в чем выражается вероятность

вероятность

вероятность (probability) — число от 0 до 1, которое отражает шансы того, что случайное событие произойдет, где 0 — это полное отсутствие вероятности происхождения события, а 1 означает, что рассматриваемое событие определенно произойдет.

Вероятность события E является числом от до 1.
Сумма вероятностей взаимоисключающих событий равна 1.

эмпирическая вероятность — вероятность, которая посчитана как относительная частота события в прошлом, извлеченная из анализа исторических данных.

вероятность очень редких событий нельзя посчитать эмпирически.

субъективная вероятность — вероятность, основанная на личной субъективной оценке события безотносительно исторических данных. Инвесторы, которые принимают решения о покупке и продаже акций зачастую действуют именно исходя из соображений субъективной вероятности.

Шанс 1 из… (odds) того что событие произойдет через понятие вероятности. Шанс появления события выражается через вероятность так: P/(1-P).

Например, если вероятность события 0,5, то шанс события 1 из 2 т.к. 0,5/(1-0,5).

Шанс того, что событие не произойдет вычисляется по формуле (1-P)/P

Несогласованная вероятноть — например в цене акций компании А на 85% учтено возможное событие E, а в цене акций компании Б всего на 50%. Это называется несогласованная вероятность. Согласно теореме голландских ставок, несогласованная вероятность создает возможности для извлечения прибыли.

Безусловная вероятность — это ответ на вопрос «Какова вероятность того, что событие произойдет?»

Условная вероятность — это ответ на вопрос: «Какова вероятность события A если событие Б произошло». Условная вероятность обозначается как P(A|B).

Совместная вероятность — вероятность того, что события А и Б произойдут одновременно. Обозначается как P(AB).

P(A|B) = P(AB)/P(B) (1)

P(AB) = P(A|B)*P(B)

Правило суммирования вероятностей:

Вероятность того, что случится либо событие A либо событие B —

P (A or B) = P(A) + P(B) — P(AB) (2)

если события A и B взаимоисключающие, то

P (A or B) = P(A) + P(B)

Независимые события — события A и B независимы если

P(A|B) = P(A), P(B|A) = P(B)

то есть это последовательность результатов, где значение вероятности постоянно от одного собятия к другому.
Бросок монеты — пример такого события, — результат каждого следующего броска не зависит от результата предыдущего.

Зависимые события — это такие события, когда вероятность появления одного зависит от вероятности появления другого.

Правило умножения вероятностей независимых событий:
Если события A и B независимы, то

P(AB) = P(A) * P(B) (3)

Правило полной вероятности:

P(A) = P(AS) + P(AS’) = P(A|S’)P(S) + P (A|S’)P(S’) (4)

S и S’ — взаимоисключающие события

математическое ожидание (expected value) случайной переменной есть среднее возможных исходов случайной величины. Для события X матожидание обоначается как E(X).

Допустим у нас есть 5 значений взаимоисключающих событий c определенной вероятностью (например доход компании составил такую-то сумму с такой вероятностью). Матожиданием будет сумма всех исходов помноженных на их вероятность:

дисперсия случайной величины — матожидание квадратных отклонений случайной величины от ее матожидания:

условное матожидание (conditional expected value) — матожидание случайной величины X при условии того, что событие S уже произошло.

Источник

В чем выражается вероятность

1. Случайная величина (СВ) и вероятность события.

2. Закон распределения СВ.

3. Биномиальное распределение (распределение Бернулли).

4. Распределение Пуассона.

5. Нормальное (гауссовское) распределение.

6. Равномерное распределение.

7. Распределение Стьюдента.

2.1 Случайная величина и вероятность события

Математическая статистика тесно связана с другой математической наукой – теорией вероятности и базируется на ее математическом аппарате.

Случайная величина (СВ) – это численная характеристика, измеряемая по ходу опыта и зависящая от случайного исхода. СВ реализуемая по ходу опыта и сама является случайной. Каждая СВ задает распределение вероятностей.

Основным свойством педагогических процессов, явлений служит их вероятностный характер (при данных условиях они могут произойти, реализоваться, но могут и не произойти). Для таких явлений существенную роль играет понятие вероятности.

Вероятность (Р) показывает степень возможности осуществления данного события, явления, результата. Вероятность невозможного события равна нулю p = 0, достоверного — единице p = 1 (100%). Вероятность любого события лежит в пределах от 0 до 1, в зависимости от того, насколько это событие случайно.

Существует два вида выборок СВ: зависимые и независимые. Если результаты измерения некоторого свойства у объектов первой выборки не оказывают влияния на результаты измерения этого свойства у объектов второй выборки, то такие выборки считаются независимыми. В тех случаях, когда результаты одной выборки влияют на результаты другой выборки, выборки считают зависимыми. Классический способ получения зависимых измерений – это двукратное измерение одного и того же свойства (или разных свойств) у членов одной и той же группы.

Событие А не зависит от события В, если вероятность события А не зависит от того произошло или нет событие В. События А и В независимы, если Р(АВ)=Р(А)Р(В). На практике независимость события устанавливается из условий опыта, интуиции исследователя и практики.

СВ бывает дискретной (мы можем пронумеровать ее возможные значения), например, выпадение игральной кости = 4, 6, 2, и непрерывной (ее функция распределения F(x) – непрерывна), например, время службы лампочки.

Математическое ожидание – числовая характеристика СВ, приближенно равная среднему значению СВ:

2.2 Закон распределения СВ

Подчиняются ли каким-либо законам явления, носящие случайный характер? Да, но эти законы отличаются от привычных нам физических законов. Значения СВ невозможно предугадать даже при известных условиях эксперимента, мы можем лишь указать вероятности того, что СВ примет то или иное значение. Зато зная распределение вероятностей СВ, мы можем делать выводы о событиях, в которых участвуют эти случайные величины. Правда, эти выводы будут также носить вероятностный характер.

Пусть некоторая СВ является дискретной, т.е. может принимать лишь фиксированные значения Xi. В этом случае ряд значений вероятностей P(Xi) для всех (i=1…n) допустимых значений этой величины называют её законом распределения.

При построении математической модели для проверки статистической гипотезы необходимо ввести математическое предположение о законе распределения СВ (параметрический путь построения модели).

Непараметрический подход к описанию математической модели (СВ не имеет параметрического закона распределения) менее точен, но имеет более широкую область применения.

Точно также, как и для вероятности случайного события, для закона распределения СВ есть только два пути его отыскания. Либо мы строим схему случайного события и находим аналитическое выражение (формулу) вычисления вероятности (возможно, кто–то уже сделал или сделает это до вас!), либо придется использовать эксперимент и по частотам наблюдений делать какие–то предположения (выдвигать гипотезы) о законе распределения.

Конечно же, для каждого из «классических» распределений уже давно эта работа проделана ­– широко известными и очень часто используемыми в прикладной статистике являются биномиальное и полиномиальное распределения, геометрическое и гипергеометрическое, распределение Паскаля и Пуассона и многие другие.

Для почти всех классических распределений немедленно строились и публиковались специальные статистические таблицы, уточняемые по мере увеличения точности расчетов. Без использования многих томов этих таблиц, без обучения правилам пользования ими последние два столетия практическое использование статистики было невозможно.

Сегодня положение изменилось – нет нужды хранить данные расчетов по формулам (как бы последние не были сложны!), время на использование закона распределения для практики сведено к минутам, а то и секундам. Уже сейчас существует достаточное количество разнообразных пакетов прикладных компьютерных программ для этих целей.

Среди всех вероятностных распределений есть такие, которые используются на практике особенно часто. Эти распределения детально изучены и свойства их хорошо известны. Многие из этих распределений лежат в основе целых областей знаний – таких, как теория массового обслуживания, теория надежности, контроль качества, теория игр и т.п.

2.3 Биномиальное распределение (распределение Бернулли)

Возникает в тех случаях, когда ставится вопрос: сколько раз происходит некоторое событие в серии из определенного числа независимых наблюдений (опытов), выполняемых в одинаковых условиях.

Для удобства и наглядности будем полагать, что нам известна величина p – вероятность того, что вошедший в магазин посетитель окажется покупателем и (1– p) = q – вероятность того, что вошедший в магазин посетитель не окажется покупателем.

Если X – число покупателей из общего числа n посетителей, то вероятность того, что среди n посетителей оказалось k покупателей равна

в чем выражается вероятность. Смотреть фото в чем выражается вероятность. Смотреть картинку в чем выражается вероятность. Картинка про в чем выражается вероятность. Фото в чем выражается вероятность

Формулу (1) называют формулой Бернулли. При большом числе испытаний биномиальное распределение стремиться к нормальному.

2.4 Распределение Пуассона

Играет важную роль в ряде вопросов физики, теории связи, теории надежности, теории массового обслуживания и т.д. Всюду, где в течение определенного времени может происходить случайное число каких-то событий (радиоактивных распадов, телефонных вызовов, отказов оборудования, несчастный случаях и т.п.).

Рассмотрим наиболее типичную ситуацию, в которой возникает распределение Пуассона. Пусть некоторые события (покупки в магазине) могут происходить в случайные моменты времени. Определим число появлений таких событий в промежутке времени от 0 до Т.

Случайное число событий, происшедших за время от 0 до Т, распределено по закону Пуассона с параметром l=аТ, где а>0 – параметр задачи, отражающий среднюю частоту событий. Вероятность k покупок в течение большого интервала времени, (например, – дня) составит

в чем выражается вероятность. Смотреть фото в чем выражается вероятность. Смотреть картинку в чем выражается вероятность. Картинка про в чем выражается вероятность. Фото в чем выражается вероятность

2.5 Нормальное (гауссовское) распределение

Нормальное (гауссовское) распределение занимает центральное место в теории и практике вероятностно-статистических исследований. В качестве непрерывной аппроксимации к биномиальному распределению его впервые рассматривал А.Муавр в 1733 г. Через некоторое время нор­мальное распределение снова открыли и изучили К.Гаусс (1809 г.) и П.Лаплас, которые пришли к нормальной функции в связи с ра­ботой по теории ошибок наблюдений.

Непрерывная случайная величина Х называется распределенной по нормальному закону, если ее плотность распределения равна

в чем выражается вероятность. Смотреть фото в чем выражается вероятность. Смотреть картинку в чем выражается вероятность. Картинка про в чем выражается вероятность. Фото в чем выражается вероятность

в чем выражается вероятность. Смотреть фото в чем выражается вероятность. Смотреть картинку в чем выражается вероятность. Картинка про в чем выражается вероятность. Фото в чем выражается вероятность

в чем выражается вероятность. Смотреть фото в чем выражается вероятность. Смотреть картинку в чем выражается вероятность. Картинка про в чем выражается вероятность. Фото в чем выражается вероятность

Значит, эта ордината убывает с возрастанием значения s (кривая «сжимается» к оси Ох) и возрастает с убыванием значения s (кривая «растягивается» в положительном направлении оси Оу). Изменение значений параметра

Нормальное распределение с параметрами

в чем выражается вероятность. Смотреть фото в чем выражается вероятность. Смотреть картинку в чем выражается вероятность. Картинка про в чем выражается вероятность. Фото в чем выражается вероятность

в чем выражается вероятность. Смотреть фото в чем выражается вероятность. Смотреть картинку в чем выражается вероятность. Картинка про в чем выражается вероятность. Фото в чем выражается вероятность

Для μ=0, σ=1 график принимает вид:

в чем выражается вероятность. Смотреть фото в чем выражается вероятность. Смотреть картинку в чем выражается вероятность. Картинка про в чем выражается вероятность. Фото в чем выражается вероятность

Эта кривая при μ=0, σ=1 получила статус стандарта, ее называют единичной нормальной кривой, то есть любые собранные данные стремятся преобразовать так, чтобы кривая их распределения была максимально близка к этой стандартной кривой.

Нормализованную кривую изобрели для решения задач теории вероятности, но оказалось на практике, что она отлично аппроксимирует распределение частот при большом числе наблюдений для множества переменных. Можно предположить, что не имея материальных ограничений на количество объектов и время проведения эксперимента, статистическое исследование приводится к нормально кривой.

2.6 Равномерное распределение

Равномерное распределение вероятностей является простейшим и может быть как дискретным, так и непрерывным. Дискретное равномерное распределение – это такое распределение, для которого вероятность каждого из значений СВ одна и та же, то есть:

в чем выражается вероятность. Смотреть фото в чем выражается вероятность. Смотреть картинку в чем выражается вероятность. Картинка про в чем выражается вероятность. Фото в чем выражается вероятность

где N – количество возможных значений СВ.

Распределение вероятностей непрерывной CВ Х, принимающие все свои значения из отрезка [а;b] называется равномерным, если ее плотность вероятности на этом отрезке постоянна, а вне его равна нулю:

в чем выражается вероятность. Смотреть фото в чем выражается вероятность. Смотреть картинку в чем выражается вероятность. Картинка про в чем выражается вероятность. Фото в чем выражается вероятность

2.7 Распределение Стьюдента

Это распределение связано с нормальным. Если СВ x1, x2, … xn – независимы, и каждая из них имеет стандартное нормальное распределение N(0,1), то СВ имеет распределение, называемое распределением Стьюдента:

Источник

Теория вероятности формула и примеры для чайников, задачи с решениями, как найти классическую вероятность в математике, как обозначается и в чем выражается вероятность

В высшей математике существует раздел, изучающий статистику. По сути, это теоретическая база. Направление изучает закономерности и случайные явления, систематизирует данные для обоснования принятых решений. Основой науки является теория вероятности, чьи формулы используются для предположения о свершении того или иного события. Существует и алгоритм, с помощью которого решаются все задачи.

в чем выражается вероятность. Смотреть фото в чем выражается вероятность. Смотреть картинку в чем выражается вероятность. Картинка про в чем выражается вероятность. Фото в чем выражается вероятность

Развитие науки

Изучение вероятности наступления того или иного события берёт своё начало со Средних веков. Первоначально наблюдаемые закономерности не имели математического описания и основывались на различных эмпирических фактах. Ранние работы были непосредственно связаны с азартными играми. Французские учёные Паскаль и Ферма пытались выявить и рассчитать закономерности при бросании костей.

в чем выражается вероятность. Смотреть фото в чем выражается вероятность. Смотреть картинку в чем выражается вероятность. Картинка про в чем выражается вероятность. Фото в чем выражается вероятность

Независимо от них этим вопросом занимался и голландский физик Гюйгенс. В своей работе он оперировал такими понятиями, как величина шанса, математическое ожидание, цена случайности. Он первый, кто попробовал применить теоремы сложения и умножения в описание вероятности.

Фундаментальное значение для развития науки имели труды Бернулли, Байеса, Лапласа и Пуассона. Их стараниями были сформулированы и доказаны предельные теоремы, предложены первые формулы и примеры. В теории вероятности начали использовать анализ ошибочного наблюдения. Но лишь Карл Гаусс детально смог разобраться в нормальном распределении случайной величины.

В XIX веке русские и европейские учёные смогли доказать сделанные ранее предложения. В первую очередь это касалось закона больших чисел и центральной предельной теоремы. Формальная система для описания теории была принята в 1933 году. Предложил её академик СССР Андрей Колмогоров. Руководствуясь идеями теории множеств, меры и интегрирования, он смог систематизировать аксиомы и с их помощью описать классическую теорию вероятности. На основании его работ была создана новая теория — случайных процессов.

В его систему входит:

в чем выражается вероятность. Смотреть фото в чем выражается вероятность. Смотреть картинку в чем выражается вероятность. Картинка про в чем выражается вероятность. Фото в чем выражается вероятность

Объекты, удовлетворяющие системе, были названы полем вероятности (вероятностным пространством). Было принято, что аксиомы не могут противоречить друг другу. Аксиоматизация позволила привести все предположения к строгому математическому виду и стала восприниматься как один из разделов математического вычисления.

Сущность предмета

Предметом изучения науки являются закономерности, появляющиеся в случайных событиях, результат которых нельзя установить заранее. Но не все эксперименты можно изучать с помощью теории, а лишь те, что повторяются при одних и тех же условиях.

в чем выражается вероятность. Смотреть фото в чем выражается вероятность. Смотреть картинку в чем выражается вероятность. Картинка про в чем выражается вероятность. Фото в чем выражается вероятность

Существует понятие «статистической устойчивости». Если существует некоторое событие «А», которое может наступить в результате события или не произойти, то часть экспериментов должна стабилизироваться. При этом с увеличением числа экспериментов вероятность повторения стремится к определённому числу Р(А). Оно и является характеристикой, определяющей степень возможности наступления события «А».

Объяснить основы теории вероятности для чайников можно с помощью классических понятий:

в чем выражается вероятность. Смотреть фото в чем выражается вероятность. Смотреть картинку в чем выражается вероятность. Картинка про в чем выражается вероятность. Фото в чем выражается вероятность

Основополагающими формулами являются выражения Байеса и Бернулли.

Алгоритм решения

Теория вероятностей используется, когда необходимо сделать прогноз на выпадение того или иного шанса в эксперименте. Случайность является основным понятием предмета. Она обозначает явление, для которого невозможно точно вычислить периодичность наступления, поэтому в задачах находят именно число возможностей. По своей сути вероятность — функция, способная принимать 3 значения:

в чем выражается вероятность. Смотреть фото в чем выражается вероятность. Смотреть картинку в чем выражается вероятность. Картинка про в чем выражается вероятность. Фото в чем выражается вероятность

Чтобы высчитать случайность, рекомендуется придерживаться разработанного алгоритма. Следует внимательно изучить задание и определить, вероятность чего необходимо вычислить, а также события, от которых случайность будет изменяться. Определив схему задачи, подобрать формулу и, подставив в неё все имеющиеся данные, рассчитать шанс. Чтобы правильно определиться с нужной схемой, необходимо знать о количестве экспериментов, существовании между ними зависимости, возможности применения нескольких гипотез.

Для понятия принципа нахождения случайности часто предлагается к решению следующая задача. В закрытом ящике лежит 6 разноцветных перемешанных между собой шаров. Из них 2 красного цвета, 3 зелёного и 1 белый. Нужно посчитать, насколько шансов достать белый шар меньше, чем цветной.

в чем выражается вероятность. Смотреть фото в чем выражается вероятность. Смотреть картинку в чем выражается вероятность. Картинка про в чем выражается вероятность. Фото в чем выражается вероятность

Случайность доставания цветного шара обозначают как событие «А». Согласно определению вероятность «А» определяется отношением благоприятствующих шансов к общему числу исходов. Существует 6 различных возможностей вытянуть шар, из них 5 относятся к благоприятным, поэтому эксперимент покажет, что вероятность достать из ящика цветной шар будет составлять P = 5 / 6 = 0,83(3). Это и есть показатель оценки степени случайности.

Таким способом можно узнать различную вероятность любого исхода, не прибегая к собиранию статистики и её анализу, то есть решить задачу математически, как, например, следующую. В таксопарке используется 2 синих, 9 красных и 4 чёрных машины. Нужно определить, какая существует возможность приезда по вызову красного автомобиля. Решение простое. Так как всего имеется 15 машин, вероятность приезда именно красной составит Р = 9/15 или 0,6.

Теорема Муавра — Лапласа

в чем выражается вероятность. Смотреть фото в чем выражается вероятность. Смотреть картинку в чем выражается вероятность. Картинка про в чем выражается вероятность. Фото в чем выражается вероятность

Это предельное определение, предложенное Лапласом в 1812 году. В основе теоремы используется формула Бернулли, но применяется она к довольно большому количеству экспериментов. Суть её в следующем: если при независимых экспериментах n существует вероятность свершения случайного события N равная нулю или единице, при этом число испытаний равняется m, искомое значение близко к интегральной функции Лапласа.

Стандартные значения, соответствующие нормальному распределению, сведены в статистические таблицы. Взять их можно в решебниках задач по теории. Под приведёнными значениями понимается площадь кривой от нуля до числа x. Например, если придумать какую-либо величину площади между числами 0 и 2,34, согласно таблице она составит 0,49036.

При рассмотрении свершения m событий в n экспериментах существует вероятность, заключённая в определённом отрезке между значениями a и b, поэтому выражение для нахождения можно найти из формулы: Р(m) = (n! * pm * qn-m) / m!(n-m)!. Уравнение требует сложных и громоздких расчётов, поэтому, чтобы найти вероятность, в математике из формулы используют асимптотическое распределение. Но возможно это только при условии, что Р(m) неизменное, а число экспериментов будет стремиться к бесконечности.

Реальная формула, описывающая теорему сложна, поэтому используется приближённая:

Р(m) = 1 / ((2p*n*p*q)1/2) exp (-X2m/2).

Использовать её рекомендуют только при значениях событий больше 20, а экспериментов 100. Например, брак выпускаемых изделий составляет 15%. Поступает товар в упаковках по 100 штук. Нужно найти вероятность, что случайно взятая коробка будет укомплектована 13 бракованными изделиями. При этом число товара низкого качества в упаковке не превысит 20.

За испытание необходимо принять изготовление. Вероятность появления события, которое необходимо искать составит p = 0,15. Далее, находится случайность: n * p = 15 и n * p * q = 12,75. Исходные данные подставляют в формулу Лапласа:

в чем выражается вероятность. Смотреть фото в чем выражается вероятность. Смотреть картинку в чем выражается вероятность. Картинка про в чем выражается вероятность. Фото в чем выражается вероятность

Таким образом, примерно 9,5% упаковок от общего количества содержат 13 товаров плохого качества, а в 92% случаях число изделий с браком не превышает 20.

Сочетание взаимных событий

При рассмотрении задач может возникнуть вопрос, как различные события могут зависеть друг от друга. Для характеристики их взаимосвязи вводится понятие условная вероятность. Например, имеются 2 случайных исхода одного эксперимента «А» и «В». Тогда условной вероятностью первого события «А» при условии, что второе произошло, называется отношение P (AB) / P (B).

Необходимо определить, с какой вероятностью в семье с ребёнком-девочкой родится мальчик. За вероятность появления в семье двух мальчиков нужно взять «А», а за ребёнка противоположного пола событие «В». Существует 4 возможных исхода, поэтому справедливо будет записать: P (AB) = 1/4, P(B) = 3/4. Подставив эти значения в формулу можно рассчитать вероятность: P (A/B) = (1/4) / (3/4) = 0,3. Первый исход считается независимым от второго, если наступление события «В» не оказывает влияние.

в чем выражается вероятность. Смотреть фото в чем выражается вероятность. Смотреть картинку в чем выражается вероятность. Картинка про в чем выражается вероятность. Фото в чем выражается вероятность

Если же события взаимны, они влияют друг на друга. В этом случае используется их перемножение: P(AB) = P(A) *PB (А). Например, в пачке 26 лотерей, из которых 3 призовых. Нужно определить шанс, что первый билет будет призовой и вероятность, что второй билет также будет с выигрышем, но при условии, что первый билет уже убрали.

Для решения задачи вначале нужно найти шанс, что первый билет будет с выигрышем: P (A) = 3/26 = 0,115. Затем рассчитать вероятность двух выигрышей подряд: P(AB) = P(A) * P(B) = (3/26) * (2/25) = 0,009.

Это довольно простые задачи, но существуют задания, для решения которых понадобится применять несколько формул. Такой расчёт вероятности наступления того или иного события может быть трудным, требующим повышенного внимания. Для облегчения вычислений существуют специальные интернет-порталы. Они предлагают рассчитать исход события даже тем, кто и вовсе не разбирается в теории. Например, allcalc.ru, kontrolnaya-rabota.ru, matburo.ru, math.semestr.ru.

На этих сайтах от пользователей требуется лишь заполнить предлагаемые формы исходными данными и нажать кнопку «Рассчитать». Все калькуляторы совмещают в себе быстроту нахождения ответа и ознакомление с подробным описанием решения.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *