в чем разница между синхронным и асинхронным электродвигателем

Чем отличается синхронный двигатель от асинхронного?

Отличие асинхронного электродвигателя от синхронного

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем

С виду внешне они похожи, порой даже специалист не отличит по внешним признакам синхронный электродвигатель от асинхронного. У обоих электродвигателей есть неподвижный статор, состоящий из обмоток (катушек), которые уложены в пазы сердечника, набранного из пластин, выполненных из электротехнической стали, и подвижный ротор. Кроме того, функция этих типов электродвигателей одна и та же — создание вращающегося магнитного поля статора.

Ротор синхронного двигателя имеет обмотку возбуждения с независимым питанием. Статоры синхронного и асинхронного двигателя устроены одинаково, функция в каждом случае одна и та же — создание вращающегося магнитного поля статора.

У этих двух типов двигателей разные области применения: синхронные электродвигатели отличаются гораздо большей мощностью и полезной нагрузкой, но они дороже и сложней. И поэтому асинхронные двигатели востребованы там, где достаточно их характеристик, ведь они дешевле и проще в изготовлении.

Недостатки и преимущества двигателей

Синхронные двигатели

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателемв чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателемв чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем

Синхронные двигатели имеют довольно сложную конструкцию, обусловленную наличием щеточного узла. Кроме того, для их работы требуется дополнительный источник постоянного тока. Еще одним недостатком является невозможность их эксплуатации в условиях частых пусков и остановов. Однако все это компенсируется большой мощностью, высоким КПД, устойчивостью к перепадам напряжения в питающей сети и стабильной частотой вращения вала, вне зависимости от величины нагрузки на него.

Синхронные электрические машины рентабельны при мощностях свыше 100 кВт и основное применение находят для вращения мощных вентиляторов, на различных металлургических производствах, для привода насосов, которые обладают не только значительной мощностью, но и долгим режимом функционирования т.д.

Асинхронный двигатель

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателемв чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателемв чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем

Асинхронный двигатель в отличие от синхронных машин более чувствителен к колебаниям напряжения и не может сохранять номинальную скорость вращения, при увеличении нагрузки. В большинстве случаев недостатки компенсируются путем применения преобразователей частоты и других устройств пуска. Но простота конструкции, длительный срок эксплуатации, универсальность применения, способность работать в режиме частых включений и остановок делают эти машины наиболее распространенными в промышленном и бытовом секторе.

Источник

Чем асинхронные двигатели отличаются от синхронных

В данной статье рассмотрим принципиальные отличия синхронных электродвигателей от асинхронных, чтобы каждый читающий эти строки мог бы эти различия четко понимать.

Асинхронные электродвигатели более широко распространены сегодня, однако в некоторых ситуациях синхронные двигатели оказываются более подходящими, более эффективными для решения конкретных промышленных и производственных задач, об этом будет рассказано далее.

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем

Прежде всего давайте вспомним, что же вообще такое электродвигатель. Электродвигателем называется электрическая машина, предназначенная для преобразования электрической энергии в механическую энергию вращения ротора, и служащая в качестве привода для какого-нибудь механизма, например для приведения в действие подъемного крана или насоса.

Еще в школе всем рассказывали и показывали, как два магнита отталкиваются одноименными полюсами, а разноименными — притягиваются. Это постоянные магниты. Но существуют и переменные магниты. Каждый помнит рисунок с проводящей рамкой, расположенной между полюсами подковообразного постоянного магнита.

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем

Горизонтально расположенная рамка, если по ней пустить постоянный ток, станет поворачиваться в магнитном поле постоянного магнита под действием пары сил (Сила Ампера), пока не будет достигнуто равновесие в вертикальном положении.

Если затем по рамке пустить постоянный ток противоположного направления, то рамка повернется дальше. В результате такого попеременного питания рамки постоянным током то одного, то другого направления, достигается непрерывное вращение рамки. Рамка здесь представляет собой аналог переменного магнита.

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем

Приведенный пример с вращающейся рамкой в простейшей форме демонстрирует принцип работы синхронного электродвигателя. У любого синхронного электродвигателя на роторе есть обмотки возбуждения, на которые подается постоянный ток, формирующий магнитное поле ротора. Статор же синхронного электродвигателя содержит обмотку статора, для формирования магнитного поля статора.

При подаче на обмотку статора переменного тока, ротор придет во вращение с частотой, соответствующей частоте тока в обмотке статора. Частота вращения ротора будет синхронна частоте тока обмотки статора, поэтому такой электродвигатель называется синхронным. Магнитное поле ротора создается током, а не индуцируется полем статора, поэтому синхронный двигатель способен держать синхронные номинальные обороты независимо от мощности нагрузки, разумеется, в разумных пределах.

Асинхронный электродвигатель в свою очередь отличается от синхронного. Если вспомнить рисунок в рамкой, и рамку просто накоротко замкнуть, то при вращении магнита вокруг рамки, индуцируемый в рамке ток создаст магнитное поле рамки, и рамка будет стремиться догнать магнит.

Частота вращения рамки под механической нагрузкой будет всегда меньше частоты вращения магнита, и частота не будет поэтому синхронной. Этот простой пример демонстрирует принцип действия асинхронного электродвигателя.

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем

В асинхронном электродвигателе вращающееся магнитное поле формируется переменным током обмотки статора, расположенной в его пазах. Ротор типичного асинхронного двигателя обмоток как таковых не имеет, вместо этого на нем расположены накоротко соединенные стержни (ротор типа «беличья клетка»), такой ротор называется короткозамкнутым ротором. Бывают еще асинхронные двигатели с фазным ротором, там ротор содержит обмотки, сопротивление и ток в которых можно регулировать реостатом.

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем

Итак, в чем же принципиальное отличие асинхронного электродвигателя от синхронного? С виду внешне они похожи, порой даже специалист не отличит по внешним признакам синхронный электродвигатель от асинхронного. Главное же отличие заключается в устройстве роторов. Ротор асинхронного электродвигателя не питается током, а полюса на нем индуцирутся магнитным полем статора.

Ротор синхронного двигателя имеет обмотку возбуждения с независимым питанием. Статоры синхронного и асинхронного двигателя устроены одинаково, функция в каждом случае одна и та же — создание вращающегося магнитного поля статора.

Обороты асинхронного двигателя под нагрузкой всегда на величину скольжения отстают от вращения магнитного поля статора, в то время как обороты синхронного двигателя равны по частоте «оборотам» магнитного поля статора, поэтому если обороты должны быть постоянными при различных нагрузках, предпочтительней выбирать синхронный двигатель, например в приводе гильотинных ножниц лучше всего справится со своей задачей мощный синхронный двигатель.

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем

Некоторые компрессоры и насосы требуют постоянной частоты вращения при любой нагрузке, на такое оборудование ставят синхронные электродвигатели.

Синхронные двигатели дороже в производстве, чем асинхронные, поэтому если есть возможность выбора и небольшое снижение оборотов под нагрузкой не критично, приобретают асинхронный двигатель.

Синхронные электродвигатели широко применяются в электроприводах, не требующих регулирования частоты вращения. По сравнению с асинхронными двигателями они имеют ряд преимуществ:

более высокий коэффициент полезного действия;

возможность изготовления двигателей с низкой частотой вращения, что позволяет отказаться от промежуточных передач между двигателем и рабочей машиной;

частота вращения двигателя не зависит от нагрузки па его валу;

возможность использования в качестве компенсирующих устройств реактивной мощности.

Синхронные электродвигатели могут являться потребителями и генераторами реактивной мощности. Характер и значение реактивной мощности синхронного двигателя зависят от величины тока в обмотке возбуждения. Зависимость тока в обмотке, выдающей напряжение в электрическую сеть, от тока возбуждения носит название U-образной характеристики синхронного двигателя. При 100%-ной нагрузке на валу двигателя его косинус фи равен 1. При этом электродвигатель не потребляет реактивной мощности из электрической сети. Ток в обмотке статора при этом имеет минимальное значение.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Чем отличается синхронный двигатель от асинхронного

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем

Электрический двигатель — это устройство, обеспечивающее преобразование электрической энергии в механическую. Конструктивно агрегат состоит из статора (фиксирован) и ротора (вращается). Первый создает магнитный поток, а второй крутится под действием электродвижущей силы (ЭДС).

Отличие – кратко простыми словами

Если говорить кратко и простыми словами, синхронный и асинхронный двигателя отличаются конструкцией роторов. Внешне понять какой перед вами электродвигатель практически невозможно, за исключением наличия дополнительных ребер охлаждения у асинхронных электродвигателей.

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем

В устройстве, работающем на синхронном принципе, на роторе предусмотрена обмотка с независимой подачей напряжения.

У асинхронного мотора ток на ротор не подается, а формируется с помощью магнитного статорного поля. При этом статоры обоих агрегатов идентичны по конструкции и несут аналогичную функцию — создание магнитного поля.

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем

Дополнительно в синхронном двигателе магнитные поля статора и ротора взаимодействуют друг с другом и имеют равную скорость.

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем

У асинхронных агрегатов в роторных пазах имеются короткозамкнутые пластинки из металла или контактные кольца, обеспечивающие разность магнитного поля роторного и статорного механизма на величину скольжения.

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем

Несмотря на видимую простоту, разобраться с этим вопросом сразу вряд ли получится, поэтому рассмотрим вопрос более подробно. Поговорим об особенностях и отличиях асинхронных и синхронных машин.

Синхронный двигатель (СД)

Синхронный двигатель — агрегат с индивидуальной конструкцией ротора и индуктором с постоянными магнитами. Отличается улучшенными характеристиками мощности, момента и инерции. Имеет ряд особенностей конструкции и принципе действия.

Устройство

Конструктивно состоит из двух элементов: ротора (вращается) и статора (фиксированный механизм). Роторный узел находится во внутренней части статора, но бывают конструкции, когда ротор расположен поверх статора.

В состав ротора входят постоянные магниты, отличающиеся повышенной коэрцитивной силой.

Конструктивно СД делятся на два типа по полюсам:

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем

Конструктивно роторы бывают разными устройством и по конструкции.

В частности, магниты бывают:

Статор условно состоит из двух компонентов:

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем

Обмотка статорного механизма бывает двух видов:

Форма электродвижущей силы электрического синхронного мотора бывает в виде:

Если говорить в целом, синхронный мотор состоит из следующих элементов:

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем

Принцип работы

Сначала к обмоткам возбуждения подводится постоянный ток. Он создает магнитное поле в роторной части. Статор устройства содержит обмотку для создания магнитного поля.

Как только на статорную обмотку подается ток переменной величины, по закону Ампера создается крутящий момент, и ротор начинает вращаться с частотой, равной частоте тока в статорном узле. При этом оба параметра идентичны, поэтому и двигатель носит название синхронный.

Роторная ЭДС формируется, благодаря независимому источнику питания, что позволяет менять обороты и не привязываться к мощности подключенных потребителей.

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем

С учетом особенностей работы синхронный электродвигатель не может запуститься самостоятельно при подключении к трехфазному источнику тока.

Сфера применения

Электродвигатель синхронного типа имеет широкую сферу применения, благодаря постоянству частоты вращения.

Эта особенность расширяет сферу его применения:

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем

Преимущества и недостатки

После рассмотрения конструктивных особенностей, принципа работы и сферы применения СД подведем итог по положительным / отрицательным особенностям.

Пример СД2-85/37-6У3, 500кВт, 1000об/мин, 6000В.

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем СД2-85/37-6У3, 500кВт, 1000об/мин, 6000В

Асинхронный двигатель (АД)

Асинхронный (индукционный) электродвигатель, имеющий разную частоту вращения магнитного поля в статоре и скорости ротора. В зависимости от типа и настройки может работать в двигательном или генераторном режиме, режиме ХХ или электромагнитного тормоза.

Конструктивные особенности

Конструктивно асинхронные механизмы трудно отличить от синхронных. Они также состоят из двух основных узлов: статора и ротора. При этом роторный узел может быть фазным или короткозамкнутым. Но небольшие конструктивные отличия все-таки имеются.

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем

Рассмотрим, из чего состоит асинхронный двигатель:

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем

С учетом сказанного одним из главных отличий является отсутствие обмоток на якоре (исключением являются фазные АД). Вместо обмотки в роторе находятся стержни, закороченные между собой.

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем

Принцип действия

В асинхронном двигателе магнитное поле создается, благодаря току в статорной обмотке, находящейся на специальных пазах. На роторе, как отмечалось выше, обмоток нет, а вместо них накоротко объединенные стержни. Такая особенность характерна для короткозамкнутого роторного механизма.

Во втором типе ротора (фазном) на роторе предусмотрены обмотки, ток и сопротивление которых могут регулироваться реостатным узлом.

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем

Простыми словами, принцип действия можно разложить на несколько составляющих:

Сфера применения

Асинхронные электромоторы пользуются большим спросом в быту, благодаря простоте конструкции и надежности в эксплуатации.

Они часто применяются в бытовой аппаратуре:

Также применяются они и в производстве, где подключаются к 3-фазной сети.

К этой категории относятся следующие механизмы:

Асинхронные машины применяются в электрическом транспорте и других сферах. Они нашли применение в башенных кранах, лифтах и т. д.

Пример Трехфазный АИР 315S2 660В 160кВт 3000об/мин.

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем Трехфазный АИР 315S2 660В 160кВт 3000об/мин

Преимущества и недостатки

Электродвигатель асинхронного типа имеет слабые и сильные места, о которых необходимо помнить.

Сравнение синхронного и асинхронного двигателей

В завершение можно подвести итог, в чем главные отличия асинхронных (АД) и синхронных (СД) моторов.

Выделим базовые моменты:

Про реактивную мощность

Синхронные электродвигатели генерируют и одновременно потребляют реактивную мощность. Особенности и параметры «реактива» зависит от тока в возбуждающей обмотке. При полной нагрузке косинус Фи равен 1. В таком режим СД не потребляет «реактив» из сети, а ток в статорной обмотке минимален.

Здесь важно понимать, что реактивная мощность ухудшает параметры энергосистемы. Большой параметр неактивных токов приводит к повышению расхода топлива, увеличению потерь и снижению напряжения.

Кроме того, «реактив» грузит линии передач электроэнергии, что ведет к необходимости увеличения сечения кабелей и проводов, а, соответственно, повышению капитальных расходов.

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем

Сегодня одна из главных задач энергетиков — компенсация реактивной мощности. К основным ее потребителям относят АД, потребляющие 40% «реактива», электрические печи, преобразователи, ЛЭП и силовые трансформаторы.

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем

Какой лучше

При сравнении асинхронного и синхронного электродвигателей трудно ответить, какой лучше. По конструкции и надежности выигрывает АД, который при умеренной нагрузке имеет более продолжительный срок службы. У СД щетки быстро изнашиваются, что требует их замены.

В остальном это два схожих по конструкции, но отличающихся по принципу действия механизма, имеющих индивидуальные сферы применения.

Источник

Асинхронные и синхронные двигатели

Содержание

Чтобы производственные механизмы работали с максимальной эффективностью, необходимо правильно подобрать электрический двигатель, который будет применяться в качестве привода. В этой статье мы рассмотрим, чем отличаются асинхронные и синхронные двигатели с точки зрения конструктивных особенностей, функциональности и экономичности.

Асинхронные и синхронные двигатели: устройство

Электрические двигатели представляют собой агрегаты для преобразования электроэнергии в энергию механическую. Основу конструкции двигателя (как синхронного, так и асинхронного типа) составляют следующие элементы:

Статоры электродвигателей обеих категорий имеют схожий принцип устройства. В специальные пазы (осевые прорези) уложены токонесущие проводки из меди или алюминия. Функцией статора является создание вращающегося магнитного поля. Ротор (с обмоткой возбуждения) закреплен на валу двигателя и вращается под воздействием возникающей электродвижущей силы.

В чем ключевое отличие синхронного двигателя от асинхронного

Главное отличие синхронного от асинхронного двигателя заключается в устройстве ротора.

Роторы синхронных двигателей представляют собой постоянные или электрические магниты. Постоянное магнитное поле, создаваемое ими, взаимодействует с вращающимся магнитным полем статора.

В случае с асинхронным двигателем (который также называют индукционным) в пазы ротора вставляются короткозамкнутые металлические пластины. Кроме короткозамкнутой разновидности, применяются также фазные роторы, снабженные контактными кольцами, которые после разбега замыкаются накоротко.

В результате соотношение частоты оборотов двигателя, находящегося под нагрузкой, с частотой вращения, которая присуща магнитному полю статора, для разных типов двигателя следующее:

На основе понимания того, чем отличается асинхронный двигатель от синхронного, можно сформулировать главные преимущества и недостатки этих двигателей.

Сравнение разных типов двигателей

Двигатели синхронной разновидности сложнее в использовании, поскольку они:

Для асинхронных моделей характерны:

При этом синхронные двигатели обладают более широкими возможностями с точки зрения коэффициента мощности, а также менее чувствительны к перепадам напряжения, но стоимость таких агрегатов выше, что делает их использование менее выгодным.

Источник

Асинхронный и синхронный электродвигатель в чем разница

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем

Существуют различные виды электродвигателей, и очень часто возникает вопрос, в чем же отличия между синхронным и асинхронным двигателем. В асинхронном обмотки, расположенные в статоре, создают вращающееся магнитное поле, взаимодействующее с токами, образующимися в роторе, благодаря чему он приходит во вращающееся состояние. Поэтому, в настоящее время, наиболее популярным считается простой и надежный асинхронный электродвигатель, имеющий короткозамкнутый ротор.

Что представляет собой синхронный двигатель?

принято относить электродвигатели, которые функционируют на переменном токе и имеют ротор с частотой вращения, совпадающей с частотой оборотов магнитного поля в конструкции агрегата.

Ключевые элементы синхронного электродвигателя:

Первый элемент агрегата располагается на статоре. Индуктор размещается на роторе, который отделен от статора воздушной прослойкой. Структура якоря представлена обмоткой (одной или несколькими). Токи, которые подаются в соответствующий элемент двигателя, формируют магнитное поле, вращающееся с заданной частотой и взаимодействующее с полем индуктора. Индуктор включает 2 полюса — в виде постоянных магнитов.

Синхронный агрегат может функционировать в двух режимах:

Первый режим работы предполагает взаимодействие магнитного поля, формирующегося на якоре, и поля, которое образуется на полюсах индуктора. Синхронный двигатель в режиме генератора функционирует за счет электромагнитной индукции: в процессе вращения ротора магнитное поле, которое формируется на обмотке, по очереди взаимодействует с фазами обмотки на статоре, вследствие чего образуется электродвижущая сила.

Что представляет собой асинхронный электродвигатель?

принято относить электродвигатели, в которых частота вращения одного из ключевых элементов — ротора — не совпадает с частотой оборотов магнитного поля, формирующегося током, который возникает на обмотке статора. Асинхронные агрегаты иногда именуются индукционными. Это обусловлено тем, что в обмотке ротора осуществляется индуцирование тока при воздействии магнитного поля статора.

В конструкции асинхронного электродвигателя присутствуют статор и ротор, которые разделены воздушной прослойкой. Основные активные элементы агрегата:

Важную роль в функционировании асинхронного двигателя играют дополнительные конструктивные элементы, которые обеспечивают прочность, охлаждение и устойчивость работы агрегата.

Скорость вращения поля статора

При питании обмотки статора трёхфазным (в общем случае — многофазным) током создаётся вращающееся магнитное поле, синхронная частота вращения n 1 <\displaystyle n_<1>> [об/мин] которого связана с частотой питающего напряжения сети f <\displaystyle f>[Гц] соотношением:

где p <\displaystyle p>— число пар магнитных полюсов обмотки статора.

В зависимости от количества числа пар полюсов возможны следующие значения частот вращения магнитного поля статора, при частоте питающего напряжения сети 50 Гц:

n, об/минp
30001
15002
10003
30010

Большинство двигателей имеют 1-3 пары полюсов, реже 4. Большее число полюсов используется очень редко, такие машины имеют низкий КПД и коэффициент мощности, однако позволяют обойтись без редуктора там, где нужна невысокая частота вращения. Например, существуют даже 34-полюсные двигатели 2АСВО710L-34У1 для привода вентиляторов градирен (синхронная частота 176,5 оборотов в минуту).

Сравнение

Главное отличие синхронного двигателя от асинхронного заключается в соотношении величины частот вращения ротора и магнитного поля. В агрегате первого типа оба показателя одинаковые. В асинхронной машине — разные.

Можно отметить, что электродвигатели второго типа в целом более распространены, чем первые. При этом асинхронные агрегаты чаще всего представлены в разновидности, в которой инсталлирован короткозамкнутый ротор. Данные устройства имеют ряд важнейших преимуществ перед электродвигателями иных категорий. А именно:

Вместе с тем асинхронные машины с короткозамкнутым ротором обладают и рядом недостатков. А именно:

В свою очередь, у синхронных агрегатов также есть неоспоримые достоинства. К таковым можно отнести:

Есть у синхронных двигателей и недостатки:

Отмеченные особенности работы синхронных и асинхронных агрегатов делают оптимальным использование первых в случае, если требуемая мощность двигателя в системе (например, как части инфраструктуры фабричной линии) должна составлять порядка 100 кВт и более. В остальных случаях задействование асинхронных машин, как правило, становится более предпочтительным.

Рассмотрев, в чем разница между синхронным и асинхронным двигателем, отразим выводы в таблице.

Прежде чем разобраться, в чём их отличие, необходимо выяснить, что такое электродвигатель? Электродвигатель – это электрическая машина, которая приводится в действие от электроэнергии и служит приводом для других механизмов.

История

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем
Модель индукционного (двухфазного) двигателя Н. Теслы. Музей Николы Теслы, Белград.

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем
Первый трёхфазный асинхронный двигатель, изобретённый Доливо-Добровольским. Немецкий музей (Мюнхен).

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем
Трёхфазный асинхронный двигатель Н. Теслы. Музей Николы Теслы, Белград.
В 1888 году Галилео Феррарис опубликовал свои исследования в статье для Королевской академии наук в Турине (в том же году Тесла получил патент США[4]), в которой изложил теоретические основы асинхронного двигателя[5]. Заслуга Феррариса в том, что, сделав ошибочный вывод о небольшом КПД асинхронного двигателя и о нецелесообразности применения систем переменного тока, он привлек внимание многих инженеров к проблеме совершенствования асинхронных машин. Статья Галилео Феррариса, опубликованная в журнале «Атти ди Турино», была перепечатана английским журналом и в июле 1888 года попала на глаза выпускнику Дармштадтского высшего технического училища, выходцу из Российской Империи Михаилу Осиповичу Доливо-Добровольскому. Уже в 1889 году Доливо-Добровольский получил патент на трехфазный асинхронный двигатель с короткозамкнутым ротором типа «беличье колесо» (германский патент № 51083 от 8 марта 1889 года под названием «Anker für Wechselstrommotoren»), а в 1890-м — патенты в Англии № 20425 и Германии № 75361 на фазный ротор с кольцами и пусковыми устройствами. Данные изобретения открыли эру массового промышленного применения электрических машин. В 1903 году в Новороссийске построен элеватор с первой в мире промышленной сетью переменного трехфазного тока, все установки которой изготовлены под руководством Доливо-Добровольского. На данном элеваторе, также впервые в мире, применены трехфазные трансформаторы и асинхронные двигатели с фазным ротором. В настоящее время асинхронный двигатель Доливо-Добровольского является самым распространенным электродвигателем[источник не указан 220 дней

Объяснение принципа работы синхронного электродвигателя для «чайников»

С детства мы помним, что два магнита, если их приблизить друг к другу, в одном случае притягиваются, а в другом отталкиваются. Происходит это, в зависимости от того, что какими сторонами магнитов мы их соединяем, разноимённые полюса притягиваются, а одноимённые отталкиваются. Это – постоянные магниты, у которых магнитное поле присутствует постоянно. Существуют и переменные магниты.

В школьном учебнике по физике есть рисунок, где изображён электромагнит в виде подковы и рамка с полукольцами на концах, которая расположена между его полюсами.

При расположении рамки в горизонтальном положении в пространстве между полюсами магнитов, из-за того, что магнит притягивает разноимённые полюса и отталкивает одноимённые, на рамку подаётся ток, одинакового знака. Вокруг рамки появляется электромагнитное поле (вот пример переменного магнита!), полюса магнитов притягивают рамку, и она поворачивается в вертикальное положение. При достижении вертикали, на рамку подаётся ток противоположного знака, электромагнитное поле рамки меняет полюсность, и полюса постоянного магнита начинают отталкивать рамку, вращая её до горизонтального положения, после чего цикл вращения повторяется.

В этом заключается принцип работы электродвигателя. Причём, примитивного синхронного электродвигателя!

Итак, примитивный синхронный электродвигатель работает, когда на рамку подаётся ток. У настоящего синхронного электродвигателя, роль рамки выполняет ротор с катушками проводов, называемых обмотками, на которые подаётся ток (они служат источниками электромагнитного поля). А роль подковообразного магнита выполняет статор, изготовленный либо из набора постоянных магнитов, либо тоже из катушек проводов (обмоток), которые, при подаче тока являются также источниками электромагнитного поля.

Ротор синхронного электродвигателя будет вращаться с такой же частотой, с какой меняется ток, подаваемый на клеммы обмотки, т.е. синхронно. Отсюда название этого электродвигателя.

Объяснение принципа работы асинхронного электродвигателя для «чайников»

Вспоминаем описание рисунка в предыдущем примере. Та же рамка, расположенная между полюсами подковообразного магнита, только её концы не имеют полуколец, они соединены между собой.

Теперь начинаем вращать вокруг рамки подковообразный магнит. Вращаем его медленно и наблюдаем за поведением рамки. До некоторых пор рамка остаётся неподвижной, а потом, при повороте магнита на определённый угол, рамка начинает вращение вслед за магнитом. Вращение рамки запаздывает по сравнению со скоростью вращения магнита, т.е. она вращается не синхронно с ним – асинхронно. Вот и получается, что это примитивный асинхронный электродвигатель.

Вообще-то роль магнитов в настоящем асинхронном двигателе служат обмотки, расположенные в пазах статора, на которые подаётся ток. А роль рамки, выполняет ротор, в пазы которого вставлены металлические пластины, соединённые между собой на коротко. Поэтому такой ротор называется короткозамкнутым.

В чём же отличия синхронного и асинхронного электродвигателей?

Если поставить рядом два современных электродвигателя одного и другого типа, то по внешним признакам их отличить трудно даже специалисту.

По существу, их главное отличие рассмотрено в приведённых примерах принципов работы этих электродвигателей. Они отличаются по конструкции роторов

. Ротор синхронного электродвигателя состоит из обмоток, а ротор асинхронного представляет собой набор пластин.

Статоры одного и другого электродвигателей почти неотличимы и представляют собой набор обмоток, однако, статор синхронного электродвигателя может быть набран из постоянных магнитов.

Обороты синхронного двигателя соответствуют частоте подаваемого на него тока, а обороты асинхронного несколько отстают от частоты тока.

Отличаются они и по сферам применения

. Например, синхронные электродвигатели ставят для привода оборудования, которое работает с постоянной скоростью вращения (насосы, компрессоры и т.д.) не снижая её с увеличением нагрузки. А вот асинхронные электродвигатели снижают частоту вращения при увеличении нагрузки.

Синхронные электродвигатели конструктивно сложней, а значит, и дороже асинхронных электродвигателей.

Ротор движется «сам по себе». В нем изначально нет ни магнитного поля, на него не подается никакого электрического напряжения. Он даже не обязан быть сделанным из железа — магнитного металла. Ну а вот, поди ж ты, стоит подключить к двигателю трехфазное напряжение, и ротор закрутился. Безо всякого подталкивания. Но по-своему.

Чем синхронный от асинхронного двигателя отличается

Основное отличие в том, что у асинхронного двигателя скорость вращения ротора всегда меньше, скорости вращения магнитного поля в то время как у синхронного же двигателя скорость ротора или равна или в особенных случаях конструкции кратна скорости ротора. А так много отличий на самомм деле, но это самые основные из-за них они собственно говоря так и называются.

двигатели имеют простую конструкцию и надежны в эксплуатации. Недостатком асинхронных двигателей является трудность регулирования их частоты вращения. Чтобы реверсировать трехфазный асинхронный двигатель (изменить направление вращения двигателя на противоположное), необходимо поменять местами две фазы, то есть поменять местами два любых линейных провода, подходящих к обмотке статора двигателя. Т.е это достаточно дешевый двигатель/, который применяется везде, синхронную машину найти крайне тяжело.

В отличие от асинхронного двигателя частота вращения синхронного

двигателя постоянная при различных нагрузках. Синхронные двигатели находят применение для привода машин постоянной скорости (насосы, компресоры, вентиляторы) ими легко управлять. Отличить можно по количеству оборотав на табличке (если там явно неуказан тип машины), у ассинхронников не круглое число оборотов, 950 об/мин у синхронной машины 1000 об/мин.

Два вида электродвигателей переменного тока

Асинхронные двигатели — наивная простота

Ротор то догоняет волну, то слегка отстает, потому что синхронно с ней бежать просто не может. Такое явление назвали «скольжением», догнав бегущее магнитное поле, ротор с беличьей клеткой теряет магнитную индукцию и дальше некоторое время просто скользит по инерции. А когда трение или нагрузка вынуждают его отстать от бегущего поля, он опять «почувствует» в себе изменения силовых линий обгоняющего его поля и снова обретет индукцию, а вместе с этим и силы двигаться.

То есть, ротор слегка проскальзывает: то догоняет бегущее равномерно по кругу магнитное поле, то «забывает, зачем бежал» и слегка приотстает, то снова «спохватывается» и опять стремится догнать. Постепенно эти отклонения стабилизируются — в зависимости от трения в подшипниках и величины нагрузки на вал — и асинхронный двигатель начинает работать просто со скоростью вращения, чуть меньшей частоты напряжения на статоре. Эта разница частот и называется частотой скольжения.

Двигатели синхронные: сложное в простом

Для того, чтобы ротор был связан с бегущей волной магнитного поля катушек статора жестким образом, придумали электродвигатель синхронный. А проблема решается просто. В роторе вместо изменяющегося магнитного поля от короткозамкнутых токов беличьей клетки нужно использовать постоянные магниты и их магнитное поле.

Вариантов два. Или это поле от постоянного магнита, закрепленного в роторе, или это поле от электромагнитов, установленных в роторе вместо такого магнита.

Обычный магнит, конечно, проще. Но тогда для стандартного функционирования таких электромоторов нужно, чтобы на них на всех — а используются тысячи электромоторов — магниты были строго одинаковы. Иначе параметры движения будут разными, а магниты еще имеют свойство размагничиваться.

Электромагнит, установленный в роторе двигателя, легче заставить вырабатывать поле нужного качества, но требуется электрический ток для его работы. Такой ток, который называется током возбуждения, в свою очередь нужно где-то брать и как-то на ротор подавать.

1 – ротор, 2 – коллектор возбуждения

Отсюда и происходит некоторое разнообразие конструкций синхронных двигателей. Но важнее всего то, что синхронные двигатели крутят свой вал строго синхронно частоте бегающего по кругу поля катушек статора, то есть скорость их вращения точно равна — или кратна (если обмоток статора больше трех) — частоте переменного тока в питающей сети.

Однако кроме всего прочего, синхронный двигатель обладает свойством полной обратимости. Потому что синхронный электродвигатель — это тот же самый генератор электрического тока, но работающий «в обратную сторону». В генераторе некоторая механическая сила вращает вал с ротором, и от этого в обмотках статора возникает наведенное электрическое напряжение от вращающегося магнитного поля ротора. А отличие синхронного двигателя от генератора в том, что напряжение в катушках статора порождает бегающее по кругу магнитное поле, которое, взаимодействуя с постоянным магнитным полем ротора, толкает его, чтобы ротор тоже вращался.

Только если в генераторе вращению ротора можно механически придать любую скорость, и от этого будет изменяться частота переменного тока, им генерируемого, то в синхронном двигателе такой роскоши нет. Синхронный двигатель вращается со скоростью изменения напряжения в сети, а оно у нас выдерживается строго в 50 герц.

Режимы работы

в чем разница между синхронным и асинхронным электродвигателем. Смотреть фото в чем разница между синхронным и асинхронным электродвигателем. Смотреть картинку в чем разница между синхронным и асинхронным электродвигателем. Картинка про в чем разница между синхронным и асинхронным электродвигателем. Фото в чем разница между синхронным и асинхронным электродвигателем
Механическая характеристика асинхронной машины: а — режим рекуперации энергии в сеть (генераторный режим), б — двигательный режим, в — режим противовключения (режим электромагнитного тормоза).

Двигательный режим

Если ротор неподвижен или частота его вращения меньше синхронной, то вращающееся магнитное поле пересекает проводники обмотки ротора и индуцирует в них ЭДС, под действием которой в обмотке ротора возникает ток. На проводники с током этой обмотки (а точнее, на зубцы сердечника ротора), действуют электромагнитные силы; их суммарное усилие образует электромагнитный вращающий момент, увлекающий ротор вслед за магнитным полем. Если этот момент достаточен для преодоления сил трения, ротор приходит во вращение, и его установившаяся частота вращения n 2 <\displaystyle n_<2>> [об/мин] соответствует равенству электромагнитного момента тормозному, создаваемого нагрузкой на валу, силами трения в подшипниках, вентиляцией и т. д. Частота вращения ротора не может достигнуть частоты вращения магнитного поля, так как в этом случае угловая скорость вращения магнитного поля относительно обмотки ротора станет равной нулю, магнитное поле перестанет индуцировать в обмотке ротора ЭДС и, в свою очередь, создавать вращающий момент; таким образом, для двигательного режима работы асинхронной машины справедливо неравенство:

Этот режим применяют кратковременно, так как при нём в роторе выделяется много тепла, которое двигатель не способен рассеять, что может вывести его из строя.

Для более мягкого торможения может применяться генераторный режим, но он эффективен только при оборотах, близких к номинальным.

Отличия и недостатки этих двигателей

Отличия синхронного и асинхронного двигателей ясны из их названий. Собственно, плюсы имеют и тот, и другой вариант конструкции. Ниже перечислены плюсы, которыми отличаются оба двигателя — синхронный и асинхронный.

Асинхронный двигатель отличается от синхронного следующими параметрами:

Отличия синхронного двигателя от асинхронного заключаются в следующем:

Но у каждого имеются и присущие только ему недостатки.

Асинхронный имеет следующие отрицательные черты:

Недостатки синхронного двигателя:

Несмотря на различия, оба электрических двигателя нашли себе применение в технике и используются в самых разных исполнениях и размерах.

Трёхфазные машины переменного тока. Они есть двух видов — асинхронные и синхронные. В этой статье рассказывается в чём сходство и различие между машинами обоих типов и область их применения.

Принцип действия и устройство электромашин разных типов

Асинхронные и синхронные электродвигатели похожи по конструкции, но есть и отличия.

Устройство и принцип действия асинхронных электродвигателей

Это самые распространённые машины переменного тока. Такие электродвигатели состоят из трёх основных частей:

В пазах статора со сдвигом 120° намотаны три обмотки. При подключении к трёхфазной сети в статоре наводится вращающееся магнитное поле. Скорость вращения называется «синхронная скорость».

Справка! В однофазных электродвигателях вращающееся поле создаётся дополнительной обмоткой или конструктивными особенностями статора.

Это поле наводит ЭДС в роторе, возникающий при этом ток создаёт своё поле, взаимодействующее с полем статора и приводящее его в движение. Скорость вращения ротора меньше синхронной скорости. Эта разница называется скольжение.

Рассчитывается скольжение по формуле S=(n1-n2)/n1*100%, где: · n1 — синхронная скорость; · n2 — скорость вращения ротора.

на скольжения в обычных электромоторах 1-8%. При увеличении нагрузки на валу двигателя скольжение и вращающий момент растут до критической величины, при достижении которой двигатель останавливается.

В электродвигателях с фазным ротором вместо беличьей клетки в пазах ротора намотаны три обмотки. Через токосъёмные кольца и щётки они подключаются к добавочным сопротивлениям. Эти сопротивления ограничивают ток и магнитное поле в роторе. Это увеличивает скольжение и уменьшает скорость двигателя.

Такие аппараты используются при тяжёлом пуске и в устройствах с регулировкой скорости, например, в мостовых кранах.

Принцип действия синхронных электродвигателей

Эти двигатели устроены сложнее и дороже асинхронных машин. Их достоинство в постоянной скорости вращения, не меняющейся при нагрузке.
Статор синхронной машины не отличается от асинхронной. Отличие в роторе. В отличие от асинхронного двигателя, вращение осуществляется за счёт взаимодействия вращающегося магнитного поля статора и постоянного поля ротора. Для его создания в роторе находятся электромагниты. Напряжение к катушкам подводится при помощи токосъёмных колец и графитных щёток.

Справка! В роторе синхронных машин малой мощности вместо электромагнитов установлены постоянные или просто магнитопровод имеет явновыраженные полюса. Скольжение, как в асинхронных машинах, отсутствует, и частота вращения определяется только частотой питающего напряжения.

Конструкция

Асинхронная машина имеет статор и ротор, разделённые воздушным зазором. Её активными частями являются обмотки и магнитопровод (сердечник); все остальные части — конструктивные, обеспечивающие необходимую прочность, жёсткость, охлаждение, возможность вращения и т. п.

Обмотка статора представляет собой трёхфазную (в общем случае — многофазную) обмотку, проводники которой равномерно распределены по окружности статора и пофазно уложены в пазах с угловым расстоянием 120 °. Известна и совмещённая обмотка, позволяющая повысить КПД двигателя[6]. Фазы обмотки статора соединяют по стандартным схемам «треугольник» или «звезда» и подключают к сети трёхфазного тока. Магнитопровод статора перемагничивается в процессе изменения тока в обмотке статора, поэтому его набирают из пластин электротехнической стали для обеспечения минимальных магнитных потерь. Основным методом сборки магнитопровода в пакет является шихтовка.

По конструкции ротора асинхронные машины подразделяют на два основных типа: с короткозамкнутым

ротором и с
фазным
ротором. Оба типа имеют одинаковую конструкцию статора и отличаются лишь исполнением обмотки ротора. Магнитопровод ротора выполняется аналогично магнитопроводу статора — из пластин электротехнической стали.

Асинхронный двигатель с короткозамкнутым ротором

Ротор асинхронной машины типа «беличье колесо»
Короткозамкнутая обмотка ротора, часто называемая «беличье колесо» («беличья клетка») из-за внешней схожести конструкции, состоит из алюминиевых (реже медных, латунных) стержней, замкнутых накоротко с торцов двумя кольцами. Стержни этой обмотки вставляют в пазы сердечника ротора. Сердечники ротора и статора имеют зубчатую структуру. В машинах малой и средней мощности обмотку обычно изготавливают путём заливки расплавленного алюминиевого сплава в пазы сердечника ротора. Вместе со стержнями «беличьего колеса» отливают короткозамыкающие кольца и торцевые лопасти, осуществляющие вентиляцию машины. В машинах большой мощности «беличье колесо» выполняют из медных стержней, концы которых соединяют с короткозамыкающими кольцами при помощи сварки.

Зачастую пазы ротора или статора делают скошенными для уменьшения высших гармонических ЭДС, вызванных пульсациями магнитного потока из-за наличия зубцов, магнитное сопротивление которых существенно ниже магнитного сопротивления обмотки, а также для снижения шума, вызываемого магнитными причинами.

Для улучшения пусковых характеристик асинхронного электродвигателя с короткозамкнутым ротором, а именно, увеличения пускового момента и уменьшения пускового тока, на роторе ранее применялась так называемая «двойная беличья клетка» из стержней с разными удельными проводимостями, позже стали применять роторы со специальной формой паза (глубокопазные роторы). При этом внешняя от оси вращения часть паза ротора имеет меньшее сечение, чем внутренняя. Это позволяет использовать эффект вытеснения тока, за счет которого увеличивается активное сопротивление обмотки ротора при больших скольжениях (в частности, при пуске).

Асинхронные двигатели с короткозамкнутым ротором при прямом пуске (без регулирования) имеют небольшой пусковой момент и значительный пусковой ток, что является существенным их недостатком. Поэтому их применяют в тех электрических приводах, где не требуются большие пусковые моменты. С развитием силовой полупроводниковой техники получают распространение частотные преобразователи, которые позволяют плавно наращивать частоту питающего двигатель тока по мере пуска, а значит достигать большого пускового момента. Из достоинств следует отметить лёгкость в изготовлении, и отсутствие электрического контакта с динамической частью машины, что гарантирует долговечность и снижает затраты на обслуживание. При специальной конструкции ротора, когда вращается в воздушном зазоре только полый цилиндр из алюминия, можно достичь малой инерционности двигателя.

Разновидностью АДКЗ, позволяющей ступенчато регулировать скорость, являются многоскоростные двигатели, в которых регулирование скорости производится изменением числа пар полюсов в статоре, для чего были разработаны специальные виды обмоток.

Именно асинхронные двигатели с короткозамкнутым ротором из-за своих вышеперечисленных достоинств являются основным видом двигателей в промышленном электроприводе, применение остальных видов двигателей не значительно и носит узкоспециальный характер.

Асинхронный двигатель с массивным ротором

Существует разновидность асинхронных машин с массивным ротором. Такой ротор изготавливают полностью из ферромагнитного материала, то есть фактически это стальной цилиндр. Ферромагнитный ротор одновременно выполняет роль как магнитопровода, так и проводника (вместо обмотки). Вращающееся магнитное поле индуцирует в роторе вихревые токи, которые взаимодействуя с магнитным потоком статора создают вращающий момент.

Существуют разные способы улучшения массивных роторов: припаивание медных колец по торцам, покрытие ротора слоем меди.

Отдельно можно поставить машины с полым ротором. Это может быть полый цилиндр из ферромагнитного или просто из проводящего материала.

Асинхронный двигатель с фазным ротором

Эта разновидность электродвигателя допускает плавную регулировку скорости в широких пределах. Фазный ротор имеет многофазную (как правило, трёхфазную) обмотку, обычно соединённую по схеме «звезда» и выведенную на контактные кольца. С помощью щёток, скользящих по этим кольцам, в цепь обмотки ротора включается внешняя регулирующая цепь, которая позволяет управлять скоростью ротора. Элементами данной цепи являются:

Двигатель Шраге-Рихтера

Трёхфазный коллекторный асинхронный двигатель с питанием со стороны ротора

Обращенный (питание с ротора) асинхронный двигатель, позволяющий плавно регулировать скорость от минимальной (диапазон определяется обмоточными данными добавочной обмотки, используемой для получения добавочной ЭДС, вводимой с частотой скольжения во вторичную цепь машины) до максимальной, лежащей обычно выше скорости синхронизма. Физически производится изменением раствора двойного комплекта щёток на каждую «фазу» вторичной цепи двигателя. Таким образом, переставляя при помощи механического устройства (штурвал или иное исполнительное устройство) щёточные траверсы являлось возможным весьма экономично управлять скоростью асинхронного двигателя переменного тока. Идея управления в общем предельно проста и будет реализована впоследствии в так называемых асинхронно-вентильных каскадах, где в цепь фазного ротора включали тиристорный преобразователь, работавший инвертором или в выпрямительном режиме. Сущность идеи — во вторичную цепь асинхронного двигателя вводится добавочная ЭДС изменяемой амплитуды и фазы с частотой скольжения. Задачу согласования частоты добавочной ЭДС с частотой скольжения ротора выполняет коллектор. Если добавочная ЭДС противонаправлена основной, производится вывод мощности из вторичной цепи двигателя с соответствующим уменьшением скорости машины, ограничение скорости вниз диктуется только условиями охлаждения обмоток). В точке синхронизма машины частота добавочной ЭДС равна нулю, то есть во вторичную цепь коллектором подаётся постоянный ток. В случае суммирования добавочной ЭДС с основной производится инвертирование добавочной мощности во вторичную цепь машины, и соответственно — разгон выше синхронной частоты вращения. Таким образом, результатом регулирования являлось семейство достаточно жестких характеристик с уменьшением критического момента при снижении скорости, а при разгоне выше синхронной скорости — с его пропорциональным увеличением.

Определенный интерес представляет собой работа машины с несимметричным раствором щеточных траверс. В этом случае векторная диаграмма добавочной э.д.с. двигателя получает так называемую тангенциальную составляющую, делающую возможным работу с ёмкостной реакцией на сеть.

Конструкционно двигатель представляет собой обращенную машину, где на роторе уложены две обмотки: питание с питанием с контактных колец и обмотку, соединяемую посредством двух пар щеток на «фазу» со вторичной обмоткой статора. Фактически, эти две части вторичной обмотки в зависимости от положения щеточных траверс включается то согласно друг другу, то встречно. Так осуществляется регулирование.

Наибольшее развитие такие двигатели получили в 30-е годы XX века. В Советском Союзе коллекторные машины переменного тока (КМПТ) не получили сколько-нибудь заметного распространения и развития в силу повышенных требований к изготовлению коллекторно-щёточного узла и общей высокой стоимости. На территорию СССР они проникали в основном в составе приобретённого за границей оборудования и при первой возможности заменялись менее эффективными, но более дешевыми машинами постоянного тока или асинхронными двигателями с фазным ротором.

В настоящее время двигатель Шраге представляет интерес исключительно с точки зрения истории техники.

Запуск электродвигателей

Асинхронные электрические машины мощностью до 30-50кВт запускаются прямой подачей электроэнергии. С двигателями большой мощности и синхронными машинами дело обстоит сложнее.

Пуск асинхронных двигателей большой мощности

Для запуска таких машин используются разные способы:

Пуск синхронных электромашин

В отличие от асинхронных машин, пуск которых производится взаимодействием поля статора и обмоток или беличьей клетки ротора, синхронную машину необходимо предварительно разогнать до скорости, близкой к синхронной.

Способы управления асинхронным двигателем

Под управлением асинхронным двигателем переменного тока понимается изменение частоты вращения ротора и/или его момента.

Существуют следующие способы управления асинхронным двигателем[8][9]:

Особенности и применение разных видов электродвигателей

У каждого типа двигателей есть достоинства и недостатки по сравнению с другими. Это определяет область их применения. Применение разных типов электромашин зависит от их особенностей конструкции и принципа действия.

Достоинства и использование асинхронных электродвигателей

Такие машины имеют достоинства перед синхронными аппаратами:

Кроме достоинств есть недостатки:

Используются такие машины практически везде, где необходимо приведение в движение механизма и есть трёхфазное напряжение 380 вольт.

Применение синхронных машин

Особенностью работы двигателя является равенство скорости вращения ротора и скорости вращения магнитного потока. Поэтому скорость вала двигателя не зависит и не изменяется от величины подключаемой нагрузки. Это достигается за счет того, что индуктор синхронного электродвигателя является электромагнитом, в некоторых случаях постоянным магнитом.

Количество пар полюсов ротора одинаково с числом пар полюсов у движущегося магнитного поля. Взаимное воздействие этих полюсов дает возможность выравнивания скорости ротора. На валу в этот момент может быть любая по величине нагрузка. Она не влияет на скорость вращения индуктора.

Конструктивные особенности и принцип работы

Когда двигатель после запуска начал работать, токи якоря образуют движущееся магнитное поле, его вращение дает пересечение поля индуктора. В итоге такой работы двух полей возникает энергия. Магнитное поле статора по своей сути является полем его реакции. В работе генераторов такую энергию получают с помощью индукторов.

Полюсами являются электромагниты статора, работающие на постоянном токе. Статоры синхронных моторов могут выполняться по различным схемам: неявнополюсной, а также явнополюсной. Они отличаются положением полюсов.

Для снижения магнитного сопротивления и оптимизации условий прохода магнитного поля используют сердечники из ферромагнитного материала. Они находятся в роторе и якоре. Производятся они из электротехнической стали, которая содержит большое количество кремния. Это дает возможность снизить вихревые токи и увеличить электрическое сопротивление стали.

Синхронные электродвигатели имеют в своей основе принцип взаимодействия полюсов индуктора и статора. Во время пуска двигатель ускоряется до скорости вращения магнитного потока. Только при таком условии электродвигатель начинает действовать в синхронном режиме. При таком процессе магнитные поля образуют пересечение, возникает вход в синхронизацию.

Долгое время для разгона мотора применяли отдельный пусковой двигатель. Его соединяли механическим путем с синхронным мотором. При запуске ротор мотора ускорялся и достигал синхронной скорости. Далее мотор самостоятельно втягивался в синхронное движение. При выборе мощности пускового мотора руководствовались 15% мощности от номинала разгоняемого двигателя. Этого резерва мощности было достаточно для запуска синхронного двигателя, даже при наличии небольшой нагрузки.

Такой метод разгона более сложный, значительно повышает стоимость оборудования. В современных конструкциях синхронные электродвигатели не имеют такой схемы разгона. Применяют другую систему разгона. Реостатом замыкают обмотки индуктора по аналогии с асинхронным двигателем. Для запуска на ротор монтируют короткозамкнутую обмотку, являющуюся также и успокоительной обмоткой, которая предотвращает раскачивание ротора при синхронизации.

При достижении ротором номинальной скорости, к индуктору подключают постоянный ток. Однако, для пуска моторов с постоянными магнитами не обойтись без применения пусковых внешних двигателей.

В криогенных синхронных электродвигателях применяется обращенная конструкция. В ней якорь и индуктор размещены наоборот, индуктор находится на статоре, а якорь расположен на роторе. У таких машин возбуждающие обмотки состоят из сверхпроводимых материалов.

Достоинства и недостатки

Синхронные двигатели имеют основное преимущество по сравнению с асинхронными моторами тот факт, что возбуждение от постоянного тока внешнего источника дает возможность работы при значительной величине коэффициента мощности. Эта особенность дает возможность увеличить значение коэффициента мощности для общей сети благодаря включению синхронного мотора.

Синхронные электродвигатели имеют и другие достоинства:

Недостатками являются следующие отрицательные моменты:

В итоге можно сказать, что все-таки преимущества синхронных двигателей перекрывают недостатки. Поэтому двигатели такого вида широко применяются в технологических процессах, где идет постоянный непрерывный процесс, и не требуется частая остановка и запуск оборудования: на мельничном производстве, в компрессорах, дробилках, насосах и так далее.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *