в чем состоит различие зависимости сопротивления полупроводников
Введение. Зависимость сопротивления полупроводников от температуры существенно отличается от подобной зависимости для металлов
Зависимость сопротивления полупроводников от температуры существенно отличается от подобной зависимости для металлов. В первую очередь отличие проявляется в том, что сопротивление полупроводников уменьшается с увеличением температуры, тогда как сопротивление металлов увеличивается.
Такое различие в характере проводимости металлов и полупроводников связано с различием структуры металлических и полупроводниковых кристаллов.
Объяснение свойств проводимости, достаточно хорошо согласующееся с экспериментом было получено на основе квантово-механической теории электропроводности кристаллов.
Взаимодействие атомов (молекул или ионов) в кристаллической решетке приводит к расщеплению энергетических уровней и образованию энергетических зон. Разрешенная зона (с уровнями разрешенных значений энергии), возникшая из уровня, на котором находятся валентные электроны (т.е. высший занятый энергетический уровень атома) образует валентную зону кристалла. Область, следующая за валентной, в которой отсутствуют разрешённые уровни энергии, называется запрещенной зоной. Следующая за валентной зоной зона разрешенных значений энергии называется свободной зоной.
Исходя из зонной теории, удается объяснить электрические свойства кристаллов.
Увеличение сопротивления металлов с температурой, в основном, обусловлено тем, что с увеличением температуры уменьшается время релаксации дрейфовой скорости электронов (сопротивление металлов обратно пропорционально времени релаксации) занимающих состояние вблизи уровня Ферми (ЕF) (именно эти электроны участвуют в проводимости).
Уровнем Ферми называется энергетический уровень, вероятность заполнения которого равна ½. При абсолютном нуле уровень Ферми совпадает с верхним заполненным электронами уровнем ЕF(0). В общем случае уровень Ферми зависит от температуры, однако эта зависимость достаточно слабая и во многих случаях для металлов можно полагать ЕF = ЕF(0).
Электропроводность полупроводников существенно зависит от наличия в полупроводнике определённых примесей. В случае чистых полупроводников говорят о собственной проводимости полупроводников.
Зонная диаграмма чистых полупроводников показана на рис. 1. Энергия Ферми для этого случая находится вблизи середины запрещённой зоны. Валентная зона полупроводников полностью заполнена и электроны не могут свободно перемещаться внутри полупроводника. Однако для полупроводников характерно малая ширина запрещенной зоны (много меньше, чем для диэлектриков), порядка нескольких десятых электронвольта и энергия теплового движения оказывается достаточной для того, чтобы перевести часть электронов в верхнюю свободную зону (для этого случая эта зона является зоной проводимости). Эти электроны могут изменять свою энергию под действием внешнего электрического поля и, следовательно, участвуют в проводимости. Кроме того, вследствие образования вакантных уровней в валентной зоне электроны этой зоны также могут изменять свою скорость под действием электрического поля и, следовательно, участвовать в проводимости. Поведение электронов валентной зоны может быть представлено как движение положительно заряженных квазичастиц, получивших название «дырок».
Рис. 1. Зонная диаграмма чистых полупроводников
Уменьшение сопротивления чистых полупроводников с температуройобъясняется тем, что с повышением температуры увеличивается число электронов перешедших в зону проводимости, а следовательно, и количество образовавшихся дырок, что приводит к увеличению носителей тока. Поскольку проводимость пропорциональна числу носителей, она также увеличивается с повышением температуры, а сопротивление уменьшается.
Зависимость удельной электропроводности от температуры определяется вероятностью заполнения электронов зоны проводимости, зависимость которой от температуры определяется выражением:
,
где DE – ширина запрещённой зоны; k – постоянная Больцмана; T – абсолютная температура.
Следовательно, удельная электропроводность с температурой изменяется по закону:
,
где s0– величина, изменяющаяся с температурой гораздо медленнее, чем экспонента, в связи с чем её можно в первом приближении считать константой. Отсюда зависимость сопротивления от температуры определяется выражением:
, (1)
где R0 – константа, практически независящая от температуры.
Собственная проводимость полупроводников при нормальных условиях достаточно мала.
Электропроводность чистых полупроводников при нормальных условиях достаточно мала, что ограничивает их практическое применение. Более широкое применение получили полупроводники с примесной проводимостью.
Примесная проводимость возникает при внедрении в кристаллическую решётку полупроводника атомов, валентность которых отличается от валентности основных атомов (как правило, на единицу). Существует два типа примесной проводимости: донорная (полупроводник n-типа) и акцепторная (полупроводник p-типа).
Донорная проводимость возникает при наличии атомов примеси, валентность которых больше валентности основных атомов. Для примера рассмотрим решетку германия (четырёхвалентный элемент) с примесью пятивалентных атомов фосфора. Такая схема условно изображена на рис. 2. Четыре электрона атома фосфора образуют ковалентные связи с соседними атомами германия. Следовательно, пятый валентный электрон оказывается как бы лишним и легко отщепляется от атома за счёт энергии теплового движения.
Рис. 2. Схема образования донорной проводимости в полупроводнике
Причём такое образование свободного электрона не приводит к образованию дырки, так как образованный при этом избыточный положительный заряд связан с атомом примеси и перемещаться по решётке не может.
По зонной теории примесь обладает собственным набором значений разрешённых энергий, что для определённых примесей приводит к возникновению на энергетической схеме примесных уровней, расположенных в запрещённой энергетической зоне кристалла. Донорная проводимость возникает, если примесные уровни, обусловленные примесью с валентностью большей, чем у основных атомов, расположены вблизи дна зоны проводимости (рис. 3), причём расстояние до дна много меньше ширины запрещённой зоны. Энергия Ферми для таких полупроводников приблизительно находится посередине между донорными уровнями и дном зоны проводимости.
Рис. 3. Энергетическая структура донорных полупроводников
Для таких полупроводников характерно, что концентрация электронов во много раз превышает концентрацию дырок.
Акцепторнаяпроводимость возникает при наличии атомов примеси, валентность которых меньше валентности основных атомов. Для примера рассмотрим решетку германия (четырёхвалентный элемент) с примесью трёхвалентных атомов бора. Такая схема условно изображена на рис. 4. Три электрона атома бора образуют ковалентные связи с соседними атомами германия. Одна связь оказывается как бы незадействованной, что соответствует образованию свободного носителя дырки.
Рис. 4. Схема образования акцепторной проводимости в полупроводнике
Причём такое образование свободной дырки не приводит к образованию электрона, так как образованный при этом избыточный отрицательный заряд связан с атомом примеси и перемещаться по решётке не может.
По зонной теории акцепторная проводимость возникает, если примесные уровни, обусловленные примесью с валентностью меньшей, чем у основных атомов, расположены вблизи потолка валентной зоны (рис. 5), причём расстояние до валентной зоны много меньше ширины запрещённой зоны. Энергия Ферми для таких полупроводников приблизительно находится посередине между акцепторными уровнями и потолком валентной зоны.
Рис. 5. Энергетическая структура акцепторных полупроводников
Для таких полупроводников характерно, что концентрация дырок во много раз превышает концентрацию электронов.
В примесных полупроводниках кроме носителей, образованных за счёт примеси (основные носители), имеются и носители, образованные за счет собственной проводимости (неосновные носители).
Зависимость сопротивления примесных полупроводников от температуры существенно определяется диапазоном температур, в котором эта зависимость рассматривается. При достаточно малых температурах (для большинства примесных полупроводников до комнатной температуры) проводимость в основном определяется носителями, возникающих за счёт примеси. При малых температурах зависимость сопротивления от температуры подобна зависимости для чистых полупроводников, однако вместо ширины запрещённой зоны эта зависимость определяется энергией активации примесей Ea:
. (2)
Причём энергия активации примеси много меньше ширины запрещённой зоны. При повышении температуры достаточно быстро достигается насыщение носителей, т.е. практически все носители перешли с примесных уровней (для донорных полупроводников) или на примесные уровни (для акцепторных полупроводников). В этом случае, количество носителей обусловленных примесью с увеличением температуры не изменяется и, сопротивление, как и для металлов, определяется временем релаксации дрейфовой скорости носителей. Следовательно, как и для металлов, сопротивление примесных полупроводников при этих температурах увеличивается. При больших температурах существенно проявляется собственная проводимость полупроводников, много превышающая проводимость, обусловленную примесями. В этом диапазоне сопротивление уменьшается по закону соответствующему выражению (1). В промежуточном диапазоне температур проявляется и примесная и собственная проводимость, что приводит к сложному характеру зависимости сопротивления от температуры.
§ 110. Электрический ток в полупроводниках. Собственная и примесная проводимости (окончание)
Таким образом, число свободных электронов составляет примерно одну десятимиллиардную часть от общего числа атомов.
Проводимость полупроводников можно существенно увеличить, внедряя в них примесь. В этом случае наряду с собственной проводимостью возникает дополнительная — примесная проводимость.
Запомни
Проводимость проводников, обусловленная внесением в их кристаллические решётки примесей (атомов посторонних химических элементов), называется примесной проводимостью.
Донорные примеси. Добавим в кремний небольшое количество мышьяка. Атомы мышьяка имеют пять валентных электронов. Четыре из них участвуют в создании ковалентной связи данного атома с окружающими атомами кремния. Пятый валентный электрон оказывается слабо связанным с атомом. Он легко покидает атом мышьяка и становится свободным (рис. 16.8).
Запомни
Примеси, легко отдающие электроны и, следовательно, увеличивающие число свободных электронов, называют донорными (отдающими) примесями.
Свободные электроны перемещаются по полупроводнику подобно тому, как перемещаются свободные электроны в металле.
Запомни
Полупроводники, имеющие донорные примеси и потому обладающие большим числом электронов (по сравнению с числом дырок), называются полупроводниками n-типа (от английского слова negative — отрицательный).
Важно
В полупроводнике n-типа электроны являются основными носителями заряда, а дырки — неосновными.
Акцепторные примеси. Если в качестве примеси использовать индий, атомы которого трёхвалентны, то характер проводимости полупроводника меняется. Для образования нормальных парноэлектронных связей с соседями атому индия недостаёт одного электрона, который он берёт у соседнего атома кристалла. В результате образуется дырка. Число дырок в кристалле равно числу атомов примеси (рис. 16.9).
Запомни
Примеси в полупроводнике, создающие дополнительную концентрацию дырок, называют акцепторными (принимающими) примесями.
При наличии электрического поля дырки перемещаются направленно и возникает электрический ток, обусловленный дырочной проводимостью.
Запомни
Полупроводники с преобладанием дырочной проводимости над электронной называют полупроводниками p-типа (от английского слова positive — положительный).
Важно
Основными носителями заряда в полупроводнике p-типа являются дырки, а неосновными — электроны.
Обсудите с одноклассником, как влияет собственная проводимость на силу тока в проводнике с одним из типов примесной проводимости
Изменяя концентрацию примеси, можно значительно изменять число носителей заряда того или иного знака. Благодаря этому можно создавать полупроводники с преимущественной концентрацией одного из носителей тока электронов или дырок. Эта особенность полупроводников открывает широкие возможности для их практического применения.
Ключевые слова для поиска информации по теме параграфа.
Проводимость полупроводников. Примесная проводимость
Вопросы к параграфу
1. Какую связь называют ковалентной?
2. В чём состоит различие зависимости сопротивления полупроводников и металлов от температуры?
3. Какие подвижные носители зарядов имеются в чистом полупроводнике?
4. Что происходит при встрече электрона с дыркой?
5. Почему сопротивление полупроводников сильно зависит от наличия примесей?
6. Какие носители заряда являются основными в полупроводнике с акцепторной примесью?
7. Какую примесь надо ввести в полупроводник, чтобы получить полупроводник n-типа?
Физика. 10 класс
§ 37. Электрический ток в полупроводниках. Собственная и примесная проводимости полупроводников
Полупроводники — широкий класс как неорганических, так и органических веществ в твёрдом или жидком состоянии. Полупроводники обладают многими замечательными свойствами, благодаря которым они нашли широкое применение в различных областях науки и техники. Каковы особенности строения полупроводников?
Зависимость сопротивления полупроводников от температуры и освещённости. Удельное сопротивление полупроводников находится в пределах от 10 –6 до 10 8 Ом · м (при Т = 300 К), т. е. во много раз меньше, чем у диэлектриков, но существенно больше, чем у металлов. В отличие от проводников удельное сопротивление полупроводников резко убывает при увеличении температуры, а также изменяется при изменении освещения и введении сравнительно небольшого количества примесей. К полупроводникам относят ряд химических элементов (бор, углерод, кремний, германий, фосфор, мышьяк, сурьма, сера, селен, теллур и др.), множество оксидов и сульфидов металлов, а также других химических соединений.
Изучить свойства полупроводников можно на опытах. Соберём электрическую цепь, состоящую из источника тока, полупроводника и миллиамперметра ( рис. 215 ). Из опыта следует, что при нагревании полупроводника сила тока в цепи возрастает. Возрастание силы тока обусловлено тем, что при увеличении температуры сопротивление полупроводника уменьшается.
Проведём ещё один опыт. Изменяя освещённость поверхности полупроводника, наблюдаем изменение показаний миллиамперметра ( рис. 216 ). Результаты наблюдений означают, что при освещении поверхности полупроводника его сопротивление уменьшается.
Таким образом, уменьшить сопротивление полупроводника можно, либо нагревая его, либо воздействуя электромагнитным излучением, например освещая его поверхность.
Сопротивление полупроводников
Полупроводниками считаются вещества, обладающие электрическими свойствами, которые ставят их в промежуточное положение между диэлектрическими материалами и проводниками. Электропроводность полупроводников зависит от многих факторов. Прежде всего, это температура, а также количество примесей, содержащихся в них. Свое влияние оказывает ионизирующее и световое излучение.
Виды и свойства полупроводников
Для того, чтобы появился электрический ток, необходимо наличие подвижных частиц, переносящих заряды. Электропроводность того или иного вещества зависит от количества таких носителей на единицу объема. В диэлектриках они практически отсутствуют, а в полупроводниках свободные носители присутствуют лишь в небольшом количестве. Следовательно, удельное сопротивление полупроводников очень высокое, а в диэлектриках оно еще больше. Существуют различные виды этих материалов, обладающих собственными специфическими свойствами.
Все полупроводники можно разделить на несколько основных видов. Среди них лидируют чистые или собственные материалы, в которых отсутствуют какие-либо примеси.
Для них характерна кристаллическая структура, где атомы расположены в периодическом порядке в ее узлах. Здесь существует устойчивая взаимная связь каждого атома с четырьмя атомами, расположенными рядом. Это дает возможность образовывать постоянные электронные оболочки, в состав которых входит восемь электронов. При температуре, равной абсолютному нулю, такой полупроводник становится диэлектриком, поскольку все электроны соединены ковалентными связями.
Когда температура повышается или происходит какое-либо облучение, электроны могут выйти из ковалентных связей и превратиться в свободных носителей зарядов. Свободные места при перемещении постепенно занимаются другими электронами, поэтому электрический ток протекает только в одном направлении.
В электронных полупроводниках, кроме четырех атомов, составляющих основу кристаллической решетки, имеются так называемые доноры. Они представляют собой примеси в виде пятивалентных атомов. Электрон, содержащийся в таком атоме, не может нормально вступить в ковалентную связь и поэтому отделяется от донора. Таким образом, он превращается в свободный носитель заряда. В свою очередь донор становится положительным ионом, это может произойти даже при комнатной температуре.
В дырочных полупроводниках имеется кристаллическая решетка с содержанием трехвалентных примесных атомов, называемых акцепторами. В такой решетке остается незаполненной одна ковалентная связь. Она может быть заполнена электроном, оторвавшимся от соседней связи. Происходит превращение примесного атома в отрицательный ион, а на месте ушедшего электрона появляется дырка.То есть, в этом случае также начинается одностороннее движение электрического тока.
Факторы, влияющие на сопротивление полупроводников
Опытным путем было установлено, что при повышении температуры происходит уменьшение электрического сопротивления в полупроводниковых кристаллах. Это связано с тем, что при нагревании кристалла увеличивается количество свободных электронов, соответственно, возрастает их концентрация. Изменяющееся сопротивление полупроводников под воздействием температуры, применяется для создания специальных приборов, называемых терморезисторами.
Для того, чтобы изготовить терморезистор используются полупроводники, представляющие собой оксиды отдельных металлов в смешанном состоянии. Готовое вещество размещается в защитном металлическом корпусе с изолированными выводами. С их помощью происходит подключение прибора к электрической цепи.
Терморезисторы используются для измерения температуры или для ее поддержания в заданном режиме в каких-либо устройствах. Основным принципом их работы является изменяющееся сопротивление при перепадах температур. Тот же принцип используется и в фоторезисторах. Здесь величина сопротивления изменяется в зависимости от уровня освещения.
Влияние температуры на сопротивление полупроводника
Чем отличаются проводники от полупроводников
От чего зависит сопротивление проводника
Применение полупроводников в радио- и электротехнике
Зависимость сопротивления проводника от температуры
Зависимость проводимости полупроводников от температуры и освещенности
Полупроводники – это вещества, сопротивление которых убывает с повышением температуры, изменения освещенности, наличия примесей.
При нагревании полупроводникового термистора сила тока в цепи растет, что указывает на уменьшение его сопротивления.
При освещении полупроводникового фоторезистора сила тока в цепи растет, что указывает на уменьшение его сопротивления.
Типичными полупроводниками являются кристаллы германия (Ge) и кремния (Si).
Факторы, влияющие на сопротивление полупроводников
Опытным путем было установлено, что при повышении температуры происходит уменьшение электрического сопротивления в полупроводниковых кристаллах. Это связано с тем, что при нагревании кристалла увеличивается количество свободных электронов, соответственно, возрастает их концентрация. Изменяющееся сопротивление полупроводников под воздействием температуры, применяется для создания специальных приборов, называемых терморезисторами.
Для того, чтобы изготовить терморезистор используются полупроводники, представляющие собой оксиды отдельных металлов в смешанном состоянии. Готовое вещество размещается в защитном металлическом корпусе с изолированными выводами. С их помощью происходит подключение прибора к электрической цепи.
Терморезисторы используются для измерения температуры или для ее поддержания в заданном режиме в каких-либо устройствах. Основным принципом их работы является изменяющееся сопротивление при перепадах температур. Тот же принцип используется и в фоторезисторах. Здесь величина сопротивления изменяется в зависимости от уровня освещения.
Собственная проводимость полупроводников
В идеальном кристалле германия при низкой температуре атомы объединены ковалентной связью: свободных носителей заряда нет. При увеличении температуры энергия электронов увеличивается и происходит разрыв ковалентной связи, а на их месте образуется свободное вакантное место – положительная дырка.
В идеальном кристалле четырехвалентного германия при низкой температуре атомы объединены ковалентной связью: свободных носителей заряда нет. Четыре валентных электрона связаны с четырьмя соседними атомами. При увеличении температуры энергия электронов увеличивается и происходит разрыв ковалентной связи, а на их месте образуется положительная дырка.
В чистом полупроводнике электрический ток создается равным количеством электронов и дырок. Такой тип проводимости называется собственной проводимостью полупроводников.
Ковалентная связь
Металлическая связь, как вы помните, обеспечивается газом свободных электронов, который, подобно клею, удерживает положительные ионы в узлах кристаллической решётки. Полупроводники устроены иначе — их атомы скрепляет ковалентная связь
. Давайте вспомним, что это такое.
Электроны, находящиеся на внешнем электронном уровне и называемые валентными
, слабее связаны с атомом, чем остальные электроны, которые расположены ближе к ядру. В процессе образования ковалентной связи два атома вносят «в общее дело» по одному своему валентному электрону. Эти два электрона обобществляются, то есть теперь принадлежат уже обоим атомам, и потому называются
общей электронной парой
(рис. 2).
Рис. 2. Ковалентная связь
Обобществлённая пара электронов как раз и удерживает атомы друг около друга (с помощью сил электрического притяжения). Ковалентная связь — это связь, существующая между атомами за счёт общих электронных пар
. По этой причине ковалентная связь называется также
парноэлектронной
.
Примесная проводимость полупроводников
При внесении примеси электрическая проводимость полупроводников увеличивается. Такой полупроводник обладает примесной проводимостью.
При добавлении донорной примеси (с большей валентностью) в полупроводнике образуются лишние электроны. Например, если в четырехвалентный кристалл германия добавить пятивалентный мышьяк, то четыре электрона мышьяка образуют ковалентные связи, а пятый остается свободным. Проводимость становится электронной, а полупроводник называют полупроводником n-типа.
При добавлении акцепторной примеси (с меньшей валентностью) в полупроводнике образуются лишние дырки. Например, если в четырехвалентный кристалл германия ввести трехвалентный индий, то одна ковалентная связь останется незавершенной. Проводимость становится дырочной, а полупроводник называют полупроводником p-типа.
Полупроводниковые приборы и их применение
Полупроводниковый диод
Прибор, в котором используется p-n-переход, называется полупроводниковым диодом.
Электрический ток через контакт полупроводников p-n-типа:
Идет значительный ток.
Ток практически отсутствует.
Вольт-амперная характеристика p-n-перехода.
Правая часть графика соответствует прямому направлению тока, а левая – обратному.
Полупроводниковый диод используется как выпрямитель переменного тока.
Транзистор
Транзистор имеет два p-n-перехода и используется как усилитель мощности в радиоэлектронных устройствах. Транзистор состоит из двух полупроводников p-типа и одного n-типа или двух полупроводников n-типа и одного p-типа. Эти переходы делят полупроводник на три области, называемые эмиттер, база, коллектор.
Интегральные схемы
На основе полупроводниковых кристаллов создаются интегральные схемы, в которых сотни тысяч элементов соединяются в единую электрическую цепь.
Полупроводники используются при создании:
фоторезисторов, которые находят применение в автоматических выключателях света, индикаторах на ИСЗ;
термисторах, используемых для измерения температуры, в пожарной сигнализации, реле времени;
фотоэлементах, используемых в солнечных батареях;
фотодиодах, используемых для измерения интенсивности света;
фототранзисторах, используемых в различных датчиках;
светодиодах, используемых в качестве источника инфракрасного излучения, знаковых индикаторах, полупроводниковых лазерах.
Подведем итог
Полупроводники по электропроводности занимают промежуточное положение между диэлектриками и проводниками. К полупроводникам относится большая группа веществ (Si, Ge и др.). В отличие от металлов с ростом температуры удельное сопротивление полупроводников уменьшается.
Проводимость полупроводников обусловлена наличием свободных электронов и дырок. В чистом кристалле электроны и дырки присутствуют в равном количестве. Такой полупроводник обладает собственной проводимостью.
При наличии примесей в полупроводниках возникает примесная проводимость. При добавлении донорной примеси с валентностью на единицу больше, чем у полупроводника, один электрон остается свободным. Получается полупроводник n-типа.
Если же добавить акцепторную примесь с валентностью на единицу меньше, чем у полупроводника, то в таком полупроводнике концентрация дырок превышает концентрацию электронов. Получается полупроводник p-типа.
Область контакта полупроводников двух типов называется p-n-переходом. Важным свойством p-n-перехода является его односторонняя проводимость. Данное свойство используется в работе полупроводникового диода.
Полупроводники используются при создании транзисторов, термисторов, светодиодов, фотоэлементов, интегральных схем.
В настоящее время полупроводниковые приборы находят широкое применение в радиотехнике, автоматике, вычислительной технике, телемеханике.
Электрический ток в различных средах
Электрический ток в полупроводниках
Полупроводниками называют вещества, удельное сопротивление которых во много раз меньше, чем у диэлектриков, о намного больше, чем у металлов. Наиболее широко в качестве полупроводников используют кремний и германий.
Главная особенность полупроводников – зависимость их дельного сопротивления от внешних условий (температуры, освещенности, электрического поля) и от наличия примесей. В 20-м веке ученые и инженеры начали использовать эту особенность полупроводников для создания чрезвычайно миниатюрных сложных приборов с автоматизированным управлением – например, компьютеров, мобильных телефонов, бытовой техники.
Быстродействие компьютеров примерно за полвека их существования увеличилось в миллионы раз. Если бы за этот же промежуток времени скорость автомобилей увеличилась тоже миллионы раз, то они мчались бы сегодня со скоростью, приближающейся к скорости света!
Если бы в одно (далеко не прекрасное!) мгновение полупроводники «отказались от работы», то сразу погасли бы экраны компьютеров и телевизоров, замолчали бы мобильные телефоны, а искусственные спутники потеряли бы управление. Остановились бы тысячи производств, потерпели бы аварии самолеты и корабли, а также миллионы автомобилей.
Носители заряда в полупроводниках
Электронная проводимость. В полупроводниках валентные электроны «принадлежат» двум соседним атомам. Например, в кристалле кремния у каждой пары атомов-соседей есть два «общих» электрона. Схематически это изображено на рисунке 60.1 (здесь изображены только валентные электроны).
Связь электронов с атомами в полупроводниках слабее, чем в диэлектриках. Поэтому даже при комнатной температуре тепловой энергии некоторых валентных электронов достаточно для того, чтобы они оторвались от своей пары атомов, став электронами проводимости. Так в полупроводнике возникают отрицательные носители заряда.
Проводимость полупроводника, обусловленную перемещением свободных электронов, называют электронной.
Дырочная проводимость. Когда валентный электрон становится электроном проводимости, он освобождает место, в котором возникает нескомпенсированный положительный заряд. Это место называют дыркой. Дырке соответствует положительный заряд, равный по модулю заряду электрона.
Если на это освободившееся место перейдет валентный электрон одного из соседних атомов, то дырка переместится к тому атому, который был покинут валентным электроном. Поэтому перемещение валентных электронов на освободившиеся места можно рассматривать как движение положительных носителей заряда – дырок (рис. 60.2).
Проводимость полупроводника, обусловленную перемещением дырок, называют дырочной.
Когда нет внешнего электрического поля, свободные электроны и дырки движутся хаотично, и поэтому тока в полупроводнике нет. Если же поместить полупроводник в электрическое поле, то под действием этого поля свободные электроны начнут двигаться в одну сторону, а дырки – в противоположную.
? 1. Объясните, почему направление тока, обусловленное движением свободных электронов, совладает с направлением тока, обусловленного движением дырок, хотя электроны и дырки движутся в противоположных направлениях.
Свободный электрон может занять одно из свободных мест, уничтожив при атом дырку. Такое взаимное уничтожение свободного электрона и дырки называют рекомбинацией.
Если в полупроводнике нет примесей, то число свободных электронов в образце равно числу дырок, так как появление каждого свободного электрона сопровождается появлением дырки. Проводимость полупроводника, обусловленную равным числом свободных электронов и дырок, называют собственной проводимостью.
Зависимость сопротивление полупроводников от температуры и освещенности
При повышении температуры число валентных электронов, имеющих энергию, достаточную для того, чтобы оставить вон атомы и стать свободными электронами, быстро увеличивается. Увеличивается соответственно и число дырок. Вследствие увеличения свободных зарядов удельное сопротивление полупроводника при повышении температуры уменьшается.
На рисунке 60.3 приведен график зависимости удельного сопротивления полупроводника от температуры.
Валентные электроны в полупроводниках могут «обрести свободу», став свободными электронами, не только вследствие повышения температуры, но и под действием света. Поэтому увеличение освещенности также уменьшает сопротивление полупроводника.
Терморезисторы (термисторы). Сильную зависимость сопротивления полупроводников от температуры используют для создания датчиков температуры, которые называют терморезисторами или, сокращенно, термисторами. Термисторы используют для создания сигнализации (например, противопожарной), дистанционного наблюдения за технологическими процессами.
Фоторезисторы. Зависимость сопротивления полупроводников от освещенности используют для создания фоторезисторов. Фоторезисторы применяют, например, в турникетах метро и в устройствах, которые защищают от травм на производстве.
Примесная проводимость полупроводников
Соотношение между количеством электронов проводимости и количеством дырок можно изменять, добавляя в полупроводник небольшие количества различных примесей (например, в процессе выращивания кристалла полупроводника из расплава).
Донорные примеси. Добавим в кристалл, состоящий из четырехвалентных атомов кремния, некоторое количество пятивалентных атомов мышьяка.
При этом один из валентных электронов каждого атома мышьяка окажется «лишним» и потому станет свободным электроном (рис. 60.4).
Примеси, атомы которых легко отдают свои валентные электроны, называют донорными. Полупроводники, в которых основными носителями заряда являются свободные электроны, называют полупроводниками n-типа.
Акцепторные примеси. Добавим теперь в кристалл кремния трехвалентные атомы алюминия.
Так как у атома алюминия есть только три валентных электрона, он будет прочно связан только с тремя атомами кремня, а четвертая связь останется незаполненной, Эту связь может заполнить валентный электрон, ушедший от одного из соседних томов кремния. Тогда на месте ушедшего валентного электрона образуется нескомпенсированный положительный заряд, то есть дырка (рис. 60.5). Итак, каждый том алюминия увеличивает количество дырок на единицу.
Примеси, которые увеличивают количество дырок, называют акцепторными. Полупроводники, в которых основные носители заряда – дырки, называют полупроводниками p-типа.
? 2. Определите с помощью таблицы Менделеева, какие из перечисленных химических элементов (индий, сурьма, фосфор, скандий, галлий) надо добавить в качестве примеси в кремний, чтобы получить полупроводник n-типа; p-типа.
Полупроводниковый диод
Рассмотрим явления, происходящие на границе раздела полупроводников n-типа и p-типа. Ее называют электронно-дырочным переходом (сокращенно n-p-переходом).
В полупроводнике n-типа концентрация свободных электронов намного больше, чем в полупроводнике p-типа. Поэтому следствие диффузии свободные электроны будут проникать в полупроводник p-типа и рекомбинировать там с дырками.
По той же причине (вследствие диффузии) дырки будут проникать в полупроводник n-типа и рекомбинировать там со свободными электронами.
В результате пограничный слой обедняется основными носителями заряда, и его сопротивление становится очень большим. Поэтому этот слой называют запирающим. На рисунке 60.6 он обведен пунктиром.
Подключим теперь полупроводник p-типа к положительному полюсу источника тока, а полупроводник n-типа – к отрицательному (рис. 60.7). На рисунке для наглядности показаны только свободные заряды, находящиеся вблизи границы раздела.
Со стороны внешнего электрического поля на дырки и свободные электроны будут действовать силы, направленные и границе раздела. Запирающий слой разрушится: дырки и свободные электроны начнут двигаться навстречу друг другу и на границе раздела рекомбинировать. При этом через границу раздела полупроводников будет идти тон. Такое подключение называют прямым.
Изменим полярность подключения источника тока (рис. 60.8). Теперь силы, действующие на свободные электроны и дырки со стороны внешнего электрического поля, направлены от границы раздела. Поэтому дырки и свободные электроны будут удаляться от границы. Запирающий слой будет расширяться, а его сопротивление будет увеличиваться. В этом случае сила тока через границу раздела полупроводников будет очень малой. Такое подключение называют обратным.
Итак, n-p-переход имеет одностороннюю проводимость: практически электрический ток может течь через него только от полупроводника p-типа к полупроводнику n-типа.
Устройство с односторонней проводимостью, обусловленной n-p-переходом, называют полупроводниковым диодом. На рисунке 60.9 приведена вольтамперная характеристика полупроводникового диода.
Мы видим, что при обратном подключении (пунктирная линия) сила тока намного меньше, чем при прямом.
На электрических схемах диод обозначают одним из способов, показанных на рисунке 60.10. Упирающаяся в отрезок стрела показывает направление тока через диод при прямом подключении.
На рисунке 60.11 показана простейшая электрическая схема с прямым подключением диода, а на рисунке 60.12 – с обратным.
? 3. На рисунке 60.13 изображена схема электрической цепи с двумя диодами. К точкам А и В подключают полюса источника тока с ЭДС, равной 12 В, и внутренним сопротивлением 2 Ом. Сопротивления резисторов R1 = 2 Ом, R2 = 4 Ом.
а) Через какой резистор пойдет ток, если к точке А подключить: отрицательный полюс источника тока? положительный? б) Чему будет равно сопротивление всей цепи при одном и другом способе подключения? в) Чему будет равна сила тока и мощность тока в резисторе при одном и другом способе подключения?
Транзистор
Транзистор состоит из трех слоев полупроводников: по краям находятся полупроводники одного типа, а между ними – очень тонкая прослойка полупроводника другого типа. На рисунке 60.14 изображен p-n-p-транзистор. Две крайние области транзистора называют эмиттером и коллектором, а среднюю область – базой.
В p-n-p-транзисторе основными носителями заряда в эмиттере и базе являются дырки. В базе же основные носители заряда – электроны, но ее делают настолько тонкой (несколько микрон), а концентрацию электронов в ней настолько малой, что практически все дырки проходят с эмиттера в коллектор сквозь базу.
Переход между эмиттером и базой делают прямым, и поэтому дырки с эмиттера диффундируют в базу, а сквозь нее в коллектор. Однако число дырок, которые прошли сквозь базу (а следовательно, и сила тока через коллектор), существенно зависит от напряжения между эмиттером и базой: чем сильнее база притягивает дырки, тем большее их число пройдет сквозь нее.
Благодаря этому малые изменения напряжения между эмиттером и базой вызывают синхронные, только во много раз большие изменения напряжения на нагрузке (резисторе R), включенной в цепь коллектора.
Таким образом, транзистор можно использовать для усиления электрических сигналов: изменяя напряжение между базой и эмиттером на сотые доли вольта, можно изменять напряжение между эмиттером и коллектором на десятки вольт. Это позволяет, например, преобразовывать чрезвычайно слабые сигналы в антеннах радиоприемников и мобильных телефонов в электрический ток, питающий динамики или наушники.
Интегральные схемы
Мы рассмотрели лишь простейшие полупроводниковые приборы – диод и транзистор.
Они являются «кирпичиками» очень сложных устройств, которые называют интегральными схемами. Такие схемы «работают» сегодня в компьютерах и телевизорах, мобильных телефонах и искусственных спутниках, автомобилях, самолетах и даже в стиральных машинах.
Обычно интегральную схему формируют на пластинке кристалла кремния, выращенного специальным способом. Такую пластинку с интегральной схемой часто называют чипом.
Фотографии некоторых чипов приведены на рисунке 60.15 рядом с линейкой, чтобы вы смогли представить их размеры. Важными преимуществами интегральных схем являются высокое быстродействие и надежность, а также дешевизна. Именно благодаря этим качествам на основе интегральных схем и удалось создать сложные, но доступные приборы, компьютеры и предметы современной бытовой техники.
Электрический ток в жидкостях и газах
Электрический ток в жидкостях. Как мы уже говорили, носителями электрических зарядов в электролитах (жидких проводниках) являются положительные и отрицательные ионы. При прохождении тока через электролит происходит электролиз – на электродах выделяются различные вещества.
Например, с помощью электролиза можно покрывать металлические изделия очень тонким слоем другого металла. Явление электролиза и его законы были открыты английским ученым Майклом Фарадеем. Вы изучаете их в курсе химии.
Электрический ток в газах. Носителями электрических зарядов в газах являются ионы и электроны. Существуют разные виды газовых разрядов. Например, в результате коронного разряда на металлических остриях (например, мачтах кораблей) перед грозой возникает свечение, которое называли «огнями святого Эльма» (рис. 60.16).
Примерами искрового разряда являются молнии.
Тлеющий разряд (рис. 60.17) используют в люминесцентных лампах (в том числе в энергосберегающих) и в рекламе.
Дуговой разряд (рис. 60.18) используют для создания мощных источников света и для получения высоких температур (например, при дуговой электросварке).
Дополнительные вопросы и задания
4. На рисунке 60.19 изображена схема электрической цепи с несколькими резисторами и диодами. Все резисторы имеют одинаковое сопротивление r, равное внутреннему сопротивлению источника тока. ЭДС источника тока ξ. Примите, что сопротивлением диода при прямом подключении можно пренебречь, а его сопротивление при обратном подключении считайте бесконечно большим.
а) Перенесите чертеж в тетрадь и укажите на нем цветными стрелками направление электрического тока в каждом элементе цепи. б) Чему равно сопротивление всей цепи? в) Чему равна мощность, выделяющаяся во внешней цепи? г) Чему равен КПД источника? д) Выполните задания а) – г) при другой полярности подключения того же источника тока.