в чем заключается биологическое значение митоза в чем заключается
Митоз и его значение
Митоз — важнейший этап в жизни клетки и всего организма, процесс деления соматической клетки у животных и образования половых клеток у растений.
Биологическое значение митоза:
1) в наиболее общей формулировке — передача неизменной наследственной информации от одной клетки к ее «потомкам»;
2) рост отдельных тканей и целых организмов;
3) регенерация клеток и тканей;
4) бесполое размножение.
Итак, митозом делятся именно соматические клетки! При этом абсолютно неверно говорить, что половые клетки делятся мейозом. Половые клетки не делятся, а образуются: у животных в результате мейоза, а у растений в результате митоза. Мейоз — путь образования спор у растений и грибов.
1. Ранняя профаза. Прекращается транскрипция. Начинается процесс конденсации хромосом — их укорочение, уплотнение. Хромосомы словно бы «свалены в кучу». То, что хромосомы двухроматидные, пока видно нечетко.
1) Формируется веретено деления в цитоплазме. Веретено состоит из тубулиновых микротрубочек.
2) Образуются полюса деления в результате расхождения клеточных центров к разным полюсам. Помните, клеточный центр (он есть у клеток водорослей, грибов, животных) — это центриоли с отходящими от них микротрубочками. Так как центриоли поделились в интерфазе, значит, клеточных центра в профазе будет два.
3) Ядерная оболочка разрушается, ядрышко исчезает. Оболочка ядру уже не нужна, она будет только препятствовать расхождению хромосом. Ядрышко также не требуется — все рибосомы были синтезированы в интерфазе. После исчезновения ядерной оболочки у высших растений тоже образуется веретено деления за счет переориентации хромосом, несмотря на то, что у них нет клеточного центра.
3. Набор хромосом и количество хроматид (молекул ДНК). 2n4c.
1. Прометафаза. Ключевое событие — микротрубочки, берущие начало от пары центриолей, присоединяются к центромерам хромосом.
2. Хромосомы передвигаются к центру клетки за счет сокращений белковых нитей микротрубочек.
3. Метафаза. Хромосомы расположены по экватору клетки. Фактически это один длинный ряд из двухроматидных хромосом. На рисунке показана модель одной из двухроматидных хромосом.
4. Четко видно, что каждая хромосома построена их пары сестринских хроматид. Термином «сестринские» обозначаются идентичные хромосомы, образовавшиеся в результате репликации ДНК и ее суперспирализации.
5. Набор хромосом и количество хроматид (молекул ДНК). 2n4c.
1. Центромеры хроматид разъединяются, фактически разделяются.
2. Две сестринские хроматиды каждой хромосомы «ссорятся и разъезжаются», двигаются к противоположным полюсам клетки. Микротрубочки при этом разрушаются.
1) Рассмотрим пример. У нас одна хромосома, состоящая из двух хроматид — А и В. И у нас два полюса клетки — А и В.
2) Хроматида А пойдет к полюсу А, хроматида В пойдет к полюсу В. Выше на рисунке показана модель двух хроматид одной хромосомы, расходящихся к разным полюсам.
3) Мы видим на рисунке только одну хромосому, но на самом деле ниже ее всегда есть парная хромосома, хроматиды которой также разошлись. Так как в двух хромосомах 4 хроматиды, то после их расхождения мы получим по сути 4 независимых хромосомы — и набор станет 4n.
3. Хроматиды превращаются в самостоятельные хромосомы, образно говоря, каждая из двух «дочек» сама становится «мамой».
4. Набор хромосом и количество хроматид (молекул ДНК). 4n4c. Для многих учеников остается загадкой, почему здесь 4n. Дело в том, что фактически на данной стадии материнская клетка имеет 2 диплоидных или 4 гаплоидных набора хромосом — 4n, набор, который она передаст дочерним клеткам в телофазе.
1. Создание ядерной оболочки вокруг хромосом.
2. Возникновение двух ядер в двух клетках.
3. Деконденсация хромосом. В окуляр светового микроскопа хромосомы не видны, они как бы распадаются, деспирализуются.
4. Формирование ядрышка. В интерфазе оно будет снова синтезировать рибосомы.
5. Цитокенез — разделение клетки и рождение пары дочерних клеток. При отсутствии данного процесса можно получить двухъядерные или многоядерные клетки.
6. Набор хромосом и количество хроматид (молекул ДНК). 2n2c. Предыдущая формула 4n4c «урезана» в два раза. В таком виде клетка подходит к интерфазе.
Биологическое значение митоза
Всего получено оценок: 275.
Всего получено оценок: 275.
Непрямое деление клеток-эукариотов – содержащих ядро – называют митозом. В этой статье Вы узнаете, в чём заключается биологическое значение митоза, историю исследования данного процесса.
Стадии митоза
Индивидуальное развитие любого живого организма невозможно без процесса деления клеток. Уникальность митоза состоит в том, что во время деления диплоидной соматической клетки образуется две дочерние клетки, которые обладают одинаковой генетической информацией и имеют равное число хромосом. Другими словами сохраняется преемственность между поколениями клеток-эукариотов.
Весь процесс состоит из четырёх стадий:
В некоторых источниках можно найти развёрнутый список фаз митоза. Так, например, профазе предшествует препрофаза, так называемая подготовка к делению. А также между профазой и метафазой рассматривают этап прометафазы. Однако большинство учёных объединяют препрофазу, профазу и прометафазу в одну единую стадию – профазу.
История исследования процесса
Впервые упоминания о процессе деления клеток встречаются в научной литературе в 1870 году. Но эти описания были неполными и касались только лишь изменения поведения ядер внутри клетки.
Первые попытки исследовать данный процесс принадлежат русским учёным Руссову, Чистякову, а также немецкому учёному Шнейдеру.
которые читают вместе с этой
В 1879 году Шлейхер, немецкий учёный, предложил процесс клеточного деления назвать кариокинезом. Впервые понятие «митоз» ввёл немецкий учёный-гистолог В. Флемминг в начале 1880-х годов. Именно этот термин и стал общепринятым для названия процесса, который завершает разделение хромосом между дочерними клетками.
Биологическое значение митоза
Ключевой ролью митоза является копирование генетического кода и передача его последующим поколениям. Благодаря данному процессу в ядре поддерживается постоянное число хромосом, которое строго одинаково распределяется между дочерними клетками. С помощью митотического деления наращиваются клетки растительных тканей. У животных организмов митоз лежит в основе дробления оплодотворённого яйца и роста тканей.
Помимо этого биологическим смыслом митоза является:
Благодаря этому процессу из одноклеточной зиготы развивается и растёт многоклеточный организм. Митоз является основой эмбрионального развития.
Некоторые участки тела в процессе жизнедеятельности требуют постоянного обновления, например, клетки кожи, эпителий кишечника, эритроциты.
С помощью митоза некоторые организмы могут восстанавливаться из одной части тела. Например, морская звезда может восстановиться всего из одного своего луча. У ящерицы может отрасти новый хвост, у человека восстанавливаются участки кожи.
Данный процесс лежит в основе вегетативного размножения растений. У животных с помощью митоза размножается гидра. Новая особь образуется способом почкования, которое невозможно без деления и увеличения числа клеток. Черви, которые тоже являются животными,размножаются фрагментацией, в основе которой тоже лежит митоз.
Что мы узнали?
Процесс непрямого деления клеток-эукариотов, при котором копируется и сохраняется генетическая информация, называется митозом. Данный процесс проходит в 4 этапа: профаза, метафаза, анафаза и телофаза. Впервые учёные описали процесс деления клеток в 70-80-х годах XIX века. Термин «митоз» ввёл немецкий учёный Вальтер Флемминг. Биологическое значение митоза – обеспечить образование дочерних клеток с идентичной генетической информацией. Непрямое деление лежит в основе развития и роста всех живых организмов, восстановления и регенерации частей тела, а также бесполого размножения.
Биологическое значение митоза – смысл, в чем заключается роль в делении клеток
Непрямое деление клеток-эукариотов – содержащих ядро – называют митозом. В этой статье Вы узнаете, в чём заключается биологическое значение митоза, историю исследования данного процесса.
Стадии митоза
Индивидуальное развитие любого живого организма невозможно без процесса деления клеток. Уникальность митоза состоит в том, что во время деления диплоидной соматической клетки образуется две дочерние клетки, которые обладают одинаковой генетической информацией и имеют равное число хромосом. Другими словами сохраняется преемственность между поколениями клеток-эукариотов.
Весь процесс состоит из четырёх стадий:
Рис. 1. Стадии митоза
В некоторых источниках можно найти развёрнутый список фаз митоза. Так, например, профазе предшествует препрофаза, так называемая подготовка к делению. А также между профазой и метафазой рассматривают этап прометафазы. Однако большинство учёных объединяют препрофазу, профазу и прометафазу в одну единую стадию – профазу.
История исследования процесса
Впервые упоминания о процессе деления клеток встречаются в научной литературе в 1870 году. Но эти описания были неполными и касались только лишь изменения поведения ядер внутри клетки.
Первые попытки исследовать данный процесс принадлежат русским учёным Руссову, Чистякову, а также немецкому учёному Шнейдеру.
В 1879 году Шлейхер, немецкий учёный, предложил процесс клеточного деления назвать кариокинезом. Впервые понятие «митоз» ввёл немецкий учёный-гистолог В. Флемминг в начале 1880-х годов. Именно этот термин и стал общепринятым для названия процесса, который завершает разделение хромосом между дочерними клетками.
Рис. 2. Вальтер Флемминг
Биологическое значение митоза
Ключевой ролью митоза является копирование генетического кода и передача его последующим поколениям. Благодаря данному процессу в ядре поддерживается постоянное число хромосом, которое строго одинаково распределяется между дочерними клетками. С помощью митотического деления наращиваются клетки растительных тканей. У животных организмов митоз лежит в основе дробления оплодотворённого яйца и роста тканей.
Помимо этого биологическим смыслом митоза является:
Благодаря этому процессу из одноклеточной зиготы развивается и растёт многоклеточный организм. Митоз является основой эмбрионального развития.
Некоторые участки тела в процессе жизнедеятельности требуют постоянной замены, например, клетки кожи, эпителий кишечника, эритроциты.
С помощью митоза некоторые организмы могут восстанавливаться из одной части тела. Например, морская звезда может восстановиться всего из одного своего луча. У ящерицы может отрасти новый хвост, у человека восстанавливаются участки кожи.
Рис. 3. Восстановление морской звезды
Данный процесс лежит в основе вегетативного размножения растений. У животных с помощью митоза размножается гидра. Новая особь образуется способом почкования, которое невозможно без деления и увеличения числа клеток.
Что мы узнали?
Процесс непрямого деления клеток-эукариотов, при котором копируется и сохраняется генетическая информация, называется митозом. Данный процесс проходит в 4 этапа: профаза, метафаза, анафаза и телофаза. Впервые учёные описали процесс деления клеток в 70-80-х годах XIX века. Термин «митоз» ввёл немецкий учёный Вальтер Флемминг. Биологическое значение митоза – обеспечить образование дочерних клеток с идентичной генетической информацией. Непрямое деление лежит в основе развития и роста всех живых организмов, восстановления и регенерации частей тела, а также бесполого размножения.
Биологическое значение митоза
1) обеспечивает наследственную передачу признаков и свойств в ряду поколений клеток при развитии многоклеточного организма. Благодаря точному и равномерному распределению хромосом при митозе все клетки единого организма генетически одинаковы.
2) митотическое деление клеток лежит в основе всех форм бесполого размножения как у одноклеточных, так и у многоклеточных организмов.
3) обусловливает важнейшие явления жизнедеятельности: рост, развитие и восстановление тканей и органов и бесполое размножение организмов.
Мейоз
Основные понятия и определения
Мейозом называется особый способ деления эукариотических клеток, при котором исходное число хромосом уменьшается в 2 раза (от древнегреч. «мейон» – меньше – и от «мейозис» – уменьшение). Часто уменьшение числа хромосом называется редукцией.
Общий ход мейоза
Типичный мейоз состоит из двух последовательных клеточных делений, которые соответственно называются мейоз I и мейоз II. В первом делении происходит уменьшение числа хромосом в два раза, поэтому первое мейотическое деление называют редукционным, реже – гетеротипным. Во втором делении число хромосом не изменяется; такое деление называют эквационным (уравнивающим), реже – гомеотипным. Выражения «мейоз» и «редукционное деление» часто используют как синонимы.
Интерфаза 1
В интерфазе 1 происходит удвоение количества хромосомного материала путем редупликации молекул ДНК.
Первое деление мейоза (редукционное деление, или мейоз I)
Сущность редукционного деления заключается в уменьшении числа хромосом в два раза: из исходной диплоидной клетки образуется две гаплоидные клетки с двухроматидными хромосомами (в состав каждой хромосомы входит 2 хроматиды).
Профаза 1 (профаза первого деления) состоит из ряда стадий:
Лептотена (стадия тонких нитей). Хромосомы видны в световой микроскоп в виде клубка тонких нитей, на которых видны утолщения – хромомеры
Зиготена (стадия сливающихся нитей). Происходит конъюгация гомологичных хромосом (от лат. conjugatio – соединение, спаривание, временное слияние). Гомологичные хромосомы (или гомологи) – это хромосомы, сходные между собой в морфологическом и генетическом отношении. У нормальных диплоидных организмов гомологичные хромосомы – парные: одну хромосому из пары диплоидный организм получает от матери, а другую – от отца. При конъюгации образуются биваленты. Количество бивалентов равно гаплоидному числу хромосом. Каждый бивалент – это относительно устойчивый комплекс из одной пары гомологичных хромосом. Гомологи удерживаются друг около друга с помощью белковых синаптонемальныхкомплексов.
Пахитена (стадия толстых нитей). Хромосомы спирализуются, хорошо видна их продольная неоднородность. Происходит кроссинговер – перекрест хромосом, в результате которого они обмениваются участками хроматид.
Диплотена (стадия двойных нитей). Гомологичные хромосомы в бивалентах отталкиваются друг от друга. Они соединены в отдельных точках, которые называются хиазмы (от древнегреч. буквы χ – «хи»).
Диакинез. Отталкивание гомологичных хромосом продолжается, но они удерживаются вместе лишь в отдельных точках хиазм, приобретая причудливую форму колец, крестов и т.д. На этой стадии хромосомы максимально спирализованы, укорочены, утолщены.
Метафаза I (метафаза первого деления)
Анафаза I (анафаза первого деления)
Начинают расходиться к полюсам не хроматиды, а целые гомологичные хромосомы каждой пары, так как в отличие от митоза центромера не делится и хроматиды не разъединяются. Отличие митоза от мейоза.
Телофаза I (телофаза первого деления)
Гомологичные двухроматидные хромосомы полностью расходятся к полюсам клетки. В норме каждая дочерняя клетка получает одну гомологичную хромосому из каждой пары гомологов. Формируются два гаплоидных ядра, которые содержат в два раза меньше хромосом, чем ядро исходной диплоидной клетки. Каждое гаплоидное ядро содержит только один хромосомный набор, то есть каждая хромосома представлена только одним гомологом. Содержание ДНК в дочерних клетках составляет 2с.
В большинстве случаев (но не всегда) телофаза I сопровождается цитокинезом.
Интерфаза 2
Отличается от интерфазы 1 тем, что не происходит репликации ДНК,
Второе деление мейоза (эквационное деление, или мейоз II)
В ходе второго деления мейоза уменьшения числа хромосом не происходит. Сущность эквационного деления заключается в образовании четырех гаплоидных клеток с однохроматидными хромосомами (в состав каждой хромосомы входит одна хроматида).
Профаза II (профаза второго деления)
Не отличается существенно от профазы митоза. Хромосомы видны в световой микроскоп в виде тонких нитей. В каждой из дочерних клеток формируется веретено деления.
Метафаза II (метафаза второго деления)
Хромосомы располагаются по экватору, центромеры делятся.
Анафаза II (анафаза второго деления)
Хромосомы разделяются на хроматиды (как при митозе). Получившиеся однохроматидные хромосомы в составе анафазных групп перемещаются к полюсам клеток.
Телофаза II (телофаза второго деления)
Однохроматидные хромосомы полностью переместились к полюсам клетки, формируются ядра. Содержание ДНК в каждой из клеток становится минимальным и составляет 1с.
При образовании как мужских, так и женских половых клеток происходят одни и те же процессы, хотя в деталях они несколько различаются.
Биологическое значение мейоза заключается в поддержании постоянства числа хромосом при наличии полового процесса. Кроме того, вследствие кроссинговера происходит рекомбинация – появление новых сочетаний наследственных задатков в хромосомах. Мейоз обеспечивает также комбинативную изменчивость – появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.
Гаметогенез
Фаза размноженияхарактеризуется многократными митотическими делениями клеток стенки семенника или яичника, приводящими к образованию многочисленных сперматогоний и овогоний. Эти клетки, как и все клетки тела, диплоидны. Фаза размножения у мужчин начинается с наступлением половой зрелости и продолжается постоянно в течение почти всей жизни. В женском организме размножение овогоний начинается в эмбриогенезе и завершается к З-му году жизни.
Фаза ростасопровождается увеличением объема цитоплазмы клеток, накоплением ряда веществ, необходимых для дальнейших делений, репликацией ДНК и удвоением хромосом. В фазе роста клетки получают название сперматоцитов и овоцитов 1 порядка. Фаза роста более выражена в овогенезе, поскольку овоциты 1 порядка накапливают значительные количества питательных веществ.
Фаза созреванияхарактеризуется мейозом. При сперматогенезе в результате 1 мейотического деления образуются два одинаковых сперматоцита 2 порядка, каждый из которых после второго деления мейоза формирует по две сперматиды.
Деления созревания при овогенезе характеризуются рядом особенностей. Во-первых, профаза первого мейотического деления осуществляется еще в эмбриональном периоде, а остальные события мейоза продолжаются после полового созревания организма. Каждый месяц в одном из яичников половозрелой женщины созревает одна яйцеклетка. При этом завершается 1 деление мейоза, образуются крупный овоцит 2 порядка и маленькое первое полярное, или направительное, тельце, которые вступают во второе деление мейоза.
Очень существенным отличием мейоза при овогенезе является наличие спец. стадии- диктиотены, отсутствующей при сперматогенезе. Она наступает вслед за диплотеной. На этой стадии мейоз в овоцитах прерывается на многие годы и переход к диакинезу наступает лишь при созревании яйцеклетки.
Стадии и биологическое значение митоза
Одним из наиболее важных процессов в каждом живом организме является постепенный рост тканей с помощью раздвоения их единиц. В науке его называют митозом. Большинство единиц в эукариотическом организме делятся именно таким способом.
В результате образуются новые ткани, продолжается жизнь организма. Биологическое значение митоза для человека и природы велико, поэтому процесс тщательно исследуется на протяжении многих лет.
Что такое митоз
Митоз представляет собой сложный биологический процесс, во время которого происходит непрямое деление клетки в живом организме. Подобное раздвоение считается наиболее распространенным, позволяет обеспечить рост тканей.
История исследования
Первая информация о митозе стала известна еще в 70-х годах XIX века. Определение процессу дал немецкий исследователь Вальтер Флемминг. В работах русского ученого Эдмунда Руссова, которые датированы 1872 годом, присутствует упоминание об анафазных и метафазных пластинках. Эти вещества состояли из отдельных хромосом, что послужило поводом для дальнейшего исследования.
В 1873 году изучением деления единиц эукариотических организмов занялся немецкий зоолог Антон Шнейдер. Он еще более подробно описал процесс. В следующем году ученый Чистяков выдвинул свою теорию. Однако ни одному из специалистов не удалось точно и последовательно описать деление.
Уже через несколько лет в работах разных специалистов стали появляться описания цикла, дополненные собственными умозаключениями. Некоторые предлагали утвердить новый термин для определения этого биологического деления. Но обозначение, предложенное Флеммингом, стало окончательным, как и формулировка процесса.
Далее специалисты изучали клеточный цикл на примере различных живых организмов, исследовали особенности митоза, вещества, стимулирующие его. Во время лабораторных опытов стало известно, что катализатором митотического деления является белок циклин, обнаруженный во всех эукариотических организмах. На каждой стадии концентрация этого элемента может увеличиваться и уменьшаться.
Для каких клеток типично
Еще во время исследования смысла митоза, его стадий и особенностей специалисты отметили, что такой тип деления характерен не для всех единиц.
При детальном изучении было выявлено, что только эукариотические, или ядерные, клетки делятся таким способом. Клетки прокариот размножаются другим методом.
Стадии
Продолжительность митоза в разных организмах отличается. Обычно у растений она составляет 2—3 часа, у животных и человека — около 60 минут. Это время занимает всего 10 % от общей длительности жизненного цикла клетки. Он представляет собой процесс, во время которого происходит формирование и деление единицы ткани в живом организме. Состоит из нескольких стадий: пресинтетической, синтетической, постсинтетической и собственно деления. Первые три стадии относятся к интерфазе митоза.
Ученые выделяют несколько стадий, которые изучаются в рамках школьной программы биологии:
Каждая фаза протекает в организме растений и животных по-разному.
Существуют также нетипичные формы. Наиболее распространенным считается амитоз. Процесс характеризуется быстрым и прямым раздвоением ядра с одновременным сохранением числа хромосом и ядрышка. В результате получается двухъядерная клетка.
Эндомитоз характеризуется интенсивным ростом числа хромосом, образованием полиплоидных единиц, способных провоцировать мутацию.
Отличия от мейоза
Мейоз представляет собой процесс деления гамет или половых клеток. В результате получается 4 гаметы. В организме человека все единицы делятся путем митоза и только половые клетки — с помощью мейоза.
Основными отличиями митоза от мейоза будут следующие:
Роль мейоза в функционировании и развитии всех систем человека велика, но оба процесса кардинально отличаются.
Биологическое значение
Биологическое значение митотического деления и сегодня изучается специалистами по всему миру. Но ученые определили важность процесса для природы и человека.
Для человека
Без подобного размножения единиц человеческого организма невозможно нормальное существование.
Основная важность процесса заключается в следующем:
Именно благодаря процессу происходит развитие жизни на планете и сохранение определенного вида с его особенностями.
Для природы
Для многих животных подобное размножение единиц тканей позволяет восстанавливать некоторые части тела. Регенерация свойственна ящерицам, морским звездам и некоторым другим организмам.
У многих млекопитающих пищеварительная система устроена так же, как и у человека, поэтому замещение пострадавших единиц слизистой оболочки желудка и кишечника происходит аналогичным образом. Растения благодаря процессу способны размножаться с помощью почкования (бесполое размножение) и вегетативным способом. В результате появляются организмы с таким же набором хромосом. Указ об обязанных крестьянах читайте в нашей статье.
Видео
Из видео можно узнать о росте единиц тканей более подробно.