в чем суть теоремы пуанкаре
Теорема Пуанкаре простыми словами
Жюль Анри Пуанкаре (1854-1912) возглавлял Парижскую академию наук и был избран в научные академии 30 стран мира. Он имел масштаб Леонардо: его интересы охватывали физику, механику, астрономию, философию. Математики же всего мира до сих пор говорят, что только два человека в истории по-настоящему знали эту науку: немец Давид Гилберт (1862-1943) и Пуанкаре.
В 1904 году учёный опубликовал работу, содержавшую среди прочего предположение, получившее название теорема Пуанкаре. Поиск доказательства истинности этого утверждения занял около века.
Основатель топологии
Математический гений Пуанкаре впечатляет количеством разделов науки, где им были разработаны теоретические основы различных процессов и явлений. Во времена, когда ученые совершали прорывы в новые миры космоса и в глубины атома, было не обойтись без единой основы общей теории мироздания. Такой базой стали ранее неизвестные отрасли математики.
Пуанкаре искал новый взгляд на небесную механику, он создал качественную теорию дифференциальных уравнений, теорию автоморфных функций. Исследования ученого стали основой специальной теории относительности Эйнштейна. Теорема Пуанкаре о возвращении говорила среди прочего о том, что понять свойства глобальных объектов или явлений можно исследуя составляющие их частицы и элементы. Это дало мощный толчок научным поискам в физике, химии, астрономии и т.д.
Развитием неэвклидовой геометрии стало возникновение топологии – отрасли математики, которую называли геометрией размещения. Она изучает пространственные взаимоотношения точек, линий, плоскостей, тел и т.д. без учета их метрических свойств. Теорема Пуанкаре, ставшая символом самых трудноразрешимых задач в науке, возникла именно в недрах топологии.
Одна из семи задач тысячелетия
• Равенство классов P и NP (о соответствии алгоритмов решения задачи и методов проверки их правильности).
• Гипотеза Ходжа (о связи объектов и их подобия, составленного для их изучения из «кирпичиков» с определенными свойствами).
• Гипотеза Пуанкаре (всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере).
• Гипотеза Римана (о закономерности размещения простых чисел).
• Теория Янга — Миллса (уравнения из области элементарных частиц, описывающие различные виды взаимодействий).
• Существование и гладкость решений уравнений Навье — Стокса (описывают турбулентность течений воздуха и жидкостей).
• Гипотеза Бёрча — Свиннертон-Дайера (об уравнениях, описывающих эллиптические кривые).
Каждая эта проблема имела очень долгую историю, поиски их решения приводили к возникновению целых новых научных направлений, но единственно правильные ответы на поставленные вопросы не находились. Понимающие люди говорили, что деньги фонда Клэя в безопасности, но так было лишь до 2002 года – появился тот, кто доказал теорему Пуанкаре. Правда, деньги он не взял.
Классическая формулировка
Гипотеза, для которой найдено подтверждение, становится теоремой, имеющей корректное доказательство. Именно это произошло с высказанным Пуанкаре предположением о свойствах трехмерных сфер. В более общем виде этот постулат говорил о гомеоморфности всякого многообразия размерности n и сферы размерности n как необходимом условии их гомотопической эквивалентности. Знаменитая теперь теорема Пуанкаре относится к варианту, когда n=3. Именно в трехмерном пространстве математиков ждали затруднения, для других случаев доказательства были найдены быстрее.
Чтобы хоть немного постичь смысл теоремы Пуанкаре, не обойтись без знакомства с основными понятиями топологии.
Гомеоморфизм
Топология, говоря о гомеоморфизме, определяет его как взаимно-однозначное соответствие между точками одной и другой фигуры, в некотором смысле неотличимость. Неподготовленному сложно даётся теорема Пуанкаре. Для чайников можно привести самый популярный пример гомеоморфных фигур – шар и куб, также гомеоморфны бублик и кружка, но не кружка и куб. Фигуры гомеоморфны, если одну фигуру можно получить произвольной деформацией из другой, причем это преобразование ограничено некоторыми свойствами поверхности фигуры: её нельзя рвать, прокалывать, разрезать.
Если куб раздуть, он легко может стать шаром, если шар примять встречными движениями, можно получить кубик. Наличие дырки у бублика и дырки, образованной ручкой у кружки, делает их гомеоморфными, та же дырка делает невозможным превращение кружки в шар или куб.
Связность
Дырка – важное понятие, определяющее свойства объекта, но категория совершенно не математическая. Было введено понятие связности. Его содержат многие топологические постулаты, в том числе и теорема Пуанкаре. Простыми словами можно говорить так: если поверхность шара обернуть петлей из резиновой ленты, она, сжимаясь, соскользнёт. Этого не произойдет, если имеется отверстие, как у тора-бублика, сквозь которое можно продеть эту ленту. Таким образом определяется главный признак сходства или отличия объектов.
Многообразие
Самая адекватная аналогия этих категорий – поверхность земли. Изображение её поверхности представляет собой карты отдельных её районов, собранные в атлас. На глобусе эти изображения обретают форму шара, который относительно пространства Вселенной превращается в точку.
Трехмерная сфера
Математики приводят ещё и такое описание трехмерной сферы: допустим, что к нашему привычному пространству, считаемому неограниченным и определяемому тремя координатами (X, Y, Z), добавлена точка (на бесконечности) таким образом, что в неё всегда можно попасть, двигаясь в любом направлении по прямой линии, т.е. любая прямая в этом пространстве становится окружностью. Говорят, что есть люди, которые могут это вообразить и спокойно ориентироваться в таком мире.
Для них обычное дело – трехмерный тор. Такой объект можно получить путем дважды повторенного совмещения в одну точку двух, расположенных на противоположных (например, правой и левой, верхней и нижней) гранях куба. Чтобы попытаться представить трехмерный тор с привычных нам позиций, следует провести абсолютно нереальный эксперимент: необходимо выбрать направления, взаимно перпендикулярные, – вверх, влево и вперед – и начать двигаться в любом из них по прямой. Через какое-то (конечное) время с противоположного направления мы вернемся в исходную точку.
Такое геометрическое тело имеет принципиальное значение, если хотеть понять, что такое теорема Пуанкаре. Доказательство Перельмана сводится к обоснованию существования в трехмерном пространстве лишь одного односвязного компактного многообразия – 3-сферы, другие, как 3-тор, неодносвязные.
Долгий путь к истине
Прошло более полувека, прежде чем появилось решение теоремы Пуанкаре для больших чем 3 размерностей. Стивен Смэйл (род. 1930), Джон Роберт Стэллингс (1935-2008), Эрик Кристофер Зиман (род. 1925) нашли решение для n, равного 5, 6 и равного или больше 7. Только в 1982 году Майкл Фридман (род. 1951) был удостоен высшей математической награды – Филдсовской премии – за доказательство теоремы Пуанкаре для более сложного случая: когда n=4.
Обыкновенный гений
Многие специалисты, особенно российские, отмечают что Григорий Яковлевич был подготовлен к невиданному взлету высоким классом ленинградской школы геометров, какую он прошел на мехмате Ленинградского госуниверситета и в аспирантуре при Математическом институте им. В.А. Стеклова. Став кандидатом наук, он стал работать в нем.
Верное направление
Григорий Яковлевич отмечает, что его всегда увлекали сложные проблемы, такие как теорема Пуанкаре. Доказательство Перельман стал искать в направлении, вынесенном из беседы с профессором Колумбийского университета Ричардом Гамильтоном (род. 1943). Во время пребывания в США он специально ездил из другого города на лекции этого неординарного ученого. Перельман отмечает прекрасное доброжелательное отношение профессора к молодому математику из России. В их разговоре Гамильтон упомянул о потоках Риччи – системе дифференциальных уравнений – как способе решения теорем геометризации.
Гамильтон пришел в тупик, когда увидел, что при преобразованиях кривых под действием потоков Риччи образуются сингулярные (обращающиеся в бесконечность) зоны, которые не предусматривала теорема Пуанкаре. Простыми словами, Перельману удалось нейтрализовать образование таких зон, и многообразие благополучно превратилось в сферу.
Потоки Риччи
Односвязное 3-мерное многообразие наделяется геометрией, вводятся метрические элементы с расстоянием и углами. Легче понять это на одномерных многообразиях. Гладкая замкнутая кривая на эвклидовой плоскости наделяется в каждой точке касательным вектором единичной длины. При обходе кривой вектор поворачивается с определенной угловой скоростью, которая определяет кривизну. Где линия изогнута сильнее, кривизна больше. Кривизна положительна, если вектор скорости повернут в сторону внутренней части плоскости, которую делит наша линия, и отрицательна, если повернут вовне. В местах перегиба кривизна равна 0.
Нет пророка…
Он взошел на свой Эверест, каким признается математиками теорема Пуанкаре. Доказательство Перельман выложил в Интернет в виде трех небольших статей. Они немедленно вызвали ажиотаж, хотя русский математик не пошел положенной дорогой – публикация в специализированном журнале в сопровождении профессиональных рецензий. Григорий Яковлевич в течение месяца разъяснял в университетах США суть своего открытия, но число до конца понявших ход его мысли увеличивалось очень медленно.
Лишь через четыре года появилось заключение самых больших авторитетов: доказательства русского математика корректны, первая из проблем тысячелетия решена.
Эпоха соцсетей
Ему пришлось пережить ажиотаж и хамство в соцсетях, молчание тех, кого он уважал, и крики других, учивших его жизни. Энергичные китайцы сначала оценили его вклад в решение проблемы в 25 %, себе и другим насчитав 80! Потом вроде бы пришло мировое признание, но выдержать такое дано не каждому.
Гипотеза Пуанкаре: история проблемы, доказательство, смысл
По школьному курсу каждый знаком с понятиями теоремы и гипотезы. Как правило, в жизни затрагиваются самые простые и примитивные законы, в то время как математики делают очень сложные предположения и ставят интересные проблемы. Далеко не всегда им самим удается найти решения и доказательства, а в некоторых случаях над этим многие годы бьются их последователи и просто коллеги.
Институт Клея в 2000 году сформировал список из 7 так называемых Проблем Тысячелетия по аналогии с перечнем гипотез, составленным в 1900 году. Те задачи почти все оказались к настоящему времени решены, только одна из них перекочевала в обновленную версию. Сейчас список проблем выглядит следующим образом:
Все они относятся к различным дисциплинам внутри математики и имеют важное значение. Например, уравнения Навье-Стокса относятся к гидродинамике, а на практике могут описать поведение вещества в земной магме или пригодиться в предсказании погоды. Но все эти проблемы все еще ищут своего доказательства или опровержения. Кроме одной.
Теорема Пуанкаре
Объяснить простыми словами, в чем заключается эта проблема, довольно непросто, но попробовать можно. Представим себе сферу, к примеру, мыльный пузырь. Все точки его поверхности равноудалены от его центра, который ей не принадлежит. Но это двумерное тело, а гипотеза говорит о трехмерном. Это представить уже невозможно, но на то у нас и есть теоретическая математика. При этом, разумеется, все точки этого тела также будут удалены от центра.
История
Французский математик Анри Пуанкаре занимался самыми разными областями науки. О его достижениях может сказать, к примеру, тот факт, что совершенно независимо от Альберта Эйнштейна он выдвинул основные положения специальной теории относительности. В 1904 году он поднял проблему доказательства того, что любое трехмерное тело, обладающее некоторыми свойствами сферы, ею и является с точностью до деформации. Позднее она была расширена и обобщена, и стала частным случаем гипотезы Терстона, сформулированной в 1982 году.
Формулировка
Пуанкаре изначально оставил такое утверждение: всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере. В дальнейшем оно было расширено и обобщено. И все же на протяжении длительного времени именно изначальная задача вызывала больше всего проблем, и была решена лишь через 100 лет после ее появления.
Интерпретация и смысл
О том, что такое гомеоморфность, речь уже шла. Теперь стоит поговорить о компактности и односвязности. Первое означает лишь, что многообразие имеет ограниченные размеры, не может быть непрерывно и бесконечно растянуто.
Доказательство
Не стоит думать, что из десятков математиков, работавших по всему миру, никто не продвинулся ни на йоту, занимаясь этой проблемой. Наоборот, прогресс был, и в конце концов он привел к результату. Сам Пуанкаре не успел закончить работу, но его исследования серьезно продвинули всю топологию.
В 1982 году и для 4 было найдено доказательство, оставалось только 3. В том же году Терстон сформулирован гипотезу о геометризации, при этом теория Пуанкаре стала ее частным случаем.
На 20 лет гипотеза Пуанкаре была как будто забыта. В 2002 году российский математик Григорий Перельман представил решение в общих чертах, спустя полгода сделав некоторые дополнения. Уже позже это доказательство проверяли и доводили «до блеска» американские и китайские ученые. А сам Перельман словно потерял к проблеме весь интерес, хотя он решил более общую задачу о геометризации, для которой гипотеза Пуанкаре является лишь частным случаем.
Признание и оценки
Разумеется, это сразу стало сенсацией, ведь решение одной из Проблем Тысячелетия просто не могло оказаться незамеченным. Еще больше удивления вызывал тот факт, что Григорий Перельман отказался от всех наград и премий, сообщив, что ему и так прекрасно живется. В умах обывателей он сразу стал примером того самого полусумасшедшего гения, которого интересует только наука.
Все это вызвало много обсуждений в прессе и СМИ, что популярность математика стала его тяготить. Летом 2014 года прошла информация о том, что Перельман уехал работать в Швецию, но это оказалось лишь слухами, он все еще скромно живет в Санкт-Петербурге и почти ни с кем не общается. Среди наград, присужденных ему, были не только премия института Клея, но и престижная медаль Филдса, но он отказался от всего. Впрочем, Гамильтон, который по оценкам Перельмана сделал не меньший вклад в доказательство, тоже не был забыт. В 2009 и 2011 годах он также удостоился некоторых престижных наград и премий.
Отражение в культуре
Несмотря на то что для простых обывателей как постановка, так и решение этой проблемы представляют мало смысла, о доказательстве стало известно довольно быстро. В 2008 году по этому поводу японским режиссером Масахито Касуга был снят документальный фильм «Чары гипотезы Пуанкаре», посвященный столетним попыткам решить эту задачу.
Гипотеза Пуанкаре
Гипотеза Пуанкаре — это доказанная гипотеза о том, что если трёхмерная поверхность чем-то похожа на сферу, и если её расправить, она превратится именно в сферу.
Одна из версий официальной формулировки гипотезы Пуанкаре́ звучит так: «Всякое связное, односвязное, компактное трёхмерное многообразие без края гомеоморфно сфере S³».
Гипотеза Пуанкаре была сформулирована в 1904 году известным французским математиком Анри Пуанкаре. В 2002–2003 годах она была доказана русским математиком Григорием Перельманом. После этого Гипотеза Пуанкаре стала именоваться теоремой Пуанкаре — Перельман.
Топология — простыми словами это «геометрия резинового листа» или «резиновая геометрия» т.к. объекты растягиваются и сжимаются как резина и их невозможно сломать; топология изучает свойства пространств, которые неизменны под давлением любой непрерывной деформации. Гипотеза Пуанкаре связана с топологией.
Доказательство
Простыми словами: Перельман доказал при помощи потока Риччи, что при эволюции любая замкнутая кривая на плоскости ведёт себя одинаково и превращается в окружность.
В своих статьях, где Перельман опубликовал идеи доказательства, он также доказал гипотезу о геометризации Уильяма Тёрстона, частным случаем которой является гипотеза Пуанкаре.
Гипотеза геометризации Уильяма Тёрстона гласит, что каждое трёхмерное многообразие локально изометрично только одному из восьми различных типов (изометрично — в науке это то, что относится к равенству меры или этим характеризуется).
Доказательство Перельмана было основано на теории потока Риччи и использовало результаты Чигера, Громова и самого Перельмана о метрических пространствах.
Метрическое пространство — это набор, где есть функция измерения расстояния между точками и который называется метрикой.
Что доказательство гипотезы дало науке?
В плане астрономии эта теорема предполагает, что если наша Вселенная имеет характеристики односвязного компактного многообразия без края, следовательно, она является трёхмерной сферой. Однако ранее считалось, что Вселенная является бесконечной (т.е. имеет форму евклидового трёхмерного пространства).
Теорема Перельмана — Пуанкаре также имеет огромное значение для математики, особенно способ её доказательства. Эта теорема считается математической формулой Вселенной. Она описывает наш мир, который является гладким трёхмерным многообразием.
Теорема Пуанкаре – математическая формула «Вселенной». Григорий Перельман. Часть 1 (из серии «Настоящий Человек в науке»)
Анри Пуанкаре (1854-1912), один из величайших математиков, в 1904 г. сформулировал знаменитую идею о деформированной трёхмерной сфере и в виде маленькой заметки на полях, помещённой в конце 65 страничной статьи, посвящённой совершенно другому вопросу, нацарапал несколько строчек довольно странной гипотезы со словами: «Ну этот вопрос может слишком далеко нас завести»…
Маркус Дю Сотой из Оксфордского университета считает, что теорема Пуанкаре — «это центральная проблема математики и физики, попытка понять какой формы может быть Вселенная, к ней очень трудно подобраться».
Раз в неделю Григорий Перельман ездил в Принстон, чтобы принять участие в семинаре «Института углублённых исследований». На семинаре один из математиков Гарвардского университета отвечает на вопрос Перельмана: «Теория Уильяма Тёрстона (1946-2012 гг., математик, труды в области «Трехмерной геометрии и топологии»), получившая название гипотезы геометризации описывает все возможные трёхмерные поверхности и является шагом вперёд по сравнению с гипотезой Пуанкаре. Если Вы докажете предположение Уильяма Тёрстона, то и гипотеза Пуанкаре распахнёт перед Вами все свои двери и более того её решение изменит весь топологический ландшафт современной науки».
Шесть ведущих американских университетов в марте 2003 г. приглашают Перельмана прочесть цикл лекций, разъясняющих его работу. В апреле 2003 г. Перельман совершает научное турне. Его лекции становятся выдающимся научным событием. В Принстоне послушать его приезжают Джон Болл (председатель международного математического союза), Эндрю Уайлз (математик, работы в области арифметики эллиптических кривых, доказал теорему Ферма в 1994 г.), Джон Нэш (математик, работающий в области теории игр и дифференциальной геометрии).
«Филдсовская премия (и медаль) вручается один раз в 4 года на каждом международном математическом конгрессе молодым учёным (моложе 40 лет), внёсшим заметный вклад в развитие математики. Помимо медали награждённым вручается 15 тыс. канадских долларов ($13 000)»
В исходной формулировке гипотеза Пуанкаре звучит следующим образом: «Всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере». В переводе на общедоступный язык, это означает, что любой трёхмерный объект, например, стакан можно преобразовать в шар путём одной только деформации, то есть его не нужно будет ни разрезать, ни склеивать. Иными словами, Пуанкаре предположил, что пространство не трёхмерно, а содержит значительно большее число измерений, а Перельман спустя 100 лет математически это доказал.
Выражение Григория Перельмана теоремы Пуанкаре о преобразовании материи в другое состояние, форму имеет сходство со знаниями, изложенными в книге Анастасии Новых «Сэнсэй IV»: «По факту, вся эта бесконечная для нас Вселенная занимает место в миллиарды раз меньше, чем кончик самой тонкой медицинской иглы» [3]. А также возможностью управления материальной Вселенной путём преобразований, вносимых Наблюдателем из контролирующих измерений выше шестого (с 7 по 72 включительно) (доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА» тема «Эзоосмическая решётка»). [1]
Исключительная важность гипотезы, выдвинутой около века назад математиком Пуанкаре, касается трёхмерных структур и является ключевым элементом современных исследований основ мироздания. Загадка эта, по мнению специалистов института Клэя, одна из семи принципиально важных для развития математики будущего.
Перельман, отвергая медали и премии спрашивает: «А зачем они мне? Они мне совершенно ни к чему. Каждому понятно, если доказательство правильное, то никакого другого признания уже не требуется. Пока во мне не развилась подозрительность, у меня был выбор, либо сказать вслух о дезинтеграции математического сообщества в целом, в связи с его низким моральным уровнем, либо ничего не сказать и позволить обращаться с собой, как с быдлом. Теперь же, когда я стал более чем подозрительным, я не могу оставаться быдлом и продолжать молчать, поэтому мне остаётся только уйти».
Для того чтобы заниматься современной математикой нужно иметь тотально чистый ум, без малейшей примеси, которая дезинтегрирует его, дезориентирует, подменяет ценности, и принять эту премию означает продемонстрировать слабость. Идеальный учёный занимается только наукой, не заботится больше ни о чём (власть и капитал), у него должен быть чистый ум, а для Перельмана нет большей важности, чем жить в соответствии с этим идеалом. Полезно ли для математики вся эта затея с миллионами, и нужен ли настоящему учёному такой стимул? И это желание капитала купить и подчинить себе всё в этом мире разве не оскорбительно? Или можно продать свою чистоту за миллион? Деньги, сколько бы там их ни было, эквивалентны истине Души? Ведь мы имеем дело с априорной оценкой проблем, к которым деньги просто не должны иметь отношения, разве не так?! Делать же из всего этого что-то вроде лото-миллион, или тотализатор, значит потакать дезинтеграции научного, да и человеческого сообщества в целом (см. доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА» [1] и в книге «АллатРа» [2] последние 50 страниц о пути построения созидательного общества). И денежные средства (энергия), которые бизнесмены готовы отдавать на науку, если и надо использовать, то корректно, что ли, не унижая Дух подлинного служения, как ни верти, неоценимого денежным эквивалентом: «Что такое миллион, по сравнению, с чистотой, или Величием тех сфер (об измерениях глобальной Вселенной и о Духовном мире см. книгу « АллатРа » [2] и доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА» [1]), в которые не способно проникнуть даже человеческое воображение (ум)?! Что такое миллион звёздного неба для времени?!».
Приведем толкование остальных терминов, фигурирующих в формулировке гипотезы [4]:
— Односвязное. Оно означает, что любую непрерывную замкнутую кривую, расположенную целиком в пределах данного многообразия, можно плавно стянуть в точку, не покидая этого многообразия. Например, обычная двумерная сфера в R3 односвязна (кольцевую резинку, как угодно приложенную к поверхности яблока, можно плавной деформацией стянуть в одну точку, не отрывая резинки от яблока). С другой стороны, окружность и тор неодносвязны.
— Компактное. Многообразие компактно, если любой его гомеоморфный образ имеет ограниченные размеры. Например, открытый интервал на прямой (все точки отрезка, кроме его концов) некомпактен, так как его можно непрерывно растянуть до бесконечной прямой. А вот замкнутый отрезок (с концами) является компактным многообразием с краем: при любой непрерывной деформации концы переходят в какие-то определённые точки, и весь отрезок обязан переходить в ограниченную кривую, соединяющую эти точки.