в чем суть двойного оплодотворения у цветковых растений
Двойное оплодотворение у растений.
Занятие №13
1. Оплодотворениеу животных
2. Двойное оплодотворение у цветковых растений
В ядре зиготы все Х вновь становятся парными; в каждой паре гомологичных Х одна Х отцовская, другая – материнская. Следовательно, диплоидный набор Х, характерный для соматических клеток каждого вида организмов, восстанавливается при оплодотворении.
Вскоре после оплодотворения происходит синтез ДНК, Х удваиваются и наступает первое деления ядра зиготы, которое осуществляется путем митоза и представляет собой начало развития зародыша – нового организма.
Оплодотворение – процесс слияния я/к и сперматозоида, при котором восстанавливается диплоидный набор Х, в результате возникает одноклеточная стадия развития организма – зигота.
1. Проникновение сперматозоида через оболочку я/к – слияние гамет.
2. Слияние ядер гамет, объединение наследственной информации.
Биологическое значение оплодотворения.
Биологическое значение оплодотворения состоит в том, что при слиянии женской и мужской половых клеток образуется новый организм, несущий в себе признаки и матери и отца. При образовании половых клеток в мейозе возникают гаметы с разным сочетанием Х, поэтому образующиеся после оплодотворения новые организмы могут сочетать в себе признаки обоих родителей в самых различных комбинациях. В результате этого происходит колоссальное увеличение наследственного разнообразия организмов.
Оплодотворение у животных.
У животных, обитающих на суше, развиваются наружные половые органы, обеспечивающие перенос семенной жидкости из половых путей самца в половые пути самки, где и наступает оплодотворение. Это внутреннее осеменение. При осеменении всегда выделяется большое количество сперматозоидов. Необходимость избыточного количество сперматозоидов, участвующих в осеменении, заключается в том, что сперма создает определённую среду, без которой оплодотворение не возможно.
Двойное оплодотворение у растений.
Опыление у цветковых растений это необходимое условие оплодотворения.
Рассмотрим процесс оплодотворения и развития семени у покрытосеменных (цветковых) растений. В цветке образуются споры (бесполое размножение), возникают гаметы
( половой процесс), происходит оплодотворение, в результате которого образуется семя и плод.
цветоножка, цветоложе, чашечка, чашелистки, венчик, лепестки, околоцветник, тычинка, тычиночная нить, пыльник, пестик, рыльце, столбик, завязь, семязачатки
После того как пыльца (пыльцевое зерно) попадет на рыльце пестика происходит образование пыльцевой трубки за счет деления вегетативной клетки. (Спермии развиваются в пыльцевых зернах пыльников (на тычинках)). С помощью пыльцевой трубки спермин переносятся к зародышевому мешку, где и происходит оплодотворение. В пыльцевой трубке находятся два спермия. Когда пыльцевая трубка входит в зародышевый мешок, один спермий сливается с яйцеклеткой, образуя диплоидную зиготу, из которой развивается зародыш. Второй спермий сливается с диплоидной центральной клеткой, и в результате возникает новая клетка с триплоидным ядром, т.е. в нем содержится три набора Х. Из нее развивается эндосперм семени. Этот универсальный для всех покрытосеменных половой процесс получил название двойного оплодотворения. Он был открыт в 1898 г. С.Г.Навашиным.
Биологическое значение двойного оплодотворения у покрытосеменных растений заключается в том, что развитие эндосперма начинается только после того, как произойдет оплодотворение я/к. Триплоидный эндосперм покрытосеменных представляет собой запасной питательный материал для развивающегося зародыша. Кроме того, он включает наследственные задатки материнского и отцовского организмов.
Двойное оплодотворение
Полезное
Смотреть что такое «Двойное оплодотворение» в других словарях:
ДВОЙНОЕ ОПЛОДОТВОРЕНИЕ — свойственно только цветковым растениям. При двойном оплодотворении один из спермиев сливается с яйцеклеткой, а второй с центральной клеткой зародышевого мешка. Из оплодотворенной яйцеклетки развивается зародыш, из центральной клетки вторичный… … Большой Энциклопедический словарь
ДВОЙНОЕ ОПЛОДОТВОРЕНИЕ — тип полового процесса, свойственный только цветковым растениям. Открыто в 1898 С. Г. Навашиным у лилейных. Д. о. заключается в том, что при формировании семени оплодотворяется не только яйцеклетка, но и центр, ядро зародышевого мешка. Из зиготы… … Биологический энциклопедический словарь
двойное оплодотворение — Тип полового процесса, характерный для цветковых растений: один из спермиев оплодотворяет яйцеклетку, а другой (из той же пыльцевой трубки) оплодотворяет центральное ядро зародышевого мешка, в результате первого процесса образуется диплоидная… … Справочник технического переводчика
двойное оплодотворение — свойственно только цветковым растениям. При двойном оплодотворении один из спермиев сливается с яйцеклеткой, а второй с центральной клеткой зародышевого мешка. Из оплодотворённой яйцеклетки развивается зародыш, из центральной клетки вторичный… … Энциклопедический словарь
двойное оплодотворение — double fertilization двойное оплодотворение. Тип полового процесса, характерный для цветковых растений: один из спермиев оплодотворяет яйцеклетку, а другой (из той же пыльцевой трубки
) оплодотворяет центральное ядро… … Молекулярная биология и генетика. Толковый словарь.
ДВОЙНОЕ ОПЛОДОТВОРЕНИЕ — свойственно только цветковым р ниям. При Д. о. один из спермиев сливается с яйцеклеткой, а второй с центр. клеткой зародышевого мешка. Из оплодотворённой яйцеклетки развивается зародыш, из центр. клетки вторичный эндосперм семени, содержащий… … Естествознание. Энциклопедический словарь
двойное оплодотворение — процесс оплодотворения, происходящий у покрытосеменных растений, в котором принимают участие оба образующихся спермия. Один из них сливается с яйцеклеткой, второй – с центральной диплоидной клеткой зародышевого мешка. Открыто С. Г. Навашиным в… … Анатомия и морфология растений
ДВОЙНОЕ ОПЛОДОТВОРЕНИЕ — половой процесс у покрытосеменных, заключающийся в слиянии одной мужской гаметы пыльценой трубки (спермия) с яйцеклеткой зародышевого мешка, а второй мужской гаметы с вторичным ядром зародышевого мешка … Словарь ботанических терминов
двойное оплодотворение по навашину — ЭМБРИОЛОГИЯ РАСТЕНИЙ ДВОЙНОЕ ОПЛОДОТВОРЕНИЕ ПО НАВАШИНУ – слияние яйцеклетки и спермия с образованием зиготы (2п) и одновременное слияние другого спермия и двойного ядра с образованием первичного ядра эндосперма (3п). Характерная особенность всех … Общая эмбриология: Терминологический словарь
ОПЛОДОТВОРЕНИЕ — сингамия, слияние мужской половой клетки (сперматозоид, спермий) с женской (яйцо, яйцеклетка), приводящее к образованию зиготы, края даёт начало новому организму. Уживотных О. предшествует осеменение. В процессе О. осуществляются активация яйца,… … Биологический энциклопедический словарь
Двойное оплодотворение у растений
Двойное оплодотворение у растений имеет большое биологическое значение. Оно было открыто Навашиным в 1898 г. Далее рассмотрим подробнее, как происходит двойное оплодотворение у растений.
Биологическое значение
Процесс двойного оплодотворения способствует активному развитию питательной ткани. В связи с этим семяпочка не запасает вещества впрок. Это, в свою очередь, объясняет ее быстрое развитие.
Схема двойного оплодотворения
Коротко явление можно описать следующим образом. Двойное оплодотворение у покрытосеменных растений состоит в проникновении в завязь двух спермиев. Один сливается с яйцеклеткой. Это способствует началу развития диплоидного зародыша. Второй спермий соединяется с центральной клеткой. В результате формируется триплоидный элемент. Из этой клетки появляется эндосперм. Он является питательным материалом для развивающегося зародыша.
Развитие пыльцевой трубки
Двойное оплодотворение у покрытосеменных начинается после образования гаплоидного сильно редуцированного поколения. Оно представлено гаметофитами. Двойное оплодотворение цветковых растений способствует прорастанию пыльцы. Оно начинается с разбухания зерна и последующего формирования пыльцевой трубки. Она прорывает спородерму в наиболее тонком ее участке. Называется он апертура. С кончика пыльцевой трубки выделяются специфические вещества. Они размягчают ткани столбика и рыльца. За счет этого в них входит пыльцевая трубка. По мере ее развития и роста, в нее переходят оба спермия и ядро от вегетативной клетки. В подавляющем большинстве случаев проникновение пыльцевой трубки в нуцеллус (мегаспорангий) происходит посредством микропиле семязачатка. Крайне редко это осуществляется другим способом. После проникновения в зародышевый мешок происходит разрыв пыльцевой трубки. В результате все ее содержимое изливается вовнутрь. Двойное оплодотворение цветковых растений продолжается формированием диплоидной зиготы. Этому способствует первый спермий. Второй элемент соединяется с вторичным ядром, которое расположено в центральной части зародышевого мешка. Образованное триплоидное ядро впоследствии трансформируется в эндосперм.
Формирование клеток: общие сведения
Процесс двойного оплодотворения цветковых растений осуществляется особыми половыми клетками. Их формирование происходит в два этапа. Первая стадия называется спорогенез, вторая – гематогенез. В случае образования мужских клеток эти этапы именуются микроспорогенез и микрогематогенез. При образовании женских половых элементов приставка меняется на «мега» (или «макро»). Спорогенез основывается на мейозе. Это процесс формирования гаплоидных элементов. Мейозу, так же как и у представителей фауны, предшествует размножение клеток посредством митотических делений.
Образование спермиев
Макроспорогенез и мегаспорогенез
В тканях семяпочки начинает обособляться один или несколько археспориальных элементов. Они начинают усиленно расти. Вследствие такой активности они становятся значительно крупнее остальных клеток, окружающих их в семяпочке. Каждый археспориальный элемент один, два или более раз подвергается делению митозом. В некоторых случаях клетка может сразу трансформироваться в материнскую. Внутри нее происходит мейоз. В результате него формируется 4 гаплоидные клетки. Как правило, самая крупная из них начинает развиваться, превращаясь в зародышевый мешок. Три оставшиеся постепенно дегенерируют. На данном этапе макроспорогенез завершается, начинается макрогематогенез. В ходе него происходят митотические деления (у большей части покрытосеменных их три). Цитокинез не сопровождает митозы. В результате трех делений формируется зародышевый мешок с восемью ядрами. Они впоследствии обосабливаются в самостоятельные клетки. Эти элементы распределяются определенным образом по зародышевому мешку. Одна из обособленных клеток, которая, собственно, является яйцеклеткой, совместно с двумя другими – синергидами, занимает место у микропиле, в которое осуществляется проникновение спермиев. В этом процессе синергиды исполняют очень значимую роль. В них содержатся ферменты, которые способствуют растворению оболочек на пыльцевых трубках. В противоположной стороне зародышевого мешка располагаются другие три клетки. Они именуются антиподами. С помощью этих элементов происходит передача из семяпочки питательных веществ в зародышевый мешок. Оставшиеся две клетки располагаются в центральной части. Зачастую они сливаются. В результате их соединения формируется диплоидная центральная клетка. После того как произойдет двойное оплодотворение, и в завязь проникнут спермии, один из них, как выше сказано было, сольется с яйцеклеткой.
Особенности пыльцевой трубки
Двойное оплодотворение сопровождается взаимодействием ее с тканями спорофита. Оно достаточно специфично. Этот процесс регулируется активностью химических соединений. Установлено, что если пыльцу промыть в дистиллированной воде, она потеряет способность к прорастанию. Если же полученный раствор сконцентрировать, а затем ее обработать, то она снова станет полноценной. Развитие пыльцевой трубки после прорастания контролируют ткани пестика. К примеру, у хлопчатника ее рост до яйцеклетки занимает порядка 12-18-ти часов. Однако уже спустя 6 часов вполне можно определить, к какой именно семяпочке будет направляться пыльцевая трубка. Это понятно потому, что в ней начинается разрушение синергиды. В настоящее время не установлено, как растение может направить развитие трубки в нужном направлении и каким образом о приближении узнает синергида.
«Запрет» на самоопыление
Он достаточно часто наблюдается у цветковых растений. Это явление имеет свои особенности. «Запрет» на самоопыление проявляется в том, что спорофит «идентифицирует» собственного мужского гематофита и не допускает его к участию в оплодотворении. При этом в ряде случаев на рыльце пестика не происходит прорастания собственной пыльцы. Однако, как правило, рост трубки все-таки начинается, но впоследствии приостанавливается. В результате пыльца не достигает яйцеклетки и, как следствие, двойное оплодотворение не происходит. Еще Дарвиным было отмечено это явление. Так, он обнаружил у первоцвета весеннего цветки двух форм. Одни из них были длинностолбиковыми с короткими тычинками. Другие же – короткостолбиковыми. В них тычиночные нити были длинные. Короткостолбиковые растения отличаются крупной пыльцой (вдвое больше, чем у других). При этом клетки в сосочках рыльца – мелкие. Указанные признаки контролирует группа из тесно сплетенных генов.
Рецепторы
Двойное оплодотворение эффективно, когда пыльца переносится от одной формы к другой. За распознавание собственных элементов отвечают особые молекулы-рецепторы. Они представляют собой сложные соединения углеводов с белками. Установлено, что формы дикой капусты, не вырабатывающие в тканях рыльца эти молекулы-рецепторы, способны самоопыляться. Для нормальных растений характерно появление углеводно-белковых соединений за день до раскрытия цветка. Если открыть бутон и обработать его собственной пыльцой за двое суток до его распускания, то двойное оплодотворение произойдет. Если это сделать за день до открытия, то его не будет.
Аллели
В заключение
В отличие от голосеменных, для которых характерно развитие достаточно мощного гаплоидного эндосперма вне зависимости от оплодотворения, у покрытосеменных ткань образуется только в этом единственном случае. Учитывая огромное количество поколений, таким образом достигается значительная экономия энергии. Повышение степени плоидности эндосперма, по всей видимости, способствует более скорому росту ткани в сравнении с диплоидными слоями спорофита.
Перекрестное опыление и самоопыление растений. Двойное оплодотворение цветковых и образование семян
Перенос пыльцы из пыльника на рыльце пестика называется опылением. Различают два вида опыления: перекрестное и самоопыление.
При самоопылении рыльце принимает пыльцу того же цветка либо другого, но той же особи. Возможно опыление в закрытых, нераспустившихся цветках (горох). При перекрестном опылении переносится пыльца от разных особей. Это основной тип опыления цветковых растений (яблоня, ива, огурец и др.).
Перекрестное опыление
Перекрестное опыление осуществляется естественным (насекомыми, птицами, летучими мышами, ветром, водой) и искусственным (производит человек) путями.
Приспособленность растений к опылению ветром проявляется в наличии голых цветков, либо невзрачных, слабо развитых околоцветников. Они лишены нектарников и запаха, пыльцы образуют много, она легкая, сухая, мелкая, рыльца длинные, с большой поверхностью для улавливания пыльцы (рожь, кукуруза).
Приспособленность растений к опылению насекомыми характеризуется яркой окраской венчика, наличием нектарников, запаха (одуванчик, земляника). Пищей для насекомых являются нектар и пыльца. Окраска и запах служат для привлечения опылителей. Иногда цветки обладают запахом, характерным для самок насекомых того же вида. Это привлекает к ним самцов, которые и осуществляют опыление. Эволюция цветковых растений и их опылителей шла параллельно. Это так называемая сопряженная эволюция.
Приспособление растений к опылению насекомыми и ветром
Перекрестное опыление обеспечивает обмен генами, поддерживает высокую гетерозиготность популяций, дает материал для естественного отбора и сохраняет самое выносливое потомство — носителей наиболее благоприятного сочетания генов.
Искусственное опыление
Искусственное опыление производит человек для повышения урожая или получения новых сортов растений. При этом для нанесения пыльцы на рыльце пестика используют разные способы. Так, у кукурузы, имеющей однополые цветы, пыльцу собирают, стряхивая верхушечные метелки мужских цветков в бумажные воронки. Затем собранной пыльцой посыпают выступающие на верхушке початка длинные рыльца женских цветков.
При искусственном опылении подсолнечника стебли двух соседних растений наклоняют так, чтобы можно было прижать цветущую поверхность одной корзинки к другой. Можно переносить пыльцу, поочередно прижимая руку в варежке из мягкой материи к цветущим корзинкам разных растений.
Схема искусственного опыления
Для получения новых сортов растений с обоеполыми цветками необходима подготовка к искусственному опылению. Прежде всего из цветков растения, избранного в качестве материнского, еще в бутоне удаляют пыльники и защищают эти цветки марлевыми или бумажными мешочками от попадания пыльцы. Через 2-3 дня, когда бутоны раскроются, наносят на рыльца пестиков заготовленную пыльцу другого сорта чистой сухой акварельной кисточкой, мягким поролоном или кусочком резинки, прикрепленными к проволоке.
Двойное оплодотворение у цветковых растений
После опыления происходит процесс оплодотворения, но для этого нужен ряд условий: пыльца должна не только удержаться на рыльце, но и прорасти через столбик, достигнуть семязачатка и обеспечить слияние мужских клеток с женскими.
Двойное оплодотворение характерно для цветковых растений.
Обычно на рыльце попадает множество пыльцевых зерен. Они, как правило, имеют шероховатую поверхность и удерживаются липкой кожицей рыльца. Кроме этого, при попадании совместимой пыльцы клетки рыльца выделяют вещества, стимулирующие ее прорастание.
Схема двойного оплодотворения у цветковых растений
Начинается прорастание пыльцевых зерен с набухания. Затем через специальные поры (каналы) в наружной оболочке пыльцевого зерна внутренняя выпячивается в тонкую пыльцевую трубку, куда переходят вегетативное ядро и спермин. Пыльцевые трубки всех совместимых зерен, удержавшихся на рыльце пестика, растут по столбику, направляясь к семязачатку. Одна из них обгоняет в росте другие и, достигнув пыльцевхода, проникает через него к зародышевому мешку и здесь изливает в него свое содержимое.
Один из спермиев сливается с яйцеклеткой, а другой — со вторичным ядром центральной диплоидной клетки. Вегетативное ядро разрушается еще до проникновения пыльцевой трубки в зародышевый мешок.
Двойное оплодотворение у цветковых растений открыл русский цитолог и эмбриолог растений С.Г.Навашиным в 1898г.
При наличии в завязи семязачатков в каждом из них происходит вышеописанный процесс двойного оплодотворения. Называется он двойным потому, что сливаются две мужские клетки с двумя клетками женского гаметофита. В дальнейшем после оплодотворения в цветке начинается развитие семени и плода.
Образование семян
После оплодотворения внутри зародышевого мешка начинается быстрое митотическое деление триплоидного вторичного ядра, не имеющего периода покоя. Образуется большое количество ядер, затем между ними возникают, перегородки.
Эти вновь образовавшиеся клетки продолжают деление, заполняя всю полость зародышевого мешка питательной тканью — эндоспермом, который у одних растений полностью расходуется во время развития зародыша (бобовые, тыквенные), а у других — сохраняется в зрелых семенах (злаки). Одновременно происходит разрастание зародышевого мешка и семяпочки.
Формирование зародыша начинается с деления зиготы. После периода покоя зигота делится митотически на две клетки. Верхняя клетка, прилегающая к пыльцевходу, образует подвесок, отодвигающий нижнюю клетку в глубь эндосперма. Подвесок у одних видов растений остается одноклеточным, у других — делится поперечными перегородками и становится многоклеточным. Нижняя клетка разрастается в предзародыш семени сферической формы. Предзародыш делится на 4 клетки двумя перпендикулярными перегородками, затем каждая из этих клеток делится еще на две.
Сначала клетки более или менее однородны. По мере дальнейшего деления происходит дифференцировка клеток на зачаточный корешок, зачаточный стебель, зачаточные листочки (семядоли) и зачаточную почечку, окруженную семядолями. К этому времени семяпочка превращается в семя, ее покровы и остатки эндосперма образуют кожицу семени.
Таким образом, из оплодотворенной диплоидной яйцеклетки формируется зародыш семени, а из вторичной триплоидной клетки — питательная ткань — эндосперм, покровы семязачатка превращаются в покровы семени, а стенка завязи, разрастаясь, образует околоплодник.
Двойное оплодотворение покрытосеменных растений
Урок 19. Биология. Сложные вопросы. Ботаника
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Двойное оплодотворение покрытосеменных растений»
Размножение – это одно из обязательных свойств любого живого организма. Оно заключается в увеличении числа особей.
Различают бесполое и половое размножение растений.
Бесполое размножение подразделяют на спорообразование и вегетативное.
Половое размножение происходит при помощи особых половых клеток –гамет.
При бесполом размножении быстро увеличивается численность вида, все потомки имеют абсолютно такой же генотип, что и родительская особь. А также не происходит увеличения генетического разнообразия, которое может оказаться очень полезным при изменении условий существования вида.
По этой причине большинство живых организмов на Земле размножаются половым путём.
Сущность полового размножения заключается в слиянии генетической информации родителей, благодаря чему генетическое разнообразие в потомстве увеличивается.
У покрытосеменных растений половое размножение связано с цветком.
Важные части цветка – это пестик и тычинка. С их участием происходят сложные процессы полового размножения –опыление и оплодотворение.
Но сперва в будущем цветке начинают образовываться половые клетки.
В жизненном цикле цветковых растений наблюдается смена поколений.
У растений выделяют диплоидное поколение – бесполое, или спорофит, и гаплоидное поколение – половое, или гаметофит.
Гаметы образуются в результате митоза, а споры – в результате мейоза. И гаметы, и споры образуются в цветке, поэтому цветок является органом и бесполого, и полового размножения.
Пыльцевое зерно является спорой (микроспорой), а не мужской гаметой, так как в нем самом развиваются мужские гаметы.
У цветковых растений мужские гаметофиты столь малы, что помещаются внутри оболочки пыльцевого зерна и состоят всего лишь из нескольких клеток.
Женский гаметофит цветковых (зародышевый мешок) помещается внутри семяпочки и состоит в наиболее распространённом случае из 7 клеток (содержит 8 – либо 7 после слияния двух ядер в центральной клетке и образования вторичного ядра).
Посмотрим, как образуется мужской гаметофит.
В субэпидермальной ткани молодого пыльника обособляется специальная спорогенная ткань, называемая археспорием. Каждая первичная археспориальная клетка после ряда делений становится материнской клеткой пыльцы (микроспороцитом), которая проходит все фазы мейоза.
В результате двух мейотических делений возникают четыре гаплоидные микроспоры. Последние лежат четвёрками и называются клеточными тетрадами.
При созревании клеточные тетрады распадаются на отдельные микроспоры с образованием внутренней (интина) и наружной (экзина) оболочек. Наружная оболочка, как правило, грубая, поверхность её либо гладкая, либо шероховатая, приспособленная для переноса пыльцы и прилипания её к рыльцу пестика.
Этим заканчивается микроспорогенез, вслед за образованием одноядерной микроспоры начинается микрогаметогенез.
Первое митотическое деление микроспоры приводит к образованию вегетативной и генеративной клеток. В дальнейшем вегетативная клетка и её ядро не делятся. В ней накапливаются запасные питательные вещества, которые в последующем обеспечивают деление генеративной клетки и рост пыльцевой трубки в столбике пестика.
Генеративная клетка, содержащая меньшее количество цитоплазмы, вновь делится. Это деление может осуществляться ещё в пыльцевом зерне или в процессе его прорастания в пыльцевой трубке. В результате образуются две мужские половые клетки, которые, в отличие от сперматозоидов животных, называются спермиоклетками, или спермиями.
Таким образом, из одной споры (микроспоры) с гаплоидным набором хромосом в результате двух митотических делений образуются три ядра: два из них – спермии и одно – вегетативное. При образовании пыльцевой трубки это вегетативное ядро переходит в пыльцевую трубку.
Процесс деления генеративной клетки и образование спермиев в пыльцевой трубке были впервые подробно изучены российским и советским цитологом и эмбриологом растений Сергеем Гавриловичем Навашиным в 1910 г. на лилейных растениях.
После образования гамет пыльник созревает, и пыльца высыпается. Она несёт только генетическую информацию.
Посмотрим, как происходит мегаспорогенез и мегагаметогенез цветковых.
У покрытосеменных растений женский гаметофит – это зародышевый мешок, который закладывается и развивается внутри семяпочки.
Развитию женского гаметофита у высших покрытосеменных растений предшествует мегаспорогенез.
В субэпидермальном слое молодой семяпочки обособляется археспориальная клетка, чаще она только одна. Клетка археспория растёт, превращаясь в материнскую клетку мегаспоры.
В результате двух делений мейоза материнской клетки мегаспоры образуется тетрада мегаспор. Каждая из клеток тетрады по числу хромосом является гаплоидной. Однако только одна из них продолжает развиваться, остальные три дегенерируют, судьба этих клеток напоминает судьбу редукционных телец при созревании яйцеклеток у животных.
На следующем этапе осуществляется мегагаметогенез. Оставшаяся функционировать мегаспора продолжает расти и затем её ядро претерпевает ряд делений. При этом сама клетка не делится, а делится только ядро.
У разных систематических групп растений число делений ядра мегаспоры может варьировать от одного до трёх. У большинства растений (70 % видов покрытосеменных) этих делений, как правило, в результате возникает восемь наследственно одинаковых ядер, вовремя этих делений ядра занимают полярное положение, четыре из них оказываются лежащими ближе к микропиле (место проникновения спермиев), а четыре других – в противоположном конце зародышевого мешка, называемого халазальным. Дальше эти ядра обособляются в самостоятельные клетки, имеющие значительные количества цитоплазмы.
В дальнейшем от каждой из двух полярных четвёрки ядер к центру отходит по одному ядру, которые сливаются, образуя вторичное (центральное) ядро зародышевого мешка. Затем цитоплазма обособляется вокруг ядер гаметофита, который из ядерной стадии развития переходит в клеточную. Три ядра, оставшиеся вблизи халазального полюса, преобразуются в три клетки (антиподы), которые питают гаметофит. Три ядра вблизи микропиле отделяются клеточными перегородками, образуя отдельные клетки: крупную центральную яйцеклетку и две боковые клетки синергиды. Вся цитоплазма, расположенная между антиподами с одной стороны и клетками яйцевого комплекса с другой (яйцеклетка и две синергиды), называется центральной клеткой. В ней находится диплоидное вторичное (центральное) ядро.
На этом этапе женский гаметофит уже полностью сформирован и состоит из шести гаплоидных клеток (одной яйцеклетки, двух синергид и трёх антипод) и одной диплоидной (центральной). Его строение внешне напоминает мешочек, поэтому женский гаметофит покрытосеменных называется зародышевым мешком.
Пылинка попадает на рыльце пестика, и происходит опыление.
Опыление – это перенос пыльцевых зёрен на рыльце пестика, у голосеменных пыльцевые зерна при опылении попадают непосредственно на семязачаток.
Имеется два основных типа опыления: самоопыление (автогамия) (когда растение опыляется собственной пыльцой) и перекрёстное опыление (аллогамия).
При самоопылении исключён обмен генетической информацией, поскольку пыльцевые зерна попадают на рыльце пестика либо с одной из тычинок этого же цветка, либо с другого цветка, расположенного на том же растении. Это приводит к появлению чистых линий гомозиготных популяций в пределах одного вида, неспособных обмениваться мутировавшими генами, поэтому процессы видообразования в этих популяциях идут самостоятельно.
Перекрёстное опыление – это перенос пыльцы одного растения на рыльце другого. Этот тип опыления встречается более часто, чем самоопыление, между разными особями одного вида происходит обмен аллелями, что приводит к увеличению доли гетерозиготных организмов.
Безусловно, перекрёстное самоопыление имеет большие преимущества по сравнению с самоопылением, поскольку возникшие мутации свободно распространяются в пределах популяции.
Способы опыления у перекрёстноопыляемых цветковых растений весьма разнообразны. Их можно разделить на две группы. Первая: перенос пыльцы осуществляется главным образом насекомыми, а также некоторыми позвоночными (птицами и летучими мышами). Соответственно, различают энтомофилию, орнитофилию и зоофилию. Растения, опыляемые животными, обычно имеют яркоокрашенные крупные цветки. Мелкие цветки, как правило, собраны в соцветия, что зрительно их увеличивает. Для привлечения опылителей служит нектар или большое количество пыльцы, которую опылители охотно поедают.
Вторая группа: пыльца переносится абиотическими факторами – ветром и реже водой, в связи с чем различают анемофилию и гидрофилию.
После попадания пыльцы на рыльце начинается прорастание пыльцевого зерна.
Экзина мужского гаметофита прорывается в области борозды или поры прорастания, и начинает формироваться пыльцевая трубка, которая растёт, проникает в рыльце, через столбик движется по направлению к завязи, где находится семязачаток.
Трубка растёт на кончике. В растущую пыльцевую трубку из пыльцевого зерна перемещается ядро клетки-трубки, а также спермин.
Обычно развитие пыльцевой трубки происходит при уже сформированных семязачатках в завязи. Достигнув завязи, пыльцевая трубка через микропиле проникает внутрь одного из находящихся там семязачатков.
Там пыльцевая трубка направляется к яйцевому аппарату, проникает в одну из синергид и освобождает спермин. Один из спермиев сливается с яйцеклеткой, в результате чего образуется зигота.
Другой спермий сливается с полярными ядрами центральной клетки, образуя триплоидное ядро (с тройным набором хромосом). Зигота даёт начало зародышу, а из триплоидной центральной клетки образуется ткань эндосперма.
Таким образом оплодотворение, при котором одна мужская гамета сливается с яйцеклеткой, а вторая ― с вторичным ядром, называется двойным оплодотворением.
Механизм оплодотворения цветковых –двойное оплодотворение, открыто отечественным учёным Сергеем Гавриловичем Навашиным в 1898 году.
Таким образом, оплодотворённый семязачаток развивается в семя, из зиготы возникает зародыш, из триплоидной центральной клетки – эндосперм, а из внешней части семязачатка (интегументов) образуется семенная кожура, из стенок завязи цветка – стенки плода.
Эндосперм цветковых полностью отличается от первичного эндосперма голосеменных. У них первичный эндосперм представляет собой гаплоидную вегетативную ткань женского гаметофита, где накапливаются питательные вещества семени.
Эндосперм у покрытосеменных происходит из триплоидной центральной клетки, в образовании которой участвуют вторичное ядро женского гаметофита и ядро спермия.
У одних цветковых (например, злаков) эндосперм сильно разрастается и занимает большую часть семени, оттесняя на периферию маленький зародыш.
У других (к пример у бобовых) весь эндосперм поглощается зародышем и используется его семядолями, которые становятся самыми большими структурами зрелого семени.