в чем заключается функция датчиков контроля рецепторов
Что такое рецепторы? Назначение, виды и принципы функционирования
Что такое рецептор и какого его назначение в организме
Рецепторы — это совокупность окончаний нервных волокон, обладающих высокой чувствительностью и способностью к восприятию множества внутренних факторов и внешних раздражителей, их преобразованию в готовый импульс для передачи в головной мозг. Другими словами, любая информация, получаемая человеком извне, имеет способность улавливаться и правильно восприниматься человеческим организмом именно благодаря рецепторам, которых там огромное множество.
Вам будет интересно: Болезнь Жильбера: симптомы, анализы и лечение
Виды рецепторов и их классификация
Для каждого ощущения, научно называемого раздражителем, существует свой вид анализатора, который способен преобразовать его в доступный для нервной системы импульс. Чтобы лучше понимать, что такое рецепторы, сначала нужно разобраться в их классификации.
Рецепторы могут различаться по месту локализации и типу принимаемых сигналов:
Еще рецепторы человека классифицируются в зависимости от формы проявления раздражителя:
Рецепторы также различают по способности к количественной передаче импульсов:
Принципы функционирования рецепторов
Рассмотрев изложенную классификацию, можно сделать вывод о том, что восприятие распределяется в зависимости от видов ощущений, для которых в организме существуют определенные сенсорные системы, различающиеся между собой функциональными особенностями, а именно:
Рассмотрим каждую из этих систем более подробно. Только так можно до конца понимать, что такое рецепторы.
Вкусовая сенсорная система
Основным органом в этой системе является язык, благодаря рецепторам которого человеческий мозг способен оценить качество и вкус употребляемой пищи и напитков.
На языке располагаются механорецепторы, способные оценить консистенцию продуктов, терморецепторы, определяющие уровень температуры пищи и хеморецепторы, непосредственно занимающиеся определением вкуса. Рецепторы языка располагаются во вкусовых сосочках (почках), содержащих в себе набор белков, которые при контакте с раздражителем меняют свои химические свойства, тем самым образуя нервный импульс для передачи в мозг. Они способны различать четыре типа вкусов:
Но только в совокупности с обонятельной системой человеческий мозг способен оценить полноту передаваемых рецепторами ощущений и, в случае чего, уберечь от непригодных к употреблению продуктов.
Обонятельная сенсорная система
Основным органом в данной системе служит нос. Система получила свое название благодаря содержанию в ней обонятельных желез, в которых образуются одноименные клетки. При реакции с раздражителем они образуют обонятельные нити для передачи в полость черепной коробки, а затем в мозг. Обонятельная система состоит из:
Иными словами, раздражитель улавливается обонятельными рецепторами, передается по обонятельному нерву к луковице, которая связана ветвями с подкоркой переднего мозга.
Зрительная сенсорная система
Одна из наиболее значимых систем в жизни человека и имеющая сложное строение. Основными органами в зрительной системе являются глаза. Рассмотрим, что такое рецепторы глаз. Сетчатка глаза представляет собой центр нервных окончаний, в котором осуществляется обработка поступающих сигналов и преобразование их в импульсы, готовые для передачи в головной мозг. Сигналы передаются благодаря специальным клеткам с различными функциями:
Благодаря светочувствительным клеткам зрительный анализатор осуществляет восприятие цветного изображения в дневное и сумеречное время суток со скоростью в 720 м/с.
Вестибулярный аппарат
Рецепторы этой системы являются вторичными сенсорными клетками, не имеющими собственных нервных окончаний. Передача импульсов осуществляется при изменении положения головы или тела по отношению к окружающему пространству. Благодаря получаемым импульсам, человеческий организм способен поддерживать нужное положение тела. Важной частью этой системы является мозжечок, который улавливает вестибулярные афференты.
Слуховая сенсорная система
Система, благодаря которой есть возможность улавливать любые звуковые колебания. Орган слуха содержит следующие рецепторы:
Слуховые рецепторы располагаются в улитке внутреннего уха и воспринимают звуковые колебания с помощью вспомогательных образований.
Кодирование информации в рецепторах.
Механические, химические, световые, тепловые и другие раздражители при помощи рецепторов преобразуются в универсальные сигналы.
Для рецепторов входным сигналом являются раздражители, а входным- нервные импульсы. Одним из видов кодирования является частотно-импульсная модуляция, т.е. высокочастотный сигнал модулируется низкой частотой следования импульса. Экспериментально установлено, что сигналы от рецептора идут сериями потенциала действия, причем с увеличением амплитуды высшего воздействия увеличивается частота следования импульсов. Т.о. при непрерывном аналоговом воздействии стимула на рецептор, сигналы идущие от него в ЦНС имеют прерывистый дискретный характер.
Биофизическим механизмом ритмической активности рецепторов является рефрактерность, т.е. изменение возбудимости мембран в процессе возбуждения.
Генераторные потенциалы вызываю потенциал действия лишь в условиях нормального возбуждения. Поэтому возникновение следующего потенциала действие возможно лишь после относительно рефрактерной фазы, частота следования импульсов определяется суммарным временем 2-х фаз: абсолютного и относительного потенциала, частота следования импульса составляет 500 000 Гц.
Любой рецепторный аппарат можем рассматривать в качестве кодирующего устройства. В отличие от аналогичных технических устройств, он отличается миниатюрностью и полифункциональностью, т.е. одна и та же структура выполняет разнообразные операции кодирования.
Рецепторам присущи следующие технические функции:
Рекомендуемые файлы
1. Рецептор обладает свойствами датчика, который воспринимает и преобразует стимул определенной модульности в нервные импульсы. Рецепторы обладают высокой избирательной чувствительностью к адекватным раздражителям.
2. Рецепторы являются аналого-дискретными преобразователями.
3. При кодировании интенсивности внешнего разделителя, рецепторные аппараты работают как нелинейные устройства. В клетки происходит нелинейное преобразование информации об интенсивности стимула. Согласно закона Вебера-Фехнера ощущение возрастает пропорционально логарифму разделителя. Соотношение между интенсивностью разделителя и частота следования первых импульсов называется силовой характеристикой датчика.
4. Рецепторы служат усилителем входного сигнала. Энергия выходного сигнала, т.е. потенциала действия всегда больше, чем величина рецепторного потенциала. Усилительная функция не является основной для рецептора, однако предстает собой необходимый элемент для выполнения функции кодирования. Источником энергии для усиления сигналов является АТФ.
5. Как всякий усилитель, рецептор имеет определенною амплитудно-частотную характеристику, под которой понимают зависимость чувствительности от частотных свойств стимула. Для световых рецепторов, т.е. для зрения такая кривая носит название – кривой видности. Для слуха- это пороговый контур равный громкости.
6. Качество информации о внешних стимулах передается в ЦНС при помощи кодирования. Существует две теории, объясняющие принцип передачи информации:
Теория моченой линии предусматривает существование в ЦНС определенных зон или областей, отвечающих за один из видов внешних разделителей. Паттери не связывает информацию с локальной областью мозга, а кодирует ее в самих импульсах, который воспринимается любой частью мозга. Воспринимающие раздражение создает набор импульсов в определенной длительности и последовательности, зависящий от вида разделителей. Это узор или паттерн, который расшифровывается в ЦНС.
В реальной системе происходят сочетание 2-х видов передачи информации.
Прикоснуться к миру: биомеханика рецепторов кожи человека
Не секрет, что самым большим органом человеческого тела является его кожа. Помимо защиты тела от внешних раздражителей, кожа выполняет еще и функцию датчика, собирающего информацию, наряду с глазами, ушами, языком и носом. Информация, получаемая кожей, позволяет человеку оценивать окружающую среду, лучше понимать ситуацию, в которой он находится и действовать в соответствии с ней. Несмотря на огромную важность тактильной информации, о том как именно все работает мы пока знаем не особо много. Посему ученые из Калифорнийского университета (США) решили рассмотреть кожу человека под математическим углом, дабы понять механизм возникновения и передачи тактильных ощущений. Что происходит, когда мы берем что-то в руки, как наша кожа обрабатывает получаемую информацию, и как данное исследование применить на практике? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.
Основа исследования
У взрослого человека площадь его кожи может достигать 2.3 м2, что делает ее самым большим органом. Однако габариты ничто, если за ними нет никакого функционала. Кожа выполняет достаточно много функций: защитная, дыхательная, экскреторная, терморегуляторная, иммунная, метаболическая и т.д. Другими словами, пытаясь оценивать разные органы по их важности, ставить кожу на последнее место было бы ошибочно.
Самой же загадочной функцией кожи является сбор информации, т.е. формирование осязания — одного из видов чувств человека. Такова температура в комнате, шершавые или гладкие обои, насколько мягкое кресло — все эти и многие другие данные собираются именно кожей.
Невероятная чувствительность кожи заключается в наличии колоссального числа нервных окончаний, т.е. рецепторов. Все они отличаются друг от друга по форме и строению, поскольку выполняют разные задачи (одни собирают информацию про фактуру объекта, другие — про температуру, например).
Рецепторы кожи можно разделить на два основных типа: свободные нервные окончания и несвободные нервные окончания. Первые состоят исключительно из конечных ветвлений осевого цилиндра и располагаются в эпителии. Эти рецепторы собирают данные о температуре (терморецепторы), давлении (механорецепторы) и болевых ощущениях (ноцицепторы).
Категоризация несвободных нервных окончаний куда более обширная:
Это лишь краткий перечень, без глубокого рассмотрения рецепторов, их функций и строения, но и этого достаточно, чтобы понять всю сложность кожи как органа чувств.
Сами исследователи трактуют осязание как кодирование механических сигналов, собранных кожей и подкожными тканями, в нейронные сигналы. Нейронные ответы на тактильные раздражители часто связаны с механическими воздействиями, возникающими из небольших участков кожи, однако есть свидетельства о том, что динамическое прикосновение вызывает механические волны в тактильном диапазоне частот, которые распространяются по всей руке, с переходными возбуждениями, затухающими в течение 30 мс. Таким образом, динамические тактильные воздействия могут стимулировать широкое распространение афферентации*.
Афферентация* — непрерывный поток нервных импульсов от органов чувств к нервной системе.
Было обнаружено, что эти волны, вызванные прикосновением, способствуют тонкому восприятию и могут использоваться для определения характеристик объекта, к которому дотронулись, области контакта объекта с рукой и дальнейших действий. Также есть данные, что рецептивные поля нейронов в соматосенсорных областях коры мозга охватывают большие участки рук и нескольких пальцев.
Большая площадь контакта на ранних этапах обработки сигналов побуждает корковые нейроны отвечать на входные сигналы, которые доставляются обратно в область контакта.
Таким образом, соматосенсорная обработка может зависеть от информации, переносимой механическими волнами, которые распространяются в тканях в отдаленные участки, удаленные от мест непосредственного механического контакта.
Ученые считают, если перенос механических волн в руке способствует эффективному кодированию соматосенсорной информации, то должна быть возможность описать тактильные стимулы в малых участках посредством информативных параметров. Другими словами преобразовать ощущение прикосновения в цифры.
В своем труде ученые показывают, как механические волны в руке производят эффективное кодирование тактильных входных данных. Проведя опыты с использованием высокоточных датчиков, ученые смогли создать своего рода словарик пространственно-временных сигналов, которые в совокупности позволяют классифицировать входящую информацию с точностью более 95%. То есть им удалось создать карту, показывающую где и какие области кожи руки активируются при контакте с тем или иным объектом.
Результаты исследования
Моделирование тактильной информации ученые изобразили в виде матричного разложения. Оценка кодирования была выполнена посредством собранной в ходе опытов базы данных тактильных стимулов для всей кисти, включающую пространственно-временные изменения кожи a(x, t). На руку добровольца были прикреплены специальные датчики в 30 участках (х). В ходе эксперимента было выполнено 13 жестов и 4600 взаимодействий с различными объектами.
Изображение №1
Каждый из стимулов wi(x, t), внесенный в набор данных, имел собственное время активации hi(t), которое также было учтено в модели для получения более точных «тактильных базовых паттернов» (2А), которые в совокупности кодируют все возникающие стимулы и передающиеся сигналы.
Изображение №2
Эти базисные паттерны (далее базисы) также могут быть интерпретированы как набор фильтров анализа, которые извлекают информацию из внешних стимулов с помощью различных дополнительных паттернов пространственно-временной интеграции механических сигналов в руке. По словам ученых, эти фильтры можно сравнить с функциями спектрально-временной настройки в слуховой обработке или с фильтрами пространственно-временного рецептивного поля при работе сетчатки.
Суммируя, учеными была создана математическая модель, в которой сигналы, ощущаемые по всей руке, были представлены в виде небольшого числа упрощенных паттернов. Данная методика позволила получить основные волновые паттерны — вибрации кожи по всей кисти, которые участвуют в сборе и передаче тактильной информации.
Несмотря на то, что в анализе не учитывались условия возникновения сигналов, тактильные базисы напоминали сенсорную функцию кисти (2А и 2В). Большинство из них первоначально были локализованы на дистальных концах одного из пальцев (наиболее плотно иннервируемые области кисти). Скорость движения сигналов составляла порядка 1-10 м/с, а затухание сигнала наблюдалось спустя 10-30 мс после его возникновения. Другие тактильные базисы эволюционировали от дистальной области отдельных пальцев до диффузных областей поверхности кисти (2А). В аспекте частоты, пара базисов демонстрировала схожее пространственное расположение, но разные частотные характеристики. К примеру, есть пара базисов, локализованных в пределах одного пальца, но имеющих разные фильтрационные свойства (относительно передаваемых сигналов): нижний диапазон от 20 до 80 Гц (2В, базис 2) или верхний диапазон от 80 до 160 Гц (2B, базис 6).
Изображение №3
Ученые считают, что пространственно-временные тактильные базисы связаны с определенным пальцем, т.е. имеют свою рабочую зону, так сказать. Например, 45% из 4600 проанализированных тактильных раздражителей были вызваны жестами, когда с объектом контактировал только один палец. Проведя повторный анализ, исключающий тактильные сигналы, создаваемые одним лишь пальцем, была обнаружена такая же тенденция.
Пространство возможных тактильных раздражителей ограничено механикой и продолжительностью контакта (3А).
Далее ученые решили проверить, сколько базисов должно быть задействовано для определения источника сигнала. Как оказалось, если использовать не менее 7, то точность определения составит 90%, а если 12, то 95%. Тем не менее, не все стимулы требуют активации столь большого числа базисов для повышения точности. Логика достаточно прямолинейна: когда в жесте задействовано несколько пальцев, то активируются несколько базисов; если же в жесте задействован лишь один палец, то и базисов будет один, максимум два. При этом сами базисы также варьировались в зависимости от жестов. То есть, разные жесты, хоть в них и задействованы одинаковые пальцы, будут активировать разные базисы.
Модель также показала, что достаточно пяти базисов для максимизации точности (80%), с которой стимулы от одного участника опытов могли быть классифицированы с использованием данных от других участников (3C). Эти пять базисов были практически универсальны среди всех участников и соответствовали пяти пальцам кисти (3B).
Совокупность вышеописанных наблюдений говорит о том, что сама эластичность кожи играет важную роль в сборе и передаче информации, поскольку за счет нее увеличивается площадь контакта с объектом. Кроме того, волны сигналов, распространяющиеся по определенному паттерну, позволяют классифицировать полученную информацию, что также способствует ускорению ее обработки непосредственно мозгом.
Подобные механизмы обработки сигналов можно сравнить с работой среднего уха, которое распространяя звуки с различным частотным содержанием на разные сенсорные рецепторы в ухе, помогает кодированию звуков слуховой системой.
Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.
Эпилог
Данное исследование показало нам, что кожа является намного более сложной системой, чем считалось ранее. Если раньше процесс передачи сигналов можно было описать линейно (прикосновение — возникновение сигнала — передача сигнала в мозг), то сейчас этот процесс скорее похож на волновую активность. Сигналы, получаемые от объектов взаимодействия с кожей, распространяются волнами по нервным окончаниям кожи в зависимости от зоны контакта, его продолжительности и характера поверхности. Другими словами, в сборе информации про объект контакта участвуют не только рецепторы в непосредственно месте контакта, но и рецепторы вокруг этой зоны.
Исследователи считают, что в этом сложном процессе не последнюю роль играет эластичность кожи, позволяющая увеличить площадь контакта с точки зрения распространения сигналов, а не с точки зрения непосредственно самого контакта.
По мнению ученых, их труд позволит не только лучше понять работу мозга и нервной системы человека, но и пригодится в разработке новых протезов и даже роботов, способных тактильно более точно собирать информацию об окружающей среде.
Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята! 🙂
Немного рекламы 🙂
Рецепторы как датчики сенсорных систем человека
Автор работы: Пользователь скрыл имя, 06 Февраля 2014 в 14:32, реферат
Краткое описание
Данная работа посвящена рецепторам и рассматривает основные механизмы физиологии рецепции, которые свойственны всем сенсорным модальностям.
Прикрепленные файлы: 1 файл
Рецепторы как датчики сенсорных систем человека.docx
Введение
Все живые организмы нуждаются в информации об окружающей среде как для поисков пищи и особей другого пола, так и при избегании разного рода опасностей. Кроме того, они должны ориентироваться в пространстве и оценивать его важнейшие свойства. Эту возможность обеспечивают сенсорные системы.
Физиологи уже привыкли использовать латинизированный термин «сенсорные системы», как-то незаметно пришедший на смену «анализаторам» И.П.Павлова. Мы рассмотрим, как соотносятся понятия «органы чувств», «сенсорные системы» и «биосенсоры». Несомненно, у человека, да и всех позвоночных животных, глаз — это орган зрения, ухо — слуха, нос — обоняния, а язык — вкуса.
Данная работа посвящена рецепторам и рассматривает основные механизмы физиологии рецепции, которые свойственны всем сенсорным модальностям.
Глава 1 Сенсорные системы. Классификация рецепторов. Общие механизмы возбуждения рецепторов.
Сенсорная система выполняет следующие основные функции, или операции, с сигналами: 1) обнаружение; 2) различение; 3) передачу и преобразование; 4) кодирование; 5) детектирование признаков; 6) опознание образов. Обнаружение и первичное различение сигналов обеспечивается рецепторами, а детектирование и опознание сигналов — нейронами коры больших полушарий. Передачу, преобразование и кодирование сигналов осуществляют нейроны всех слоев сенсорных систем.
Обнаружение сигналов начинается в рецепторе — специализированной клетке, эволюционно приспособленной к восприятию раздражителя определенной модальности из внешней или внутренней среды и преобразованию его из физической или химической формы в форму нервного возбуждения.
Рецепторы представляют собой конечные специализированные образования, предназначенные для трансформации энергии различных видов раздражителей в специфическую активность нервной системы.
Рецепторные клетки отличаются от остальных, по крайней мере, в двух отношениях. Во-первых, энергия раздражителя служит для них лишь стимулом к запуску процессов, совершаемых за счет потенциальной энергии, которая накоплена вследствие обменных реакций в самой клетке. Во-вторых, рецепторная клетка обладает на выходе электрической энергией, обязательно передаваемой другим клеткам, которые сами не способны воспринимать энергию данного внешнего воздействия.
Основной структурной единицей большинства рецепторных аппаратов является клетка, снабженная подвижными волосками, или ресничками. Эти волоски представляют собой как бы периферические подвижные антенны, действующие подобно усилителям по отношению к воспринимаемым раздражителям и участвующие в трансформации раздражителя в нервную сигнализацию. Волоски содержат в своем составе 9 пар периферических и 2 центральные фибриллы. Центральные фибриллы выполняют опорную роль, а периферические, содержащие миозиноподобные макромолекулы, сокращаются под воздействием АТФ. Благодаря их автоматическим движениям осуществляются непрерывные поиски адекватного стимула и обеспечиваются наилучшие условия для взаимодействия с ним. Следовательно, в одной и той же клетке представлены и собственно рецепторная, и моторная функции.
Следовательно, общий механизм рецепции слагается из механо- химических молекулярных процессов, обеспечивающих движение антенн, и общих биохимических циклов при взаимодействии специфического стимула с рецепторными мембранами антенн.
Однако не следует думать, что этой схемой ограничивается восприятие стимула рецепторной клеткой, У некоторых рецепторов во взаимодействии со стимулом принимает участие вся клетка (например, хеморецелторные клетки, чувствительные к напряжению кислорода в крови), у других (вкусовые луковицы позвоночных), восприятие осуществляется микроворсинками. В большей части рецепторов кожи, внутренних органов и мышц участки преобразования стимула находятся в окончаниях нервных волокон.В практическом отношении наиболее важное значение имеет психофизиологическая классификация рецепторов по характеру ощущений, возникающих при их раздражении. Согласно этой классификации, у человека различают зрительные, слуховые, обонятельные, вкусовые, осязательные рецепторы, термо-, проприо- и вестибулорецепторы (рецепторы положения тела и его частей в пространстве) и рецепторы боли.
Существуют рецепторы внешние (экстерорецепторы) и внутренние (интерорецепторы). К экстерорецепторам относятся слуховые, зрительные, обонятельные, вкусовые, осязательные. К интерорецепторам относятся вестибуло- и проприорецепторы (рецепторы опорно- двигательного аппарата), а также висцерорецепторы (сигнализирующие о состоянии внутренних органов).
По характеру контакта со средой рецепторы делятся на дистантные, получающие информацию на расстоянии от источника раздражения (зрительные, слуховые и обонятельные), и контактные — возбуждающиеся при непосредственном соприкосновении с раздражителем (вкусовые, тактильные).
В зависимости от природы раздражителя, на который они оптимально настроены, рецепторы могут быть разделены на фоторецепторы, механорецепторы, к которым относятся слуховые, вестибулярные рецепторы, и тактильные рецепторы кожи, рецепторы опорно- двигательного аппарата, барорецепторы сердечно- сосудистой системы; хеморецепторы, включающие рецепторы вкуса и обоняния, сосудистые и тканевые рецепторы; терморецепторы (кожи и внутренних органов, а также центральные термочувствительные нейроны); болевые (ноцицептивные) рецепторы.
Все рецепторы делятся на первично-чувствующие и вторично-чувствующие. К первым относятся рецепторы обоняния, тактильные и проприорецепторы. Они различаются тем, что преобразование энергии раздражения в энергию нервного импульса происходит у них в первом нейроне сенсорной системы. К вторично- чувствующим относятся рецепторы вкуса, зрения, слуха, вестибулярного аппарата. У них между раздражителем и первым нейроном находится специализированная рецепторная клетка, не генерирующая импульсы. Таким образом, первый нейрон возбуждается не непосредственно, а через рецепторную (не нервную) клетку.
При действии стимула на рецепторную клетку происходит преобразование энергии внешнего раздражения в рецепторный сигнал, или трансдукция сенсорного сигнала. Этот процесс включает в себя три основных этапа: 1) взаимодействие стимула, т. е. молекулы пахучего или вкусового вещества (обоняние, вкус), кванта света (зрение) или механической силы (слух, осязание) с рецепторной белковой молекулой, которая находится в составе клеточной мембраны рецепторной клетки; 2) внутриклеточные процессы усиления и передачи сенсорного стимула в пределах рецепторной клетки; и 3) открывание находящихся в мембране рецептора ионных каналов, через которые начинает течь ионный ток, что, как правило, приводит к деполяризации клеточной мембраны рецепторной клетки (возникновению так называемого рецепторного потенциала). В первично-чувствующих рецепторах этот потенциал действует на наиболее чувствительные участки мембраны, способные генерировать потенциалы действия — электрические нервные импульсы. Во вторично-чувствующих рецепторах рецепторный потенциал вызывает выделение квантов медиатора из пресинаптического окончания рецепторной клетки. Медиатор (например, ацетилхолин), воздействуя на постсинаптическую мембрану первого нейрона, изменяет ее поляризацию (генерируется постсинаптический потенциал). Постсинаптический потенциал первого нейрона сенсорной системы называют генераторным потенциалом, так как он вызывает генерацию импульсного ответа. В первично-чувствующих рецепторах рецепторный и генераторный потенциалы — одно и то же.
Абсолютную чувствительность сенсорной системы измеряют порогом реакции. Чувствительность и порог — обратные понятия: чем выше порог, тем ниже чувствительность, и наоборот. Обычно принимают за пороговую такую силу стимула, вероятность восприятия которого равна 0,5 или 0,75 (правильный ответ о наличии стимула в половине или в 3/4 случаев его действия). Более низкие значения интенсивности считаются подпороговыми, а более высокие — надпороговыми. Оказалось, что и в подпороговом диапазоне реакция на сверхслабые раздражители возможна, но она неосознаваема (не доходит до порога ощущения). Так, если снизить интенсивность вспышки света настолько, что человек уже не может сказать, видел он ее или нет, от его руки можно зарегистрировать неощущаемую кожно- гальваническую реакцию на данный сигнал.
Чувствительность рецепторных элементов к адекватным раздражителям, к восприятию которых они эволюционно приспособлены, предельно высока. Так, обонятельный рецептор может возбудиться при действии одиночной молекулы пахучего вещества, фоторецептор — одиночным квантом света. Чувствительность слуховых рецепторов также предельна: если бы она была выше, мы слышали бы постоянный шум из-за теплового движения молекул.
Различение сигналов. Важная характеристика сенсорной системы — способность замечать различия в свойствах одновременно или последовательно действующих раздражителей. Различение начинается в рецепторах, но в этом процессе участвуют нейроны всей сенсорной системы. Оно характеризует то минимальное различие между стимулами, которое сенсорная система может заметить (дифференциальный, или разностный, порог).
Передача и преобразование сигналов. Процессы преобразования и передачи сигналов в сенсорной системе доносят до высших центров мозга наиболее важную (существенную) информацию о раздражителе в форме, удобной для его надежного и быстрого анализа.
Преобразования сигналов могут быть условно разделены на пространственные и временные. Среди пространственных преобразований выделяют изменения соотношения разных частей сигнала. Так, в зрительной и соматосенсорной системах на корковом уровне значительно искажаются геометрические пропорции представительства отдельных частей тела или частей поля зрения. В зрительной области коры резко расширено представительство информационно наиболее важной центральной ямки сетчатки при относительном сжатии проекции периферии поля зрения («циклопический глаз»). В соматосенсорной области коры также преимущественно представлены наиболее важные для тонкого различения и организации поведения зоны — кожа пальцев рук и лица («сенсорный гомункулюс»).
Для временных преобразований информации во всех сенсорных системах типично сжатие, временная компрессия сигналов: переход от длительной (тонической) импульсации нейронов на нижних уровнях к коротким (фазическим) разрядам нейронов высоких уровней.Ограничение избыточности информации и выделение существенных признаков сигналов. Зрительная информация, идущая от фоторецепторов, могла бы очень быстро насытить все информационные резервы мозга. Избыточность сенсорных сообщений ограничивается путем подавления информации о менее существенных сигналах. Менее важно во внешней среде то, что неизменно либо изменяется медленно во времени и в пространстве. Например, на сетчатку глаза длительно действует большое световое пятно. Чтобы не передавать все время в мозг информацию от всех возбужденных рецепторов, сенсорная система пропускает в мозг сигналы только о начале, а затем о конце раздражения, причем до коры доходят сообщения только от рецепторов, которые лежат по контуру возбужденной области.
Кодирование информации. Кодированием называют совершаемое по определенным правилам преобразование информации в условную форму — код. В сенсорной системе сигналы кодируются двоичным кодом, т. е. наличием или отсутствием электрического импульса в тот или иной момент времени. Такой способ кодирования крайне прост и устойчив к помехам. Информация о раздражении и его параметрах передается в виде отдельных импульсов, а также групп или «пачек» импульсов («залпов» импульсов). Амплитуда, длительность и форма каждого импульса одинаковы, но число импульсов в пачке, частота их следования, длительность пачек и интервалов между ними, а также временной «рисунок» пачки различны и зависят от характеристик стимула. Сенсорная информация кодируется также числом одновременно возбужденных нейронов, а также местом возбуждения в нейронном слое.
Глава 2 Особенности кодирования, детектирования сигналов в сенсорных системах. Опознание образов
В отличие от телефонных или телевизионных кодов, которые декодируются восстановлением первоначального сообщения в исходном виде, в сенсорной системе такого декодирования не происходит. Еще одна важная особенность нервного кодирования — множественность и перекрытие кодов. Так, для одного и того же свойства сигнала (например, его интенсивности) сенсорная система использует несколько кодов: частотой и числом импульсов в пачке, числом возбужденных нейронов и их локализацией в слое. В коре большого мозга сигналы кодируются последовательностью включения параллельно работающих нейронных каналов, синхронностью ритмических импульсных разрядов, изменением их числа. В коре используется также позиционное кодирование. Оно заключается в том, что какой-то признак раздражителя вызывает возбуждение определенного нейрона или небольшой группы нейронов, расположенных в определенном месте нейронного слоя. Например, возбуждение небольшой локальной группы нейронов зрительной области коры означает, что в определенной части поля зрения появилась световая полоска определенного размера и ориентации.
Для периферических отделов сенсорной системы типично временное кодирование признаков раздражителя, а на высших уровнях происходит переход к преимущественно пространственному (в основном позиционному) коду.