в чем состоит назначение генератора высокочастотных колебаний
Генератор частот
Генератор частот — это прибор, который может выдавать колебания электрического сигнала различной формы, частоты, амплитуды, продолжительности и так далее. Он используется для разработки радиоэлектронной аппаратуры, а также для ремонта в виде генератора тестовых сигналов. Для профессионального электронщика считается незаменимым устройством на рабочем столе.
Описание генератора частоты
Ко мне прямиком из Китая приехал генератор частот. Как вы видите, он представляет из себя довольно таки солидный прибор.
На лицевой панели генератора частот мы видим множество различных кнопок и крутилок. Эта крутилка предназначена для того, чтобы уменьшать или увеличивать амплитуду сигнала.
Эти кнопки предназначены для изменения формы сигналов.
Здесь можно увидеть такие сигналы, как
Далее с помощью кнопок можно выбрать нужный диапазон, а также подключить какой-либо внешний сигнал.
Под внешним счетчиком здесь имеется ввиду какой-либо периодический сигнал с какого-нибудь генератора частоты либо схемы. Подавая такой сигнал на разъем нашего генератора частоты, мы с легкостью можем определить частоту неизвестного сигнала вплоть до 10 Мегагерц. То есть в данном случае генератор функций выполняет роль частотомера.
Далее идут разъемы.
VCF – Voltage Controlled Frequency. По нашему ГУН. Расшифровывается как Генератор Управляемый Напряжением. Само название говорит нам о том, что мы можем менять частоту сигнала с генератора частоты, подавая на этот разъем какое-либо напряжение. В зависимости от того, какая будет амплитуда подаваемого напряжения, такая и будет частота на выходе генератора частоты.
TTL OUT. ТТЛ – Транзисторно-Транзисторная-Логика. OUT – выход. Этот выход предназначен для тактирования логических микросхем, построенных на так называемой транзисторно-транзисторной логике. То есть это логические элементы, которые в своем составе имеют только биполярные транзисторы и резисторы. Такие микросхемы делают в основном на питание +5 В.
Логический ноль – это уровень напряжения от 0 и до +0,5 В. Уровень логической единички от 2,4 и до +5 В. Поэтому, с этого выхода мы получаем прямоугольный периодический сигнал с чередующимися нулями и единицами: 0101010101… Частоту такого сигнала выставляем с помощью крутилки и кнопок выбора диапазона.
OUTPUT. Выход с генератора. Именно с этого разъема мы и получаем необходимый нам сигнал с генератора функций.
Также небольшой интерес могут представлять из себя кнопки
Как работает генератор частот
Для того, чтобы наблюдать форму сигнала, которую выдает генератор частот, мы будем использовать цифровой осциллограф.
Итак, мы хотим получить синусоидальный сигнал с частотой в 2 МГц и амплитудой в 5 Вольт. Для этого я выставляю на своем генераторе частоты 2 МГц, синус, размах сигнала 10 Вольт. Размах = 2 амплитуды сигнала.
и получаю вот такую осциллограмму. Как вы видите, генератор частот прекрасно справился со своей задачей.
Как изменить форму сигнала
Для того, чтобы получить некоторые нестандартные сигналы, типа пилы или прямоугольных сигналов с различной скважностью, нам придется задействовать
вот эту кнопочку и крутилку
Пару слов о скважности. Это параметр применяется к прямоугольной форме сигналов.
T — период импульса, с
t — длительность импульса, с
Величина D (Duty), обратная величине S, называется коэффициентом заполнения
Иллюстрация сигналов с различным коэффициентом заполнения
На экране осциллографа это может выглядеть вот так
Можем также из треугольного сигнала получить пилообразный сигнал
Иногда требуется добавить постоянную составляющую в сигнал. Для этого используем вот эту кнопочку и крутилку.
Смысл этой операции заключается в том, что к переменному току мы добавляем постоянный ток. Если объяснить графически, то это будет выглядеть вот так.
Как вы видите, эта функция без проблем работает в этом генераторе частоты
А также мы без проблем можем замерить этим генератором частот какую-либо частоту, например, с другого генератора. Выставили 15 КГц, он нам тоже показал 15 КГц. Все работает как надо!
Где купить генератор частот
Очень большой выбор генераторов частот можно найти на Алиэкспрессе, н ачиная от простых дешевых
и заканчивая профессиональными
Похожие статьи по теме «генератор частот»
Схемы генераторов высокой частоты (ВЧ)
Итак, самый главный блок любого передатчика – это генератор. От того, насколько стабильно и точно работает генератор, зависит, сможет ли кто-то поймать переданный сигнал и нормально его принимать. В интернете валяется просто уйма различных схем жучков, в которых используются различные генераторы. Сейчас мы немного классифицируем все это.
Классика жанра — генератор ВЧ
Транзистор включен по схеме с общей базой. Резисторный делитель напряжения R1- R2 создает на базе смещение рабочей точки. Конденсатор C3 шунтирует R2 по высокой частоте.
R3 включен в эмиттерную цепь для ограничения тока протекающего через транзистор.
Конденсатор C1 и катушка L1 образуют частотозадающий колебательный контур.
Кондер C2 обеспечивает положительную обратную связь (ПОС), необходимую для генерации.
Механизм генерации
Упрощенно схему можно представить так:
Вместо транзистора мы ставим некий «элемент с отрицательным сопротивлением». По сути – усилительный элемент. То есть, ток на его выходе больше, чем ток на входе (так вот хитро).
К входу этого элемента подключен колебательный контур. С выхода элемента на этот же колебательный контур подана обратная связь (через кондер C2). Таким образом, когда на входе элемента ток увеличивается (происходит перезарядка контурного конденсатора), увеличивается ток и на выходе. Через обратную связь, он подается обратно на колебательный контур – происходит «подпитка». В результате, в контуре устаканиваются незатухающие колебания.
Все оказалось проще пареной репы (как всегда).
Разновидности
В безбрежном инете можно еще встретить такую реализацию этого же генератора:
Схема называется «емкостная трехточка». Принцип работы – тот же.
Во всех этих схемах сгенерированный сигнал можно снимать либо непосредственно с коллектора VT 1, либо использовать для этого катушку связи, связанную с контурной катушкой.
Индуктивная трехточка
Эту схему выбираю я, и советую вам.
R1 – ограничивает ток генератора
R2 – задает смещение базы
C1, L1 – колебательный контур
C2 – конденсатор ПОС
Катушка L1 имеет отвод, к которому подключен эмиттер транзистора. Этот отвод должен быть расположен не ровно посередине, а ближе к «холодному» концу катушки (то есть тому, который соединен с проводом питания). Кроме того, можно вообще не делать отвод, а намотать дополнительную катушку, то есть – сделать трансформатор:
Эти схемы идентичны.
Для понимания того, как работает такой генератор, давайте рассмотрим именно вторую схему. При этом, левая (по схеме) обмотка будет вторичной, правая – первичной.
Когда на верхней обкладке C1 увеличивается напряжение (то есть, ток во вторичной обмотке течет «вверх»), то на базу транзистора через конденсатор обратной связи C2 подается открывающий импульс. Это приводит к тому, что транзистор подает на первичную обмотку ток, этот ток вызывает увеличение тока во вторичной обмотке. Происходит подпитка энергией. В-общем – то, все тоже довольно просто.
Разновидности
Мое небольшое ноу-хау: можно поставить между общим и базой диод:
Этот диод ускоряет перезаряд C2, что приводит к увеличению мощности генерируемого сигнала. Однако, вместе с тем, это вносит в сигнал нелинейные искажения, так что на выходе придется ставить фильтры НЧ для подавления паразитных гармоник.
Сигнал во всех этих схемах снимаем с эмиттера транзистора либо через дополнительную катушку связи непосредственно с контура.
Двухтактный генератор для ленивых
Самая простая схема генератора, какую только мне приходилось когда-либо видеть:
В этой схеме легко улавливается схожесть с мультивибратором. Я вам скажу больше – это и есть мультивибратор. Только вместо цепочек задержки на конденсаторе и резисторе (RC-цепи), здесь используются катушки индуктивности. Резистор R1 устанавливает ток через транзисторы. Кроме того, без него генерация просто-напросто, не пойдет.
Допустим, VT1 открывается, через L1 течет коллекторный ток VT1. Соответственно, VT2 закрыт, через L2 течет открывающий базовый ток VT1. Но поскольку сопротивление катушек раз в 100…1000 меньше сопротивления резистора R1, то к моменту полного открытия транзистора, напряжение на них падает до очень маленького значения, и транзистор закрывается. Но! Поскольку до закрытия транзистора, через L1 тек большой коллекторный ток, то в момент закрытия происходит выброс напряжения (ЭДС самоиндукции), который подается на базу VT2 открывает его. Все начинается по новой, только с другим плечом генератора. И так далее…
Этот генератор имеет только один плюс – простота изготовления. Остальные – минусы.
Поскольку в нем отсутствует четкое времязадающее звено (колебательный контур или RC-цепь), то частоту такого генератора рассчитать весьма сложно. Она будет зависеть от свойств применяемых транзисторов, от напряжения питания, от температуры и т.д. Во-общем, в серьезных вещах этот генератор лучше не использовать. Однако, в диапазоне СВЧ его применяют довольно часто.
Двухтактный генератор для трудолюбивых
Другой генератор, который мы рассмотрим – тоже двухтактный. Однако, он содержит колебательный контур, что делает его параметры более стабильными и прогнозируемыми. Хотя, по сути, он тоже довольно прост.
Что мы здесь видим?
Видим колебательный контур L1 C1,
А дальше видим каждой твари по паре:
Два транзистора: VT1, VT2
Два конденсатора обратной связи: С2, С3
Два резистора смещения: R1, R2
Опытный глаз (да и не сильно опытный), обнаружит и в этой схеме схожесть с мультивибратором. Ну что же – оно так и есть!
Чем примечательна данная схема? Да тем, что ввиду использования двухтактного включения, она позволяет развивать двойную мощность, по сравнению со схемами 1-тактных генераторов, при том же напряжении питания и при условии применения тех же транзисторов. Во как! Ну, в общем, у нее почти нет недостатков 🙂
При перезаряде конденсатора в одну или другую сторону, через один из конденсаторов обратной связи поступает ток на соответствующий транзистор. Транзистор открывается, и добавляет энергию в «нужном» направлении. Вот и вся премудрость.
Особо изощренных вариантов исполнения этой схемы я не встречал…
Теперь немного креатива.
Генератор на логических элементах
Если использование транзисторов в генераторе кажется вам несовременным или громоздким или недопустимым по религиозным соображениям – выход есть! Можно использовать вместо транзисторов микросхемы. Обычно используется логика: элементы НЕ, И-НЕ, ИЛИ-НЕ, реже – Исключающее ИЛИ. Вообще говоря, нужны только элементы НЕ, остальное – излишества, только лишь ухудшающие скоростные параметры генератора.
Видим страшную схему.
Квадратики с дырочкой в правом боку – это инвертеры. Ну или – «элементы НЕ». Дырочка как раз указывает на то, что сигнал инвертируется.
Это конечно, слишком просто. Но доля правды в этом есть.
Впрочем, нам пока что это не столь важно.
Итак, смотрим схему генератора. Имеем:
Два инвертера ( DD1.1, DD1.2)
Колебательный контур L1 C1
Заметьте, что колебательный контур в этой схеме – последовательный. То есть, конденсатор и катушка стоят друг за другом. Но это – все равно колебательный контур, он рассчитывается по тем же формулам, и ничуть ни хуже (и не лучше) своего параллельного собрата.
Начнем сначала. Зачем нам нужен резистор?
Резистор создает отрицательную обратную связь (ООС) между выходом и входом элемента DD1.1. Это надо для того, чтобы держать под контролем коэффициент усиления – это раз, а также – чтоб создать на входе элемента начальное смещение – это два. Как это работает, подробно мы рассмотрим где-нибудь в обучалке по аналоговой технике. Пока что уясним, что благодаря этому резистору, на выходе и входе элемента, в отсутствие входного сигнала, устаканивается напряжение, равное половине напряжения питания. Точнее – среднему арифметическому напряжений логических «нуля» и «единицы». Не будем пока на этом заморачиваться, у нас еще много дел…
Итак, на одном элементе мы получили инвертирующий усилитель. То есть, усилитель, который «переворачивает» сигнал вверх ногами: если на входе много – на выходе мало, и наоборот. Второй элемент служит для того, чтобы сделать этот усилитель неинвертирующим. То есть, он переворачивает сигнал еще раз. И в таком виде, усиленный сигнал подается на выход, на колебательный контур.
А ну-ка, смотрим внимательно на колебательный контур? Как он включен? Правильно! Он включен между выходом и входом усилителя. То есть, он создает положительную обратную связь (ПОС). Как мы уже знаем из рассмотрения предыдущих генераторов, ПОС нужна для генератора, как валерьянка для кота. Без ПОС ни один генератор не сможет что? Правильно – возбудиться. И начать генерацию…
Все наверно знают такую вещь: если к входу усилителя подключить микрофон, к выходу – динамик, то при поднесении микрофона к динамику, начинается противный «свист». Это – ни что иное как генерация. Мы же подаем сигнал с выхода усилителя на вход. Возникает ПОС. Как следствие, усилитель начинает генерить.
Ну что, сложно?
Если (сложно)
<
чешем (репу) ;
читаем еще раз;
>
Теперь поговорим о разновидностях подобных генераторов.
Во-первых, вместо колебательного контура, можно включить кварц. Получится стабилизированный генератор, работающий на частоте кварца:
Если в цепь ОС элемента DD1.1 включить вместо резистора колебательный контур – можно завести генератор на гармониках кварца. Для получения какой-либо гармоники, нужно, чтобы резонансная частота контура была близка к частоте этой гармоники:
Если генератор делается из элементов И-НЕ или ИЛИ-НЕ, то входы этих элементов нужно запараллелить, и включать как обычный инвертор. Если используем Исключающее ИЛИ, то один из входов каждого элемента сажается на + питания.
Пара слов о микросхемах.
Предпочтительнее использовать логику ТТЛШ или быстродействующий КМОП.
Рассмотренные здесь генераторы – далеко не все, что могут повстречаться вам в этой нелегкой жизни. Но зная основные принципы работы этих генераторов, будет уже намного проще понять работу других, укротить их и заставить работать на себя 🙂
Генератор сигналов: схема, принцип действия, устройство, виды
Принцип работы генератора сигналов
При разработке электронных модулей, компонентов схемы и прочих операциях генератор сигналов работает в качестве источника воздействующего сигнала.
Генератор формирует сигнал с изменяемой по времени амплитудой, который подается на тестируемый элемент или высокочастотный модуль, фильтр. Форма сигнала может быть произвольной, а может быть в виде любой периодической функции, например, синусоиды. Может представлять собой цифровой импульс или двоичную последовательность. Наиболее распространенные формы сигналов — синусоидальные сигналы, меандры и прямоугольные сигналы, пилообразные и треугольные сигналы.
Что представляет собой сигнал генератора
Сигнал является биполярным истинным сигналом переменного тока с пиковыми значениями, которые колеблются относительно определенного уровня постоянного напряжения.
Также это могут быть сигналы со смещением, которые опускаются и поднимаются ниже или выше от расположения нулевого уровня (0 В). Под переменным током понимается любой изменяющий свое значение сигнал, независимо от привязки к нулю.
Таким образом, тестирование приборов заключается в подаче сигнала идеальной формы или с добавлением искажений, то есть ошибки, которая возможна в процессе работы диагностируемого прибора.
Главное достоинство генератора сигнала — это возможность имитации реальной ошибки, которую можно предсказать в определенном месте и в нужное время с помощью исследуемой схемы.
В итоге, способность реагировать тестируемого устройства на искажение демонстрирует его готовность работать в неблагоприятных условиях аварийного режима.
Как вывод можно сказать, что сигнал на выходе модуля анализируется осциллографом или другим прибором, например, анализатором спектра или измерителем мощности. По результатам анализа судят о корректной работе проверяемого устройства. По необходимости генератором можно добавить шум на тестируемый сигнал или имитировать замирание входного сигнала.
Основные применения генератора сигналов
Вы спросите, а зачем он нужен. Например, такой прибор как генератор сигналов A96 DDS понадобится, чтобы получить в работе над радиопередатчиком и приемником требуемую форму сигналов, чтобы настраивать УМЗЧ и измерять искажения или фронты.
Даже простейший бюджетный прибор, такой как функциональный генератор сигналов на ICL8038 даст представление о кривой на выходе при подаче синуса, треугольника или меандра, позволит увидеть результат, который получается на выходе.
Подобные устройства используются в прикладных областях при формировании низкочастотных навигационных сигналов, применяются для мобильной сотовой связи, спутников и радиолокации с длинной волны от миллиметрового диапазона. Чтобы выполнять работу в любых условиях придуманы даже карманные генераторы синусоидальных сигналов, такие как Fg-100. Прибор используется вместе с осциллографом для тестирования и наладки электронных схем.
Устройства стабилизируют синтезированную частоту, поддерживают калиброванный выходной уровень сигнала и дают возможность дистанционного управления.
Описание генератора частоты
Из Китая приехал генератор частот. Как вы видите, он представляет из себя довольно таки солидный прибор.
На лицевой панели генератора частот мы видим множество различных кнопок и крутилок. Эта крутилка предназначена для того, чтобы уменьшать или увеличивать амплитуду сигнала.
Эти кнопки предназначены для изменения формы сигналов.
Здесь можно увидеть такие сигналы, как
Далее с помощью кнопок можно выбрать нужный диапазон, а также подключить какой-либо внешний сигнал.
Под внешним счетчиком здесь имеется ввиду какой-либо периодический сигнал с какого-нибудь генератора частоты либо схемы. Подавая такой сигнал на разъем нашего генератора частоты, мы с легкостью можем определить частоту неизвестного сигнала вплоть до 10 Мегагерц. То есть в данном случае генератор функций выполняет роль частотомера.
Далее идут разъемы.
VCF – Voltage Controlled Frequency. По нашему ГУН. Расшифровывается как Генератор Управляемый Напряжением. Само название говорит нам о том, что мы можем менять частоту сигнала с генератора частоты, подавая на этот разъем какое-либо напряжение. В зависимости от того, какая будет амплитуда подаваемого напряжения, такая и будет частота на выходе генератора частоты.
TTL OUT. ТТЛ – Транзисторно-Транзисторная-Логика. OUT – выход. Этот выход предназначен для тактирования логических микросхем, построенных на так называемой транзисторно-транзисторной логике. То есть это логические элементы, которые в своем составе имеют только биполярные транзисторы и резисторы. Такие микросхемы делают в основном на питание +5 В.
Логический ноль – это уровень напряжения от 0 и до +0,5 В. Уровень логической единички от 2,4 и до +5 В. Поэтому, с этого выхода мы получаем прямоугольный периодический сигнал с чередующимися нулями и единицами: 0101010101… Частоту такого сигнала выставляем с помощью крутилки и кнопок выбора диапазона.
OUTPUT. Выход с генератора. Именно с этого разъема мы и получаем необходимый нам сигнал с генератора функций.
Также небольшой интерес могут представлять из себя кнопки
Как устроен генератор сигналов?
Устройство генерирует импульсы различной природы для замера параметров электронных приборов. Большинство генераторов работает только при наличии входного импульса, амплитуда которого постоянно меняется.
Стандартная модель сигнального генератора состоит из нескольких частей:
Смещение сигнала и его амплитуда обычно регулируются 2 кнопками. Работа с файлами происходит через мини-панель. Она дает пользователю просмотреть результаты тестирования или сохранить их для будущего анализа.
Как изменить форму сигнала
Для того, чтобы получить некоторые нестандартные сигналы, типа пилы или прямоугольных сигналов с различной скважностью, нам придется задействовать
вот эту кнопочку и крутилку
Пару слов о скважности. Это параметр применяется к прямоугольной форме сигналов.
T – период импульса, с
t – длительность импульса, с
Величина D (Duty), обратная величине S, называется коэффициентом заполнения
Иллюстрация сигналов с различным коэффициентом заполнения
На экране осциллографа это может выглядеть вот так
Можем также из треугольного сигнала получить пилообразный сигнал
Иногда требуется добавить постоянную составляющую в сигнал. Для этого используем вот эту кнопочку и крутилку.
Смысл этой операции заключается в том, что к переменному току мы добавляем постоянный ток. Если объяснить графически, то это будет выглядеть вот так.
Как вы видите, эта функция без проблем работает в этом генераторе частоты
А также мы без проблем можем замерить этим генератором частот какую-либо частоту, например, с другого генератора. Выставили 15 КГц, он нам тоже показал 15 КГц. Все работает как надо!
Генератор звуковой частоты
Схемы для начинающих
Что такое генератор звука и с чем его едят? Итак, давайте первым делом определимся со значением слова “генератор”. Генератор – от лат. generator – производитель. То есть объясняя домашним языком, генератор – это устройство, которое производит что-либо. Ну а что такое звук? Звук – это колебания, которые может различить наше ухо. Нормальный человек может слышать колебания в диапазоне частот от 16 Гц и до 20 Килогерц. Звук до 16 Герц называют инфразвуком, а звук более 20 000 Герц – ультразвуком.
Из всего вышесказанного можно сделать вывод, что генератор звука – это устройство, которое излучает какой-либо звук. Все элементарно и просто А почему бы его нам не собрать? Схему в студию!
Как мы видим, моя схема состоит из:
– конденсатора емкостью 47 наноФарад
– резистора 20 Килоом
– транзисторов КТ315Г и КТ361Г, можно с другими буквами или вообще какие-нибудь другие маломощные
– маленькая динамическая головка
– кнопочка, но можно сделать и без нее.
На макетной пл ате все это выглядит примерно вот так:
А вот и транзисторы:
Слева – КТ361Г, справа – КТ315Г. У КТ361 буква находится посередине на корпусе, а у 315 – слева.
Эти транзисторы являются комплиментарными парами друг другу.
Частоту звука можно менять, меняя значение резистора или конденсатора. Также частота увеличивается, если повышать напряжение питания. При 1,5 Вольт частота будет ниже, чем при 5 Вольтах. У меня на видео напряжение выставлено 5 Вольт.
Виды генераторов сигналов
Приборы различаются по ряду характеристик. Например, по форме сигнала (синусоидальные, прямоугольные, в виде пилы), по частоте (низкочастотные, высокочастотные), по принципу возбуждения (независимое, самовозбуждение). Однако существует несколько основных видов — о них и расскажем подробнее.
Синусоидальный
Прибор усиливает первоначальный синусоидный код в десятки раз. На выходе получается частота до 100 МГц. При этом исходный синус, как правило, не превышает 50 МГц. Генераторы синусоидального импульса активно используют при проверке блоков питания, инверторов и другой высокочастотной техники, а также радиоаппаратуры.
Генератор низкочастотный
Ниже схема самого простого низкочастотного генератора. На ней видно, что в приборе присутствуют переменные резисторы. Они позволяют корректировать форму и частоту сигнала. Изменить силу импульса можно подключенным модулятором KK202.
Такой прибор подойдет для настройки аудиоаппаратуры (звуковых усилителей, проигрывателей). Наиболее доступным вариантом низкочастотного генератора является обычный компьютер. Достаточно скачать драйверы и подключить его к аппаратуре через переходник.
Генератор звуковой частоты
Стандартная конструкция с микросхемами внутри. Напряжение подается в селектор, а сам сигнал генерируется в одной или нескольких микросхемах. Частоту можно настраивать при помощи модуляционного регулятора. Прибор отличается более обширным диапазоном частоты, чем аналоги (до 2000 кГц).
Генератор цифрового сигнала
Цифровые генераторы популярны, потому что отличаются высокой точностью. Пользоваться ими удобно, однако они нуждаются в тщательной настройке. Здесь стоят коннекторы KP300, резисторы достигают сопротивления от 4 Ом. Это позволяет добиться предельно допустимого внутреннего напряжения в схеме.
Импульсы произвольной формы
Генераторы с импульсами произвольной формы имеют повышенную точность. Погрешность минимальная — до 3%. Выходной импульс подвергается тонкой регулировке с применением шестиканального селектора. Прибор вырабатывает частоту от 70 Гц.
Устройства делят по степени синхронизации. Зависит она от типа коннектора, который установлен в прибор. Поэтому сигнал может усиливаться за 15-40 ньютон-секунд. Некоторые модели работают на 2 режимах – линейном и логарифмическом. Режим меняется переключателем, за счет чего корректируется амплитуда.
Контроллеры сложных сигналов
В сборке присутствуют только многоканальные селекторы, так как приборы получают импульсы сложной формы. Сигналы многократно усиливаются, режим можно изменить при помощи регулятора. Вариацией такого прибора считается DDS (устройство по схеме прямого цифрового синтеза).
Базовая плата оборудуется микроконтроллерами, которые легко снимаются и ставятся на место. В некоторых моделях можно заменить микроконтроллер одним движением. Если редактор монтированный, ограничители установить нельзя. Прибор генерирует измерительный сигнал мощностью до 2000 кГц с погрешностью до 2%.