в чем суть генетического кода

Генетический код. Биосинтез белка

теория по биологии 🌿 основы генетики

Генетическая информация и генетический код

Каждый вид имеет свой собственный, отличный от других видов, набор белков. Интересно то, что белки, выполняющие идентичные функции у разных видов могут быть похожими или даже абсолютно идентичными.

У белков есть несколько состояний их структур:

в чем суть генетического кода. Смотреть фото в чем суть генетического кода. Смотреть картинку в чем суть генетического кода. Картинка про в чем суть генетического кода. Фото в чем суть генетического кода

Именно первичная структура является определяющей свойства белка. Эта структура – цепь из аминокислот. Аминокислоты, в свою очередь, представляют собой ряд триплетов из нуклеотидов. Решая генетические задачи, обращаются как раз-таки к знакомой таблице:

в чем суть генетического кода. Смотреть фото в чем суть генетического кода. Смотреть картинку в чем суть генетического кода. Картинка про в чем суть генетического кода. Фото в чем суть генетического кода

Каждая аминокислота кодируется тремя нуклеотидами, которые составляют триплет или иначе кодон. Именно последовательность нуклеотидов называется генетической информацией, а участок последовательности, в котором хранится информация о первичной структуре белка это и есть ген.

Нуклеотиды, составляющие ДНК и РНК различаются:

В состав ДНК входят:

В состав РНК входят:

Кроме того, в составе РНК (рибонуклеиновой кислоты) сахар рибоза, а ДНК (дезоксирибонуклеиновой кислоты) — дезоксирибоза. РНК — одноцепочечная, а ДНК — двухцепочечная.

Между нуклеотидами есть водородные связи. Они могут быть как двойные, так и тройные. Нуклеотиды не могу быть связаны в случайном порядке. Для этого существует принцип комплементарности ДНК, по которому аденин одной цепи ДНК соединяется с тимином другой цепи ДНК, другая пара в ДНК – гуанин – цитозин. В РНК все аналогично, за исключением того, что вместо тимина там урацил. Между парами А-Т/А-У две водородных связи, а между парами Ц-Г – три. На письме это обозначается чёрточками: двойная связь как знак «равно», а тройная – три горизонтальные черты.

в чем суть генетического кода. Смотреть фото в чем суть генетического кода. Смотреть картинку в чем суть генетического кода. Картинка про в чем суть генетического кода. Фото в чем суть генетического кода

Свойства генетического кода

Транскрипция и трансляция

Из цитологии известно, что генетическая информация у эукариотических клеток заключена в ядре в виде ДНК. Однако процесс биосинтеза белка происходит в цитоплазме на рибосомах.

Спиральная цепь ДНК при раскручивается, в это время по одной из цепочек ДНК строится комплементарная цепь. Из ядра в цитоплазму информация выходит в виде информационной РНК (иРНК). иРНК комплементарная одной из цепей ДНК. Этот процесс переписывания называется транскрипцией. Полученная цепь практически идентичная другой цепи ДНК, за исключением того, что вместо тимина там урацил.В процессе участвует специальный фермент РНК-полимераза.

в чем суть генетического кода. Смотреть фото в чем суть генетического кода. Смотреть картинку в чем суть генетического кода. Картинка про в чем суть генетического кода. Фото в чем суть генетического кода

Теперь в ядре есть цепочка, которая уже начала процесс биосинтеза. Как говорилось выше, процесс ассимиляции идет на рибосомах. иРНК выходит в цитоплазму через поры ядерной мембраны

тРНК по форме напоминает лист клевера, а по принципу работы – штамп. На него, прямо как чернила, наслаиваются кодоны.

В цитоплазме начинается процесс трансляции, то есть перевод последовательности нуклеотидов информационной РНК в последовательность аминокислот белка.

в чем суть генетического кода. Смотреть фото в чем суть генетического кода. Смотреть картинку в чем суть генетического кода. Картинка про в чем суть генетического кода. Фото в чем суть генетического кода

Рибосома захватывает стартовый конец цепи иРНК. Затем она начинает двигаться по цепи, одна остановка рибосомы происходит на 6-ти нуклеотидах. В это время молекула тРНК, на которых есть триплет аминокислоты «подлетает» к цепи, в месте, где находится рибосома. За время остановки рибосомы транспортная РНК успевает распознать свою пару на цепи иРНК, которая называется антикодоном. Тогда тРНК «ставит свой штамп», оставляя на цепи свой кодон. Между нуклеотидами образуются водородные связи. Так нарастает новая цепь. На одной информационной РНК работает сразу много рибосом, поэтому работа идет очень быстро. Совокупность рибосом, синтезирующих на одной иРНК, называется полисомой.

По окончанию процесса биосинтеза, цепочка отсоединяется от рибосомы и принимает свою природную структуру: вторичную, третичную или четвертичную.

pазбирался: Надежда | обсудить разбор | оценить

В современной генетической инженерии часто применняют технологии, связанные с гомологичной рекомбинацией ДНК непосредственно в живом объекте. Один из примеров – система CRE-Lox P. Lox P – это последовательность нуклеотидов в ДНК фага Р1. Она состоит из 34 нуклеотидов. В середине располагается несимметричная последовательность из 8 нуклеотидов (показана серой стрелкой на рисунке). По краям располагаются так называемые палиндромные последовательности из 13 нуклеотидов (выделены на рисунке как пунктирные блоки). Они симметричны (чтобы в этом убедиться, достаточно прочитать обе последовательность от 5´- конца к 3´- концу). Именно эти палиндромные участки узнаёт особый фермент, вызывающий рекомбинацию, который обозначают CRE. Будем в дальнейшем называть этот фермент рекомбиназой CRE. Для того, чтобы состоялась рекомбинация, два сайта Lox P должны расположиться параллельно друг другу. Рекомбиназа CRE узнает эти сайты, внесет в ДНК разрезы в определённых местах, а затем в чем суть генетического кода. Смотреть фото в чем суть генетического кода. Смотреть картинку в чем суть генетического кода. Картинка про в чем суть генетического кода. Фото в чем суть генетического кодасоединит по-новому две нити ДНК (т.е. произойдет рекомбинация). Аналогично работает и другая система гомологичной рекомбинации – Flp-FRT, обнаруженная у пекарских дрожжей. Сайт FRT – это последовательность ДНК, которую узнает свой фермент гомологичной рекомбинации – флиппаза (Flp). в чем суть генетического кода. Смотреть фото в чем суть генетического кода. Смотреть картинку в чем суть генетического кода. Картинка про в чем суть генетического кода. Фото в чем суть генетического кодаПри рекомбинации две молекулы ДНК должны ориентироваться параллельно друг другу сайтами FRT, и только в этом случае произойдёт рекомбинация. Заметим, что флиппаза Flp узнает только свою последовательность FRT, но не может работать с сайтами Lox P, а рекомбиназа CRE узнает только свои сайты Lox P, но не работает с сайтами FRT. Предварительное доказательство (лемма) к задаче 9 (5 баллов). 1. Докажем, что при гомологичной рекомбинаци по «перевёрнутым» (инвертированным) повторам происходит «переворот» последовательности ДНК, находящейся между повторами. Для этого нарисуем молекулу ДНК и условно обозначим на ней буквами несколько точек. в чем суть генетического кода. Смотреть фото в чем суть генетического кода. Смотреть картинку в чем суть генетического кода. Картинка про в чем суть генетического кода. Фото в чем суть генетического кодаЗатем «изогнём» молекулу так, чтобы повторы, обозначенные стрелками, встали параллельно друг другу. После обмена участками и «распрамления» окажется, что центральная часть между повторами «перевернулась». в чем суть генетического кода. Смотреть фото в чем суть генетического кода. Смотреть картинку в чем суть генетического кода. Картинка про в чем суть генетического кода. Фото в чем суть генетического кода2. Докажем, что при гомологичной рекомбинаци по прямым повторам происходит образование кольцевой ДНК, при этом из линейной последовательности ДНК «удаляется» участок, находящейся между повторами. Для этого используем тот же приём: нарисуем молекулу ДНК и условно обозначим на ней буквами несколько точек. Только в этом случае для того, чтобы прямые повторы встали параллельно друг другу, придётся хитроумно изогнуть молекулу так, чтобы от конца одного из повторов (точка С) шли точки D, E, F, а потом начинался новый повтор (в точке G). После рекомбинации точки С и G поменяются местами, и в результате получится кольцевая ДНК (C, D, E, F, G) и линейный участок (A, B, H, J). Будем считать, что кольцевая ДНК как бы «исчезает» (не может реплицироваться в клетке). в чем суть генетического кода. Смотреть фото в чем суть генетического кода. Смотреть картинку в чем суть генетического кода. Картинка про в чем суть генетического кода. Фото в чем суть генетического кодаА. Поскольку после 35S-промотора на той же цепи ДНК располагается кодирующая часть гена DsRed, клетки должна светиться красным светом. Б. Рекомбиаза CRE узнаёт последовательнсоти LoxP. Если повторы расположены инвертированно, то произойдёт «переворот» последовательности ДНК, расположенной между повторами. Таким образом, после рекомбинации конструкция будет выглядеть следущим образом: в чем суть генетического кода. Смотреть фото в чем суть генетического кода. Смотреть картинку в чем суть генетического кода. Картинка про в чем суть генетического кода. Фото в чем суть генетического кодаСвечение клеток изменится, поскольку после промотора на той же цепи ДНК окажется гена BFP, обестпечивающий синее свечение клеток. В. При рекомбинации по прямым повторам происходит потеря участка ДНК, расположенного между ними. Из двух повторов остаётся только один. Таким образом, после рекомбинации по сайтам FRT конструкция будет выглядеть следующим образом: в чем суть генетического кода. Смотреть фото в чем суть генетического кода. Смотреть картинку в чем суть генетического кода. Картинка про в чем суть генетического кода. Фото в чем суть генетического кодаКлетки будут светиться зелёным светом за счёт того, что под промотором оказалась кодирующая последовательность гена GFP. Г. После действия рекомбиназы CRE те последовательности, на которые может действовать флип паза Flp, «перевернулись», и вместо прямых стали инвертрованными. После рекомбинации участок между ними также должен «перевернуться»: в чем суть генетического кода. Смотреть фото в чем суть генетического кода. Смотреть картинку в чем суть генетического кода. Картинка про в чем суть генетического кода. Фото в чем суть генетического кодаВ этом случае клетки также будут светиться зелёным светом за счёт того, что под промотором оказалась кодирующая последовательность гена GFP.

pазбирался: Надежда | обсудить разбор | оценить

pазбирался: Надежда | обсудить разбор | оценить

Сначала найдём место расщепления плазмиды рестриктазой BglII: в чем суть генетического кода. Смотреть фото в чем суть генетического кода. Смотреть картинку в чем суть генетического кода. Картинка про в чем суть генетического кода. Фото в чем суть генетического кодаТаких участков оказывается два. В результате расщепления из плазмиды выщепляется короткий фрагмент: в чем суть генетического кода. Смотреть фото в чем суть генетического кода. Смотреть картинку в чем суть генетического кода. Картинка про в чем суть генетического кода. Фото в чем суть генетического кодаОстаётся укороченная линейная ДНК, содержащая интактный ген устойчивости к ампицилину и расщеплённый ген устойчивости к эритромицину. в чем суть генетического кода. Смотреть фото в чем суть генетического кода. Смотреть картинку в чем суть генетического кода. Картинка про в чем суть генетического кода. Фото в чем суть генетического кодаПри сшивании липких концов ДНК-лигазой наиболее часто будут соединяться концы этой молекулы и образовываться кольцо длиной 4163 нуклеотида. Такая ДНК будет сообщать клеткам устойчивость к ампицилину и не даст устойчивости к эритромицину. Второй фрагмент из-за небольшой длины не может замкнуться в кольцо. Второй вариант лигирования приводит к сшиванию липких концов двух фрагментов. Он происходит примерно в 10 раз реже, а после сшивки вторая пара липких концов скорее всего также, как и исходный фрагмент замкнётся в кольцо. Таких колец из пары фрагментов может образоваться 4 вида: димеры большого фрагмента в двух разных ориентациях (правый конец с левым концом второго фрагмента и левый конец с правым концом второго фрагмента или правый с правым и левый с левым) и соединения большого и малого фрагмента в двух разных ориентациях (вариант исходной плазмиды и инверсия малого фрагмента). Из них только в варианте исходной плазмиды восстанавливается устойчивость к эритромицину. Линейная молекула, образованная сшиванием двух фрагментов, может присоединить ещё один фрагмент с ещё в 10 раз меньшей частотой. Такие фрагменты в дальнейшем будут циклизоваться в плазмиды трёх размеров: из трёх больших фрагментов, из двух больших и одного малого и одного большого и двух малых. Три малых фрагмента дадут короткую последовательность, которая не сможет замкнуться в кольцо и существовать в клетке. В каждом размерном классе будет несколько вариантов с разной ориентацией фрагментов. Только в одном из них восстановится ген устойчивости к эритромицину: правый конец большого фрагмента соединяется с левым концом малого фрагмента, а правый конец малого фрагмента – с левым концом второго большого фрагмента, а оставшиеся концы двух больших фрагментов соединяются с образованием кольцевой плазмиды длиной 8363 пары нуклеотидов. Доля таких молекул будет менее 1% всех плазмид. Вероятность образования плазмид из 4 и более фрагментов ещё на порядок ниже и их обнаружение при данном числе полученных трансформированных клеток нереально. А. Так как расщепление рестриктазой не затрагивает ген устойчивости к ампицилину, все клетки, в результате трансформации получившие любую плазмиду, будут устойчивы к ампицилину и вырастут на среде с этим антибиотиком. Таким образом из 33506 выросших колоний плазмиду получили 578, выросших на ампицилине. Эффективность трансформации представляет долю трансформированных клеток от общего их числа, т.е. 573 : 51366 × 100% = 1.12% Б. На эритромицине могут вырасти только те клетки, в которые попали плазмиды, в которых в результате лигирования восстановится последовательность нуклеотидов в гене устойчивости к этому антибиотику, расщеплённому рестриктазой. Остальные плазмиды, полученные по приведённой методике, будут содержать либо ген с выщепленным коротким фрагментом, что приведёт либо к утрате стартового кодона (если обозначенный зелёным цветом кодон является стартовым), либо к сдвигу рамки считывания (т.к. число удалённых нуклеотидов не кратно трём), либо, при инверсии короткого фрагмента, к появлению стоп-кодонов т.е. прекращению синтеза белка. Таким образом большинство полученных плазмид не обеспечат устойчивости к эритромицину. В. Рост на эритромицине могут обеспечить только плазмиды, несущие восстановленную последовательность гена устойчивости. Такие плазмиды могли образоваться из одного большого и одного малого фрагмента (4200 пар, исходная плазмида)) или из двух больших и одного малого (8363 пары, начало и конец гена из разных копий большого фрагмента). Г. Получается 1 размер из одного большого фрагмента, два размерных класса из двух фрагментов и три размерных класса из трёх фрагментов, то есть 6 размерных классов. (В реальности различить по длине плазмиды, отличающиеся на длину малого фрагмента, т.е. менее чем на 0,5%, невозможно. Поэтому в эксперименте, например на электрофореграмме, будут видны лишь три размерных класса, соответствующие 1, 2 или 3 копиям большого фрагмента.)

pазбирался: Надежда | обсудить разбор | оценить

По принципу комплементарности строим

Источник

Генетический код

Генети́ческий код — свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

В ДНК используется четыре азотистых основания — аденин (А), гуанин (G), цитозин (С), тимин (T), которые в русскоязычной литературе обозначаются буквами А, Г, Ц и Т. Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом — урацилом, который обозначается буквой U (У в русскоязычной литературе). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.

в чем суть генетического кода. Смотреть фото в чем суть генетического кода. Смотреть картинку в чем суть генетического кода. Картинка про в чем суть генетического кода. Фото в чем суть генетического кода

в чем суть генетического кода. Смотреть фото в чем суть генетического кода. Смотреть картинку в чем суть генетического кода. Картинка про в чем суть генетического кода. Фото в чем суть генетического кода

Белки практически всех живых организмов построены из аминокислот всего 20 видов. Эти аминокислоты называют каноническими. Каждый белок представляет собой цепочку или несколько цепочек аминокислот, соединённых в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства.

Реализация генетической информации в живых клетках (то есть синтез белка, кодируемого геном) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза мРНК на матрице ДНК) и трансляции генетического кода в аминокислотную последовательность (синтез полипептидной цепи на мРНК). Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трёх последовательных нуклеотидов. Набор из трёх нуклеотидов называется триплетом. Принятые сокращения, соответствующие аминокислотам и кодонам, изображены на рисунке.

Содержание

Свойства

Таблицы соответствия кодонов мРНК и аминокислот

Генетический код, общий для большинства про- и эукариот. В таблице приведены все 64 кодона и указаны соответствующие аминокислоты. Порядок оснований — от 5′ к 3′ концу мРНК.

UUU (Phe/F)Фенилаланин
UUC (Phe/F)Фенилаланин
UUA (Leu/L)Лейцин
UUG (Leu/L)Лейцин

UCU (Ser/S)Серин
UCC (Ser/S)Серин
UCA (Ser/S)Серин
UCG (Ser/S)Серин

UAU (Tyr/Y)Тирозин
UAC (Tyr/Y)Тирозин
UAA Ochre (Стоп)
UAG Amber (Стоп)

CUU (Leu/L)Лейцин
CUC (Leu/L)Лейцин
CUA (Leu/L)Лейцин
CUG (Leu/L)Лейцин

CCU (Pro/P)Пролин
CCC (Pro/P)Пролин
CCA (Pro/P)Пролин
CCG (Pro/P)Пролин

CAU (His/H)Гистидин
CAC (His/H)Гистидин
CAA (Gln/Q)Глутамин
CAG (Gln/Q)Глутамин

CGU (Arg/R)Аргинин
CGC (Arg/R)Аргинин
CGA (Arg/R)Аргинин
CGG (Arg/R)Аргинин

AUU (Ile/I)Изолейцин
AUC (Ile/I)Изолейцин
AUA (Ile/I)Изолейцин
AUG (Met/M)Метионин, Start [2]

ACU (Thr/T)Треонин
ACC (Thr/T)Треонин
ACA (Thr/T)Треонин
ACG (Thr/T)Треонин

AAU (Asn/N)Аспарагин
AAC (Asn/N)Аспарагин
AAA (Lys/K)Лизин
AAG (Lys/K)Лизин

AGU (Ser/S)Серин
AGC (Ser/S)Серин
AGA (Arg/R)Аргинин
AGG (Arg/R)Аргинин

GUU (Val/V)Валин
GUC (Val/V)Валин
GUA (Val/V)Валин
GUG (Val/V)Валин

GCU (Ala/A)Аланин
GCC (Ala/A)Аланин
GCA (Ala/A)Аланин
GCG (Ala/A)Аланин

GAU (Asp/D)Аспарагиновая кислота
GAC (Asp/D)Аспарагиновая кислота
GAA (Glu/E)Глутаминовая кислота
GAG (Glu/E)Глутаминовая кислота

GGU (Gly/G)Глицин
GGC (Gly/G)Глицин
GGA (Gly/G)Глицин
GGG (Gly/G)Глицин

в чем суть генетического кода. Смотреть фото в чем суть генетического кода. Смотреть картинку в чем суть генетического кода. Картинка про в чем суть генетического кода. Фото в чем суть генетического кода

в чем суть генетического кода. Смотреть фото в чем суть генетического кода. Смотреть картинку в чем суть генетического кода. Картинка про в чем суть генетического кода. Фото в чем суть генетического кода

2-е основание
UCAG
1-е
основание
U
Обратная таблица (указаны кодоны для каждой аминокислоты, а также стоп-кодоны)

Ala/AGCU, GCC, GCA, GCGLeu/LUUA, UUG, CUU, CUC, CUA, CUG
Arg/RCGU, CGC, CGA, CGG, AGA, AGGLys/KAAA, AAG
Asn/NAAU, AACMet/MAUG
Asp/DGAU, GACPhe/FUUU, UUC
Cys/CUGU, UGCPro/PCCU, CCC, CCA, CCG
Gln/QCAA, CAGSer/SUCU, UCC, UCA, UCG, AGU, AGC
Glu/EGAA, GAGThr/TACU, ACC, ACA, ACG
Gly/GGGU, GGC, GGA, GGGTrp/WUGG
His/HCAU, CACTyr/YUAU, UAC
Ile/IAUU, AUC, AUAVal/VGUU, GUC, GUA, GUG
STARTAUGSTOPUAG, UGA, UAA

Вариации стандартного генетического кода

В некоторых белках нестандартные аминокислоты, такие как селеноцистеин и пирролизин, вставляются рибосомой, прочитывающей стоп-кодон, что зависит от последовательностей в мРНК. Селеноцистеин сейчас рассматривается в качестве 21-й, а пирролизин 22-й аминокислот, входящих в состав белков.

Несмотря на эти исключения, у всех живых организмов генетический код имеет общие черты: кодон состоят из трёх нуклеотидов, где два первых являются определяющими, кодоны транслируются тРНК и рибосомами в последовательность аминокислот.

История представлений о генетическом коде

Тем не менее в начале 60-х годов XX века новые данные обнаружили несостоятельность гипотезы «кода без запятых». Тогда эксперименты показали, что кодоны, считавшиеся Криком бессмысленными, могут провоцировать белковый синтез в пробирке, и к 1965 году был установлен смысл всех 64 триплетов. Оказалось, что некоторые кодоны просто-напросто избыточны, то есть целый ряд аминокислот кодируется двумя, четырьмя или даже шестью триплетами.

Источник

Что такое генетический код и как он работает?

Содержание:

Независимо от того, сколько морфологического разнообразия мы, живые существа, представляем, все мы объединены под одной крышей: нашей основной функциональной единицей является клетка. Если у живого существа есть клетка, на которой основана вся его морфологическая структура, она известна как одноклеточная (случай простейших или бактерий), тогда как те из нас, у кого их несколько (от нескольких сотен до сотен миллиардов), являются многоклеточными существами.

Таким образом, каждый организм начинается с клетки, и поэтому некоторые молекулярные объекты, такие как вирусы, не считаются строго «живыми» с биологической точки зрения. В свою очередь, исследования показали, что каждая клетка содержит колоссальные 42 миллиона белковых молекул. Поэтому неудивительно, что, по оценкам, 50% веса сухих живых тканей состоят исключительно из белков.

Почему мы предоставляем все эти, казалось бы, несвязанные данные? Сегодня мы приходим, чтобы разгадать секрет жизни: генетический код. Каким бы загадочным оно ни казалось на первый взгляд, мы заверяем вас, что вы сразу поймете эту концепцию. Речь идет о клетках, белках и ДНК. Останься, чтобы узнать.

Что такое генетический код?

Характеристики генетического кода были установлены в 1961 году Фрэнсисом Криком, Сиднеем Бреннером и другими сотрудниками молекулярных биологов. Этот термин основан на ряде предпосылок, но сначала мы должны уточнить некоторые термины, чтобы понять их. Действуй:

Основы генетического кода

Когда мы разберемся с этими основными терминами, пришло время изучить основные особенности генетического кода, установленные Криком и его коллегами. Это следующие:

Раскрытие генетического кода

У нас уже есть терминологическая база и теоретические основы. Пришло время применить их на практике. Прежде всего, мы вам скажем, что Каждый нуклеотид получает название на основе буквы, что обусловлено азотистым основанием, которое он представляет.. Азотистыми основаниями являются следующие: аденин (A), цитозин (C), гуанин (G), тимин (T) и урацил (U). Аденин, цитозин и гуанин универсальны, тимин уникален для ДНК, а урацил уникален для РНК. Если вы видите это, как вы думаете, что это значит?:

Пора восстановить условия, описанные выше. CCT является частью цепи ДНК, то есть 3 разных нуклеотидов: один с основанием цитозина, другой с основанием цитозина и третий с основанием тимина. Во втором случае, выделенном жирным шрифтом, мы имеем дело с кодоном, поскольку это «тадуцидируемая» генетическая информация ДНК (отсюда урацил там, где раньше был тимин) в цепи РНК.

Таким образом, мы можем утверждать, что CCU является кодоном, который кодирует аминокислоту пролин. Как мы уже говорили, генетический код вырожден. Таким образом, аминокислота пролин также кодируется другими кодонами с другими нуклеотидами: CCC, CCA, CCG. Таким образом, аминокислота пролин кодируется всего 4 кодонами или триплетами.

Следует отметить, что для кодирования аминокислоты необходимы не 4 кодона, а то, что любой из них действителен. Обычно, незаменимые аминокислоты кодируются 2,3,4 или 6 различными кодонами, кроме метионина и триптофана которые отвечают только на один.

Почему так много сложностей?

Сделаем расчеты. Если бы каждый кодон кодировался только одним нуклеотидом, могли бы образоваться только 4 разные аминокислоты. Это сделало бы синтез белка невозможным, поскольку в целом каждый белок состоит примерно из 100-300 аминокислот. В генетический код входит всего 20 аминокислот.Но они могут быть расположены по-разному на «конвейере», давая начало различным белкам, присутствующим в наших тканях.

С другой стороны, если бы каждый кодон состоял из двух нуклеотидов, общее количество возможных «диплетов» было бы 16. Мы все еще далеки от цели. Теперь, если бы каждый кодон состоял из трех нуклеотидов (как и в случае), количество возможных перестановок увеличилось бы до 64. Принимая во внимание, что существует 20 незаменимых аминокислот, с 64 кодонами это дает для кодирования каждой из них и, кроме того, предлагать разные варианты в каждом случае.

Прикладной вид

Нам не хватает места, но действительно сложно сконцентрировать столько информации в нескольких строках. Следуйте за нами на следующей диаграмме, потому что мы обещаем вам, что закрыть весь этот терминологический конгломерат намного проще, чем кажется:

CCT (ДНК) → CCU (РНК) → пролин (рибосома)

Эта небольшая диаграмма выражает следующее: клеточная ДНК содержит 3 нуклеотида CCT, но она не может «выражать» генетическую информацию, поскольку изолирована от клеточного аппарата в своем ядре.. По этой причине фермент РНК-полимераза отвечает за ТРАНСКРИБИРОВАНИЕ (процесс, известный как транскрипция) нуклеотидов ДНК в нуклеотиды РНК, которые образуют информационную РНК.

Теперь у нас есть кодон CCU в информационной РНК, который будет перемещаться из ядра через поры в цитозоль, где расположены рибосомы. Подводя итог, можно сказать, что информационная РНК передает эту информацию рибосоме, который «понимает», что аминокислота пролин должна быть добавлена ​​к уже построенной аминокислотной последовательности, чтобы дать начало конкретному белку.

Как мы уже говорили ранее, белок состоит примерно из 100-300 аминокислот. Таким образом, любой белок, образованный из порядка 300 аминокислот, будет кодироваться в общей сложности 900 триплетами (300×3) или, если хотите, 2700 нуклеотидами (300x3x3). Теперь представьте себе каждую букву в каждом из 2700 нуклеотидов, что-то вроде: AAAUCCCCGGUGAUUUAUAAGG (. ) Именно это расположение, это скопление букв и является генетическим кодом. Проще, чем казалось сначала, правда?

Резюме

Если вы спросите любого биолога, интересующегося молекулярной биологией, о генетическом коде, то наверняка поговорите около 4-5 часов. Поистине увлекательно знать, что секрет жизни, каким бы нереальным он ни казался, заключен в определенной последовательности «букв».

Так что, геном любого живого существа можно отобразить с помощью этих 4 букв. Например, согласно проекту «Геном человека», вся генетическая информация нашего вида состоит из 3 000 миллионов пар оснований (нуклеотидов), которые находятся на 23 парах хромосом в ядрах всех наших клеток. Конечно, какими бы разными ни были живые существа, у всех нас есть общий «язык».

Страх обязательств: люди, которые боятся формальной любви

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *