металлом, который является основным компонентом в данной детали.

Если насыщающий элемент образует неограниченный твердый раствор, то при ХТО наблюдается плавное изменение концентрации и структуры. Глубина диффузионного слоя d (х) в значительной степени зависит от коэффициента диффузии Д легирующего элемента и от времени насыщения. Коэффициент диффузии определяется самим легирующим элементом, т.е. его природой. Чем больше температура, тем больше коэффициент диффузии, тем скорее идет насыщение. Толщина насыщенного слоя определяется, прежде всего, временем t:

в чем заключается химико термическая обработка стали. Смотреть фото в чем заключается химико термическая обработка стали. Смотреть картинку в чем заключается химико термическая обработка стали. Картинка про в чем заключается химико термическая обработка стали. Фото в чем заключается химико термическая обработка стали.

В некоторых случаях после ХТО проводят дополнительную обработку, включающую закалку и отпуск, для того, чтобы получить необходимую структуру на поверхности и заданные свойства.

Цементация представляет собой процесс насыщения поверхностей деталей углеродом с целью повышения твердости и износостойкости. Цементацию применяют для деталей, в которых твердость поверхностных слоев должна сочетаться с вязкой сердцевиной, хорошо выдерживающей ударную нагрузку. Цементации подвергают стали, в которых содержание углерода обычно не превышает 0,1…0,25% С.

в чем заключается химико термическая обработка стали. Смотреть фото в чем заключается химико термическая обработка стали. Смотреть картинку в чем заключается химико термическая обработка стали. Картинка про в чем заключается химико термическая обработка стали. Фото в чем заключается химико термическая обработка стали

Цементацию насыщением «С» проводят либо из твердой среды, либо в специальных газовых средах. Процесс цементации ведется при высоких температурах порядка 900…950 °C. Такая температура необходима для перехода структуры в аустенитное состояние.

Температура цементации должна быть достаточно высокой, чтобы обеспечить аустенитную структуру и не вызвать рост зерна. Продолжительность процесса цементации определяется необходимой глубиной насыщаемого слоя и определяется, исходя из скорости насыщения

0,1 мм/ч. Общая продолжительность 8…10 часов. После окончания процесса цементации деталь охлаждается, при этом происходит изменение её структуры.

В настоящее время применяется ряд новых сталей для цементации, обладающих мелким зерном, глубокой прокаливаемостью слоя и сердцевины (табл. 4). После цементации эти стали имеют высокие механические свойства.

Химический состав некоторых сталей, %, для цементации

Цементацию широко применяют для упрочнения среднеразмерных зубчатых колес, валов коробки передач автомобилей, валов быстроходных станков, шпинделей и многих других деталей машин.

Нитроцементация сталей – процесс насыщения поверхности стали одновременно углеродом и азотом при 840…860 °Св газовой среде, состоящей из науглероживающего газа и аммиака. Эта ХТО направлена на получение свойств, включающих достоинства и цементации и азотирования одновременно. Если насыщение С и N происходит из газовой фазы, то этот процесс называется нитроцементацией, если процесс идет из жидкой среды (расплавленных цианистых солей), то этот процесс называют цианированием.

Нитроцементацию можно производить в шахтных печах для газовой цементации или азотирования. Она применяется для конструкционной стали. Процесс нитроцементации проходит при температуре, лежащей ниже температуры цементации, но выше температуры азотирования. Чем выше температура, тем энергичнее идет процесс насыщения углеродом и соответственно результаты получаются ближе к цементации. Чем ниже температура, тем больше насыщение «N» и свойства детали ближе к азотированию. Нитроцементация конструкционной стали производится при температуре 840…860 °Свыдержка 3…6ч, глубина слоя 0,01…0,025 мм. Для инструментальной стали применяют температуру 560 °С, глубина слоя 0,01…0,025 мм.

Нитроцементация осуществляется газом, состоящим из 20 % NH4 и 97…80 % науглероживающего газа, применяемого для газовой цементации. Распространены жидкие среды, например, триэтаноламин (С2Н2ОН)2N. Источниками активных атомов углерода и азота являются реакции диссоциации метана, окиси углерода и аммиака. После нитроцементации деталь подвергают закалке и низкому отпуску, причём закалка обычно проводится сразу после окончания ХТО без дополнительного нагрева. Для уменьшения деформации рекомендуется применять ступенчатую закалку с выдержкой в горячем масле 180…200 °С.

Процесс нитроцементации получил широкое распространение в машиностроении для деталей, по условиям работы которых достаточна толщина упрочненного слоя 0,2…0,8 мм.На ВАЗе 95 % деталей, упрочняемых ХТО, подвергаются нитроцементации. Например, нитроцементация широко применяется для упрочнения зубчатых колёс. В этом случае эффективная толщина слоя до HV 600 для шестерён с модулем 1,5-3,5 мм принимается 0,3 ± 0,1 мм, а при модуле 4,0-5,5 мм – 0,4 ± 0,1 мм.

В американской практике считается допустимым содержание в нитроцементируемом слое остаточного аустенита в количестве, при котором твёрдость после закалки не ниже 60 HRC. Чаще твёрдость слоя составляет 58…64 HRC.

Азотированиепредставляет собой процессдиффузионного насыщения азотом поверхностной зоны деталей. Азотирование применяют для повышения износостойкости и предела выносливости деталей машин. Обычно азотирование проводят при температуре 500…550 о С в муфелях или контейнерах, через которые пропускается диссоциирующий аммиак. На стальной поверхности происходит реакция диссоциации аммиака с выделением ионов азота, которые адсорбируются поверхностью детали, затем диффундируют вглубь. Обычно процесс азотирования завершается образованием на поверхности слоя e-фазы с ГП решёткой и упорядоченным расположением атомов в широком интервале концентраций азота.

Наибольшее применение для азотируемых деталей, от которых требуется высокая твердость и износостойкость, имеет сталь 38Х2МЮА. Хром и особенно алюминий образуют устойчивые нитриды, что придает стали очень высокую твердость (до HV 1100…1200). Хром, кроме того, повышает прокаливаемость и прочность стали. Молибден вводят в сталь для устранения отпускной хрупкости; одновременно он повышает прокаливаемость. Тем не менее, детали из стали 38Х2МЮА обладают невысокой прокаливаемостью (до 50 мм). Существенным недостатком этой стали является склонность к обезуглероживанию.

Для азотирования применяют также стали, не содержащие алюминия. Твердость таких сталей после азотирования несколько ниже и составляет НV 900…950. Хорошие результаты дает азотирование стали марки 18Х2Н4ВА, особенно для деталей больших размеров, когда требуется глубокая прокаливаемость. Кроме того, азотированию подвергают детали из нержавеющих, жаростойких, а также инструментальных сталей.

Детали, предназначенные для азотирования, подвергают предварительной термической обработке для придания необходимых механических свойств сердцевине деталей, а также для подготовки структуры для получения наилучших свойств азотированного слоя. Обычно такая термическая обработка сводится к закалке с высоким отпуском (улучшению). Особенность термической обработки деталей из сталей, содержащих хром, алюминий и молибден, заключается в применении повышенной температуры и большего времени выдержки при нагреве под закалку (примерно в 1,5 раза больше, чем обычно). Это необходимо для получения более однородного аустенита. Охлаждение при закалке производят в воде или масле; детали больших размеров охлаждают в воде. Небольшие детали сложной формы следует охлаждать в масле для уменьшения коробления. Для снижения внутренних напряжений и коробления рекомендуется перед закалкой подстуживать детали.

Источник

Лекция на тему Химико-термическая обработка стали с презентацией

Лекция на тему: Химико-термическая обработка стали

1. Понятие о химико-термической обработке (ХТО) стали и процессах с ней связанных.

2. Виды ХТО, технология их проведения и назначение.

3. Диффузионная металлизация.

1. Литература: Технология металлов и материаловедение: Учеб.для вузов / Кнорозов Б. В., Усова Л. Ф., Третьяков А. В. и др. / Под. ред. Л. Ф. Усовой. – М.: Металлургия, 1987. – с.208-216

Химико-термической обработкой называется процесс поверхностного насыщения стали различными элементами, путем их диффузии из внешней среды при высокой температуре. Цель химико-термической обработки-поверхностное упрочнение металлов и сплавов и повышение их стойкости против воздействия внешних агрессивных сред при нормальной и повышенной температурах.

Процессы химико-термической обработки состоят из трех стадий :

диссоциации, которая заключается в распаде молекул и образовании активных атомов

адсорбиции, т.е. кантактирования атомов диффундирующего элемента с поверхностью стального изделия и образования химических связей с атомами металла; диффузии, т.е. проникновения насыщающего элемента в глубь металла.

Скорость диффузии при проникновении диффундирующих атомов в решетку растворителя будет выше, если при взаимодействии образуется твердые растворы внедрения, и значительно ниже, если образуются твердые растворы замещения.

Концентрация диффундирующего элемента на поверхности зависит от притока атомов этого элемента к поверхности и от скорости диффузионных процессов, т.е. отвода этих атомов в глубь металла.

Толщина диффузионного слоя зависит от температуры нагрева, продолжительности выдержки при насыщении и концентрации диффундирующего элемента на поверхности.

Чем выше концентрация диффундирующего элемента на поверхности детали, тем выше толщина слоя. Чем выше температура процесса, тем больше скорость диффузии атомов, а следственно, возрастает толщина диффузионного слоя.

Границы зерен являются участками, где диффузионные процессы облегчают из-за наличия большого числа дефектов кристаллического строения. Если растворимость диффундирующего элемента в металле мала, то часто наблюдается преимущественная диффузия по границам зерен. При значительной растворимости диффундирующего элемента в металле роль пограничных слоев уменьшается. В момент фазовых превращений диффузия протекает быстрее.

Цементацией называется процесс насыщения поверхностного слоя стальных изделий углеродом. Цементация осуществляется с целью получения высокой твердости на поверхности изделия при сохранении вязкой сердцевины, она способствует повышению износостойкости и предела выносливости.

Цементация осуществляется при температурах выше 900-950с. Чем меньше углерода в стали, тем выше температура нагрева для цементации. При этих температурах атомарный углерод адсорбируется на поверхности стали и диффундирует в глубь металла.

В результате цементации содержание углерода в поверхностном слое составляет 0,8-1,0 %. Более высокая концентрация углерода способствует охрупчиванию цементованного слоя.

Среда, в которой проводят цементацию, называют карбюризатором.

Цементация в твердой среде.

Карбютизатором является активированный древесный уголь, а также каменноугольный полукокс и торфяной кокс. Для ускорения процесса к древесному углю добавляют активизаторы – углекислый барий, кальцинированную соду, поташ в количестве 10-40% от массы угля.

Обычная рабочая смесь, применяется для цементации, состоит из 25-35% свежего карбюризатора и 65-75% отработанного.

Подготовленнные для цементации изделия укладывают в металлический ящик. Предварительно в ящик насыпают слой карбюризатора 20-30см. Детали укладывают слоями на расстоянии 10-15 мм друг от друга. Каждый слой детали засыпают карбюризатором и на него укладывают следующий слой деталей.

Повышенная температура цементации до 950-1000с позволяет значительно ускорить процесс, но такой режим применим для наследственно мелкозернистых сталей.

После цементации детали подвергают нормализации для измельчения зерна, повторной закалке и низкотемпературному отпуску. В результате такой обработки поверхностный слой приобретает структуру мартенсита отпуска с включениями избыточных карбидов с твердостью HRC 60-63.

Структура сердцевины зависит от состава стали и режима закалки. У углеродистых сталей она состоит из феррита и сорбита или троостита, а у легированных из малоуглеродистого мартенсита.

Процесс заключается в нанесение на поверхность обрабатываемой детали слоя вещества в виде суспензии, обмазки или шликера, в сушке и последующим нагреве. Вид пасты определяет технологию ее нанесения. Паста сравнительно жидкой консистенции наносится на детали окунанием, а более густо-с помощью кисти. Толщина слоя пасты должна быть в 6-8 раз больше заданной глубины цементованного слоя. Основными компонентами паст являются сажа и кальцинированная сода, кокс малосернистый, сода или поташ.

Высушенные детали аккуратно, чтобы не повредить слой пасты, укладывают одна на другую в ящик и закрывают его крышкой. Ящик загружают в печь с температурой 950-1050с; чем выше температура нагрева, тем меньше длительность процесса. Кроме того, для нагрева деталей можно применять токи высокой и промышленной частоты.

По окончанию выдержки детали охлаждают в ящиках на воздухе. Можно осуществить также подсуживание до закалочной температуры и произвести закалку непосредственно с цементационного нагрева.

Газовая цементация. В настоящие время газовая цементация является основным процессом цементации на заводах массового производства. При газовой цементации сокращается длительность процесса, так как отпадает необходимость прогрева ящиков, можно обеспечивать более полную механизацию и автоматизацию процесса, упрощается последующая термическая обработка и, самое главное, можно получить заданную концентрацию углерода в слое.

Цементацию выполняют в шахтных, муфельных или безмуфельных печах непрерывного печах непрерывного действия.

Под углеродным потенциалом атмосферы понимают определенную концентрацию углерода на поверхности цементованного слоя. Для ускорения процесса углеродный потенциал атмосферы в печи меняют по зонам. Вначале его поддерживают высоким, обеспечивающим получение в поверхностном слое концентрации углерода 1,3-1,4%, а затем его снижают для получения в этом слое оптимального содержания углерода 0,8%.

После газовой цементации применяют закалку непосредственно из цементационной печи предварительно сделав подстуживание до температуры 850-830с. Заключительной операцией является низкотемпературный отпуск при температуре 160-180с.

Азотированием называется процесс насыщения поверхности стали азотом. Процесс осуществляется в среде аммиака при температуре 480-650с. При этих температурах выделяется атомарный азот, который диффундирует в поверхностные слои детали.

При азотировании легированных сталей азот образуется с легирующими элементами устойчивые нитриды, которые придают азотированному слою высокую твердость.

Твердость поверхностного слоя деталей после азотирования достигает HV 11000-12000.

Перед азотированием детали подвергают термической обработке, состоящей из закалки и высокотемпературного отпуска. Затем производят механическую обработку, придающую окончательные размеры изделию.

Участки, не подлежащие азотированию, защищают тонким слоем олова, нанесенным электролитическим методом, или жидким стеклом. В процессе азотирования олово расплавляется и благодаря поверхностному натяжению удерживается на поверхности стали в виде тонкой непроницаемой для азота пленки.

Обычно процесс азотирования ведут при температурах 500-520с. В этом случае получают толщиной до 0,5мм за 24-90ч.

В процессе азотирования изменяются размеры деталей за счет увеличения объема поверхностного слоя. Чем выше температура процесса и больше толщина азотированного слоя, тем больше изменение размеров детали.

Процесс жидкого азотирования осуществляется при температуре 570с в расплаве цианосодержащих солей. В ходе процесса расплав непрерывно продувается сухим и чистым воздухом, что обеспечивает превращения цианида в цианат, являющийся поставщиком атомов углерода и азота.

Менее распространены процессы азотирования в бесцианистых солях, содержащих азот и в расплавах нейтральных солей, через которые продувают аммиак.

Широкое применение получает ионное азотирование. По сравнению с газовым азотированием оно имеет ряд преимуществ: меньшую продолжительность процесса, более высокое качество азотированного слоя, пониженную хрупкость слоя.

Рабочее давление в камере печи составляет 130-1300Па. При более высоком давлении тлеющий разряд становится менее стабильным и чаще переходит в дуговой. Это может вызвать перегрев поверхности и даже ее оплавление.

Цианирование и нитроцементация.

Цианирование называется процесс одновременного насыщения поверхности деталей углеродом и азотом.

На состав и свойства цианированного слоя особое влияние оказывает температура процесса. Повышение температуры цианирования ведет к увеличению содержания углерода в слое, снижает температуры- к увеличению содержания азота.

Толщина цианированного слоя также зависит от температуры-и продолжительности процесса. Для цианирования применяют стали, содержащие 0,3-0,4% углерода.

Цианирование при температурах 820-850С позволяет осуществлять закалку непосредственно из ванны. После закалки следует низкотемпературный отпуск. Твердость цианированного слоя после термической обработки HRC 59-62.

Цианирование при температурах 820-850С позволяет получать слои толщиной 0,15-0,35 мм за 30-90 минут. Глубокое цианирование имеет ряд преимуществ по сравнению с цементацией: меньше продолжительность процесса для получения слоя заданной толщины; меньше деформация и коробление; более высокое сопротивление износу и повышенная усталостная прочрость.

После цианирования детали охлаждают на воздухе, повторно нагревают для закалки и проводят низкотемпературный отпуск.

Недостатком цианирования является ядовитость цианистых солей. Поэтому цианирование проводят в специально выделенных помещениях с соблюдением мер предосторожности.

Нитроцементацию осуществляют при температурах 840-860С в газовой смеси из науглероживающего газа и аммиака. Продолжительность процесса зависит от глубины насыщаемого слоя и составляет 1-10 ч. Толщина слоя колеблется от 0,1 до 1 мм.

После нитроцементации изделия подвергают закалке и низкотемпературному отпуску при температуре 160-180С.

Низкотемпературное цианирование осуществляется при температурах 540-560С в расплавленных цианистых солях.

Низкотемпературному цианированию подвергают инструмент из быстрорежущих сталей для повышения его стойкости при резании. В результате такой обработки образуется нитроцементованный слой толщиной 0,02-0,04мм твердостью HV 9500-11000. Длительность процесса 1-1,5 часа.

Нитроцементация в твердых смесях применяется для повышения стойкости инструментов из быстрорежущей стали. Инструменты укладываются в металлические ящики и пересыпаются смесью, состоящей из 60-80% древесного угля и 20-40% желтой кровяной соли или другого состава. Потом ящики закрывают и устанавливают в печь с температурой 550-560С. После выдержки 2-3ч ящики выгружают из печи и охлаждают до 200-100С. Затем ящики раскрывают и вынимают инструмент, очищая металлическими щетками.

Хрупкость слоя возникает при пересыщении слоя углеродом и азотом, когда образуется сетка или сплошная корка карбонитридов у самой поверхности.

«Темная составляющая» в структуре возникает после нитроцементации в виде темной разорванной или сплошной сетки, обнаруживаемой на нетравленных микрошлифах. Причина: повышенная концентрация азота, увеличение времени выдержки и появление окисляющих газов в рабочем пространстве печи.

Диффузионной металлизация-это процесс диффузионного насыщения поверхностных слоев стали различными металлами. Она может осуществляться в твердых, жидких и газообразных средах.

При диффузионной металлизации в твердых средах применяют порошкообразные смеси, состоящие из ферросплавов с добавлением хлористого аммония в количисве 0,5-5%.

Жидкая диффузионная металлизация осуществляется погружением детали в расплавленный металл (например цинк, алюминий).

Диффузия металлов в железе идет значительно медленнее, чем углерода и азота, потому что углерод и азот образуют с железом твердые растворы внедрения, а металлы – твердые растворы замещения. Это приводит к тому, что диффузионные слои при металлизации получаются в десятки раз более тонкими.

Поверхностное насыщение стали металлами проводится при температуре 900-1200С.

Алитирование м называется процесс насыщения поверхности стали алюминием. В результате алитирования сталь приобретает высокую окалиностойкость и коррозионную стойкость в атмосфере и в ряде сред.

При алитировании в порошкообразных смесях чистые детали вместе со смесью упаковывают в железный ящик.

Алитирование в расплавленном алюминии отличается от алитирования в порошкообразных смесях простотой метода, быстрой и более низкой температурой.

Основным недостатком является- налипание алюминия на поверхность детали.

Алитированные стали металлизацией с последующим диффузионным отжигом в несколько раз дешевле, чем в порошках.

Алитированием подвергают трубы, инструмент для литья цветных сплавов, чехлы термопар, детали газогенераторных машин и т.д.

Хромирование проводят для повышения коррозионной стойкости, кислотостойкости, окалиностойкости и т.д. Хромирование средне- и высокоуглеродистых сталей повышает твердость и износостойкость.

Хромирование чаще всего проводят в порошкообразных смесях. Процесс происходит при температуре 1000-1050С.Диффузионный слой, получаемый при хромировании углеродистых сталей, состоит из карбидов хрома. Карбидный слой имеет высокую твердость HV 12000-13000. Толщина хромированного слоя достигает 0,15- 0,20 мм при длительности процесса 6-15ч.Чем больше углерода в стали, тем меньше толщина слоя.

Иногда применяют хромирование в вакууме. Издели засыпают кусочками хрома в стальном или керамическом тигле и помещают в вакуумную печь.

Хромирование применяют для пароводяной арматуры, клапанов, вентилей.

Борированием называется насыщение стали бором. Борирование проводят с целью повышения стойкости против абразивного износа. Толщина борированных слоев не превышает 0,3мм, твердость HV 18000-20000.

Широкое распространение получил метод электролизного борирования в расплавленных солях, содержащих бор. Деталь служит катодом в ванне с расплавленной бурой. Температура процесса 900-950С. Процесс можно вести и без электролиза в ваннах с расплавленными хлористыми солями, в которые добавляют порошкообразный ферробор или карбид бора.

Борированию подвергают втулки грязевых нефтяных насосов, штампы.

Силицированием называется процесс насыщения поверхности стали кремнием. В результате силицирования сталь приобретает высокую коррозионную стойкость в морской воде, в различных кислотах и повышенную износостойкость. Кроме того, силицирование резко повышает окалиностойкость молибдена и некоторых других металлов и сплавов.

Силицированный слой представляет собой твердый раствор кремния в а-железе. Силицированный слой несмотря на низкую твердость ( HV 2000-3000) и пористость после пропитки маслом при температуре 170-200С имеет повышенную износостойкость.

При газовом силицировании при температуре 1000С в течение 2-4ч образуется слой толщиной 0,5-1,0 мм.

Силицированием подвергают детали, применяемые а оборудовании химической, бумажной и нефтяной промышленности.

1. Что называется ХТО и с какой целью ее проводят?

2. Какие процессы характеризуют ХТО?

3. Какие виды ХТО Вам известны?

4. Какую микроструктуру получают стали после каждого вида ХТО?

5. Что называется диффузионной металлизацией и с какой целью она проводится?

6. При какой температуре проводится диффузионная металлизация?

7. Охарактеризуйте виды диффузионной металлизации.

Темы для рефератов (самостоятельная работа):

1. Диффузионая металлизация, ее виды и технология проведения.

2. Влияние химико-термической обработки на технологические и эксплуатационные свойства сталей и изделий из них.

Литература и интернет источники:

1. Технология металлов и материаловедение: Учеб.для вузов / Кнорозов Б. В., Усова Л. Ф., Третьяков А. В. и др. / Под. ред. Л. Ф. Усовой. – М.: Металлургия, 1987. – с.208-216

2. Остапенко Н.Н.,Крапивницкий Н.Н. Технология металлов. М. Высшая школа,1970г.

3. А. Н. Минкевич. «Химико-термическая обработка металлов и сплавов»

Издательство «Машиностроение» Москва, 1965 г.

3.Усова Л.Ф. (под ред.), Кнорозов Б.В. и др. Технология металлов и материаловедение.М.: Металлургия, 1987. (с.208-217).

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *