в чем различия энергетического обмена аэробов и анаэробов

Аэробная и анаэробная среда

При выполнении гематологических исследований используются два типа организмов аэробные и анаэробные. Они отличаются потребностью в наличии кислорода в окружающей среде. Аэробные микроорганизмы могут функционировать только при наличии кислорода, в то время, как анаэробные в нем совсем не нуждаются.

Классификация этих видов проводится на основе реакции на наличие или отсутствие кислорода. Из-за этого аэробные и анаэробные микроорганизмы по-разному выполняют свои функции в процессе клеточного дыхания.

Особенности аэробных микроорганизмов

Аэробные микроорганизмы не могут существовать без кислорода. Он необходим им для роста, развития и участвует в процессах размножения. Благодаря кислороду они способны окислять моносахариды, например, глюкозу.

Генерация энергии в этих микроорганизмах происходит при гликолизе. После него следует цикл Кребса и цепь переноса электронов. Среды, насыщенные кислородом – отличная питательная среда для таких микроорганизмов. Примеры аэробов – бациллы и нокардии.

Типы аэробов

Аэробные микроорганизмы классифицируют по уровню необходимого для жизнедеятельности кислорода:

Бактерии, нуждающиеся в кислороде для выживания, легко выделяются при культивировании в жидкой среде. Так для полноценной жизнедеятельности им необходим кислород, то чтобы выжить они всплывают на поверхность.

в чем различия энергетического обмена аэробов и анаэробов. Смотреть фото в чем различия энергетического обмена аэробов и анаэробов. Смотреть картинку в чем различия энергетического обмена аэробов и анаэробов. Картинка про в чем различия энергетического обмена аэробов и анаэробов. Фото в чем различия энергетического обмена аэробов и анаэробов

Особенности анаэробов

В процессе энергетического обмена эти микроорганизмы не используют кислород. Для этого им необходимы марганец, сера, кобальт, азот, метал или железо. В процессе образования энергии анаэробные микроорганизмы подвергаются ферментации. Для выживания они используют энергию, производимую при анаэробных процессах брожения:

Классификация анаэробных микроорганизмов также определяется по уровню токсичности кислорода:

Анаэробы не способны выживать в среде, богатой кислородом. Для облигатных разновидностей он токсичен, а вот факультативным видам он не вредит.

Сходства между аэробами и анаэробами

Различия аэробов и анаэробов

Отличительные особенности микроорганизмов представлены в таблице.

Источник

Разница между Аэробными и Анаэробными микроорганизмами

Ключевым различием между Аэробными и Анаэробными микроорганизмами является потребность в кислороде для выживания Аэробных микроорганизмов, в то время как для Анаэробных микроорганизмов он не требуется. То есть Аэробные микроорганизмы используют кислород в процессе энергетического обмена, в то время как Анаэробные микроорганизмы в нём не нуждаются.

Классификации микроорганизмов на Аэробные и Анаэробные производится на основании реакции на кислород. Из-за разницы в этой реакции Аэробные и Анаэробные микроорганизмы обладают различными характеристиками для выполнения своих функций во время клеточного дыхания. Таким образом, Аэробные микроорганизмы осуществляют аэробное дыхание, а анаэробные осуществляют анаэробное дыхание.

Содержание

Что такое Аэробные микроорганизмы?

Аэробные микроорганизмы — это группа микроорганизмов, которые нуждаются в кислороде для своего основного выживания, роста и процесса размножения. Они окисляют моносахариды, такие как глюкоза в присутствии кислорода.

в чем различия энергетического обмена аэробов и анаэробов. Смотреть фото в чем различия энергетического обмена аэробов и анаэробов. Смотреть картинку в чем различия энергетического обмена аэробов и анаэробов. Картинка про в чем различия энергетического обмена аэробов и анаэробов. Фото в чем различия энергетического обмена аэробов и анаэробовАэробные микроорганизмы

Основными процессами, генерирующими энергию в аэробах, являются гликолиз, после которого следует цикл Кребса и цепь переноса электронов. Поскольку уровень кислорода не токсичен для этих микроорганизмов, они хорошо растут в насыщенных кислородом средах. И таким образом, они являются облигатными аэробами. Примерами аэробных микроорганизмов являются Бациллы и Нокардии.

Классификация

Облигатные аэробы и микроаэрофилы являются двумя видами аэробов. Основой данной классификации является уровень токсичности кислорода для этих микроорганизмов.

Аэробные микроорганизмы это те виды бактерий, которые нуждаются в кислороде для своего основного выживания, роста и процесса размножения. Очень легко выделить эти бактерии путем культивирования массы бактериальных штаммов в некоторой жидкой среде. Поскольку они нуждаются в кислороде для выживания, они, как правило, выходят на поверхность в попытке получить максимум доступного кислорода.

в чем различия энергетического обмена аэробов и анаэробов. Смотреть фото в чем различия энергетического обмена аэробов и анаэробов. Смотреть картинку в чем различия энергетического обмена аэробов и анаэробов. Картинка про в чем различия энергетического обмена аэробов и анаэробов. Фото в чем различия энергетического обмена аэробов и анаэробовИдентификация Аэробных и Анаэробных бактерий по концентрации кислорода

Что такое Анаэробные микроорганизмы?

Классификация

К анаэробным микроорганизмам относятся факультативные анаэробы, аэротолерантные анаэробы и облигатные анаэробы. Основой данной классификации, также и у аэробов, является уровень токсичности кислорода для этих микроорганизмов.

Анаэробные микроорганизмы не выживают в богатой кислородом окружающей среде, так как кислород токсичен для облигатных анаэробов. Напротив, избыток кислорода не вредит факультативным анаэробам.

Каковы сходства между Аэробными и Анаэробными микроорганизмами?

В чем разница между Аэробными и Анаэробными микроорганизмами?

Заключение — Аэробные и Анаэробные микроорганизмы

Источник

Роль в природе анаэробных и аэробных микроорганизмов — чем опасны для человека

Микроорганизмы имеют много форм и приспособлены к разным условиям жизни. Поэтому нет практически ни одного уголка на планете, который не был бы заселен микрофлорой. Есть микроорганизмы и внутри тела человека – на слизистых ЖКТ, дыхательных путей, мочевыводящей системы, на коже.

В зависимости от потребности в кислороде и устойчивости к его отрицательному воздействию, микроорганизмы делят на аэробные, анаэробные и промежуточные формы. Эти микроорганизмы используются и в качестве компонентов, ускоряющих распад органических отходов для септиков (локального очистного сооружения).

Аэробные организмы, значение для человека

Они могут жить и развиваться только при наличии кислорода. Он необходим для процессов окисления, в результате которых получается энергия в виде молекул АТФ. Она расходуется на процессы жизнедеятельности – передвижение, рост, переваривание пищи, размножение. При отсутствии кислорода такие микроорганизмы гибнут.

К аэробам относятся бактерии, живущие в почве, воздухе, воде, на живых организмах. Они делятся на грамположительные и грамотрицательные. По форме на кокки (в виде шарика), палочки.

Некоторые из них могут провоцировать развитие болезней у человека:

Специально выращивают аэробные микроорганизмы в фармацевтической отрасли, нефтеперерабатывающей и добывающей промышленности.

в чем различия энергетического обмена аэробов и анаэробов. Смотреть фото в чем различия энергетического обмена аэробов и анаэробов. Смотреть картинку в чем различия энергетического обмена аэробов и анаэробов. Картинка про в чем различия энергетического обмена аэробов и анаэробов. Фото в чем различия энергетического обмена аэробов и анаэробов

Анаэробные микроорганизмы и их роль в природе

К анаэробным организмам относятся те, которые не нуждаются в кислороде. Они тоже неоднородны. Выделяют:

Среди анаэробов есть бактерии, способные к образованию спор (клостридия) и не имеющие такой способности (бактероиды, актиномицеты, велионелла). Интересно то, что в споровой форме микроорганизмы становятся нечувствительными к кислороду и могут долго сохранять жизнеспособность, тогда как без этого они быстро погибли бы.

К анаэробам также относятся бактерии, использующие фотосинтез для получения энергии. Таким микроорганизмам человечество нашло применение в обычно жизни. Например, их можно использовать для очистки загрязненных вод.

Анаэробные бактерии, образующие споры, используют в текстильной промышленности при получении льняного волокна. А микроорганизмы, удерживающие азот, улучшают плодородие почв, участвуют в разложении целлюлозы, пектинов.

Промежуточные формы

в чем различия энергетического обмена аэробов и анаэробов. Смотреть фото в чем различия энергетического обмена аэробов и анаэробов. Смотреть картинку в чем различия энергетического обмена аэробов и анаэробов. Картинка про в чем различия энергетического обмена аэробов и анаэробов. Фото в чем различия энергетического обмена аэробов и анаэробов

Особенности метаболизма

Аэробные организмы используют в качестве источника энергии глюкозу. Она распадается до пировиноградной кислоты в процессе гликолиза, а затем в присутствии кислорода превращается в воду и углекислоту. При этом распад одной молекулы глюкозы сопровождается образованием 38 молекул АТФ.

Процесс окислительного фосфорилирования происходит у аэробов в митохондриях на мембранах. Здесь сосредоточена цепь из цитохромов, которые передают друг другу электроны вплоть до конечного акцептора – кислорода.

Аэробы способны извлекать энергию при окислении метана, сероводорода, железо- и азотсодержащих веществ, водорода.

У анаэробов происходит только гликолиз, далее пировиноградная кислота подвергается брожению:

Энергетический выход при этом составляет 2 молекулы АТФ. Ферменты, которые участвуют в этих реакциях, – дегидрогеназы – находятся на мембране клетки и внутри цитоплазмы.

в чем различия энергетического обмена аэробов и анаэробов. Смотреть фото в чем различия энергетического обмена аэробов и анаэробов. Смотреть картинку в чем различия энергетического обмена аэробов и анаэробов. Картинка про в чем различия энергетического обмена аэробов и анаэробов. Фото в чем различия энергетического обмена аэробов и анаэробов

В норме в кишечнике преобладают процессы брожения. При этом pH среды сдвигается в кислую сторону – гнилостная флора не может существовать в таких условиях. При недостаточной активности нормальной микрофлоры активизируются патогенные бактерии кишечника (бацилла перфрингенс, спорогенус), преобладает распад белков, сдвигается pH в щелочную сторону. Этот процесс сопровождают признаки интоксикации, неприятный запах, проблемы с дефекацией.

Наличие систем, защищающих клетку от агрессивных форм кислорода

На воздухе могут жить только те микроорганизмы, которые имеют защитные антиоксидантные системы. В процессе преобразования кислорода образуются разные токсичные соединения: супероксидный анион, синглетный кислород, перекись водорода.

Обезвреживают их специальные ферменты – супероксиддисмутаза, каталаза, цитохромы. Последние имеются у аэробов (их обычно 3). У факультативных анаэробов их меньше (1–2), тогда как у облигатных они совсем отсутствуют.

Многие анаэробные микроорганизмы в присутствии каталазы способны нормально переносить воздействие кислорода. Своего же такого фермента у них нет.

При повышении концентрации кислорода до 40–50 % аэробные организмы прекращают рост. Чистый О2 губительно действует на все живое. Играет роль даже не концентрация молекул свободного кислорода, а соотношение водорода и кислорода. Его называют окислительно-восстановительным показателем. Диапазон условий для оптимального существования бактерий – от 0 до 40. Для анаэробов подходит среда с ОВП менее 14.

Особенности ДНК у аэробов и анаэробов

Считается, что анаэробные формы жизни предшествовали аэробным. По мере накопления кислорода, в атмосфере богатство и разнообразие бактерий все время увеличивалось. Было замечено, что у более простых микроорганизмов без цитохромов отличается состав ДНК – в молекуле преобладают основания Аденин и Тимин. У более поздних и эволюционно развитых форм есть цитохромы, а в генетическом материале больше оснований Гуанин и Цитозин. Некоторые анаэробные организмы не имеют четко оформленного ядра, а ДНК находится в виде нуклеоида в цитоплазме.

в чем различия энергетического обмена аэробов и анаэробов. Смотреть фото в чем различия энергетического обмена аэробов и анаэробов. Смотреть картинку в чем различия энергетического обмена аэробов и анаэробов. Картинка про в чем различия энергетического обмена аэробов и анаэробов. Фото в чем различия энергетического обмена аэробов и анаэробов

Примеры заболеваний, которые вызывают анаэробы

Одно из самых опасных заболеваний – ботулизм. Клостридия размножается в анаэробных условиях. Часто сохраняется в виде спор в консервах, мясе и рыбе, не прошедших полноценную тепловую обработку. В процессе жизнедеятельности она выделяет ботулотоксин, поражающий нервную систему человека. Без своевременного лечения ботулизм может привести к летальному исходу.

Столбняк — еще одно смертельно опасное заболевание. Вызывает его клостридия тетанус. Она находится в земле в виде спор. При попадании в рану переходит в вегетативную форму, продуцирует столбнячный экзотоксин. Он поражает ЦНС. Патология сопровождается сокращениями всех мышц тела человека (повышенный тонус и судороги), нарушением глотания, дыхания, работы сердца. Наблюдается распад эритроцитов, сепсис, поражение сердца, пневмония.

Газовую гангрену вызывает клостридия перфрингенс. Она попадает в рану с пылью, землей. Внутри тканей выделяет ферменты и газ. По этой причине при надавливании на края раны ощущается крепитация и слышен хруст. Ферменты этого микроба вызывают гемолиз эритроцитов. Учитывая особенности бактерий, такие раны необходимо максимально широко раскрывать при первичной хирургической обработке, иссекать все омертвевшие ткани. Раневую поверхность обильно обрабатывают перекисью, применяют гипербарическую оксигенацию (воздействуют кислородом под давлением). Сверху не бинтуют, а оставляют открытыми для доступа кислорода.

Понимание особенностей процессов жизнедеятельности аэробных и анаэробных микроорганизмов помогает успешно использовать их в промышленных процессах, очистке сточных вод, почвы, бороться с заболеваниями, которые они вызывают.

Аэробные и анаэробные бактерии для септика, как выращивать, как занести в септик. Обо всем этом в видео:

Источник

В чем различия энергетического обмена аэробов и анаэробов

Подробное решение параграф § 22 по биологии для учащихся 10 класса, авторов Каменский А.А., Криксунов Е.А., Пасечник В.В. 2014

1. Какова химическая природа АТФ?

2. Какие химические связи называются макроэргическими?

Ответ. Макроэргическими называются связи между остатками фосфорной кислоты, так как при их разрыве выделяется большое количество энергии (в четыре раза больше, чем при расщеплении других химических связей).

3. В каких клетках АТФ больше всего?

Ответ. Наибольшее содержание АТФ в клетках, в которых велики затраты энергии. Это клетки печени и поперечнополосатой мускулатуры.

Вопросы после §22

1. В клетках каких организмов происходит спиртовое брожение?

Ответ. В большинстве растительных клеток, а также в клетках некоторых грибов (например, дрожжей) вместо гликолиза происходит спиртовое брожение:молекула глюкозы в анаэробных условиях превращается в этиловый спирт и СО2:

С6Н12О6 + 2Н3РО4 + 2АДФ → 2С2Н5ОН + 2СО2 + 2АТФ + 2Н2О.

2. Откуда берётся энергия для синтеза АТФ из АДФ?

Ответ. Синтез АТФ осуществляется на следующих этапах. На этапе гликолиза происходит расщепления молекулы глюкозы, содержащей шесть атомов углерода (С6Н12О6), до двух молекул трёхуглеродной пировиноградной кислоты, или ПВК (C3H4O3). Реакции гликолиза катализируются многими ферментами, и протекают они в цитоплазме клеток. В ходе гликолиза при расщеплении 1 М глюкозы выделяется 200 кДж энергии, но 60 % её рассеивается в виде тепла. Оставшихся 40 % энергии оказывается достаточно для синтеза из двух молекул АДФ двух молекул АТФ.

С6Н12О6 + 2Н3РО4 + 2АДФ → 2С3Н6О3 + 2АТФ + 2Н2О

В аэробных организмах после гликолиза (или спиртового брожения) следует завершающий этап энергетического обмена – полное кислородное расщепление, или клеточное дыхание. В процессе этого третьего этапа органические вещества, образовавшиеся в ходе второго этапа при бескислородном расщеплении и содержащие большие запасы химической энергии, окисляются до конечных продуктов СО2 и Н2О. Этот процесс, так же как и гликолиз, является многостадийным, но происходит не в цитоплазме, а в митохондриях. В результате клеточного дыхания при распаде двух молекул молочной кислоты синтезируются 36 молекул АТФ:

2С3Н6О3 + 6О2 + 36АДФ + 36Н3РО4 → 6СО2 + 42Н2О + 36АТФ.

Таким образом, суммарно энергетический обмен клетки в случае распада глюкозы можно представить следующим образом:

С6Н12О6 + 6О2 + 38АДФ + 38Н3РО4 → 6СО2 + 44Н2О + 38АТФ.

3. Какие этапы выделяют в энергетическом обмене?

Ответ. I этап, подготовительный

Сложные органические соединения распадаются на простые под действием пищеварительных ферментов, при этом выделяется только тепловая энергия.

Жиры → глицерин и жирные кислоты

II этап, гликолиз (бескислородный)

Осуществляется в цитоплазме, с мембранами не связан. В нём участвуют ферменты; расщеплению подвергается глюкоза. 60 % энергии рассеивается в виде тепла, а 40 % — используется для синтеза АТФ. Кислород не участвует.

III этап, клеточное дыхание (кислородный)

Осуществляется в митохондриях, связан с матриксом митохондрий и внутренней мембраной. В нём участвуют ферменты, кислород. Расщеплению подвергается молочная кислота. СО2 выделяется из митохондрий в окружающую среду. Атом водорода включается в цепь реакций, конечный результат которых — синтез АТФ.

4. В чём отличия энергетического обмена у аэробов и анаэробов?

Ответ. Все проявления жизни аэробов нуждаются в затрате энергии, пополнение которой происходит клеточном дыхании – сложном процессе, в который вовлечены многие ферментные системы.

Между тем, его можно представить как ряд последовательных реакций окисления – восстановления, при которых электроны отсоединяются от молекулы какого-либо питательного вещества и переносятся сначала на первичный акцептор, затем на вторичный и далее – до конечного. При этом энергия потока электронов накапливается в макроэргических химических связях (главным образом, фосфатных связях универсального источника энергии – АТФ). Для большинства организмов конечным акцептором электронов служит кислород, который, реагируя с электронами и ионами водорода, образует молекулу воды. Без кислорода обходятся лишь анаэробы, покрывающие свои энергетические потребности за счет брожения. К анаэробам относятся многие бактерии, ресничные инфузории, некоторые черви и несколько видов моллюсков. Эти организмы в качестве конечного акцептора электронов используют этиловый или бутиловый спирт, глицерин и др.

Преимущество кислородного, то есть аэробного типа энергетического обмена над анаэробным очевидно: количество энергии, выделяющееся при окислении питательного вещества кислородом, в несколько раз выше, чем при его окислении, например, пировиноградной кислотой (происходит при таком распространенном типе брожения, как гликолиз). Таким образом, благодаря высокой окислительной способности кислорода, аэробы эффективнее используют потребляемые питательные вещества, чем анаэробы. Вместе с тем, аэробные организмы могут существовать лишь в среде, содержащей свободный молекулярный кислород. В противном случае они погибают.

Источник

Энергетический обмен

Обмен веществ

в чем различия энергетического обмена аэробов и анаэробов. Смотреть фото в чем различия энергетического обмена аэробов и анаэробов. Смотреть картинку в чем различия энергетического обмена аэробов и анаэробов. Картинка про в чем различия энергетического обмена аэробов и анаэробов. Фото в чем различия энергетического обмена аэробов и анаэробов

Энергетический обмен

Возможно три этапа диссимиляции: подготовительный, анаэробный и аэробный. Среда обитания определяет количество этапов диссимиляции. Их может быть три, если организм обитает в кислородной среде, и два, если речь идет об организме, обитающем в бескислородной среде (к примеру, в кишечнике).

Подготовительный этап осуществляется ферментами в ЖКТ. В результате действия ферментов сложные вещества превращаются в более простые: полимеры распадаются на мономеры. Это сопровождается разрывом химических связей и выделением энергии, большая часть которой рассеивается в виде тепла.

в чем различия энергетического обмена аэробов и анаэробов. Смотреть фото в чем различия энергетического обмена аэробов и анаэробов. Смотреть картинку в чем различия энергетического обмена аэробов и анаэробов. Картинка про в чем различия энергетического обмена аэробов и анаэробов. Фото в чем различия энергетического обмена аэробов и анаэробов

Этот этап является последним для организмов-анаэробов, обитающих в условиях, где кислород отсутствует. На этапе гликолиза происходит расщепление молекулы глюкозы: образуется 2 молекулы АТФ и 2 молекулы пировиноградной кислоты (ПВК). Происходит данный этап в цитоплазме клеток.

Таким образом, суммарно с одной молекулы глюкозы можно получить 38 АТФ (гликолиз + кислородный этап).

Кислородный этап протекает на кристах митохондрий (складках, выпячиваниях внутренней мембраны), где наибольшая концентрация окислительных ферментов. Главную роль в этом процессе играет так называемый цикл Кребса, который подробно изучает биохимия.

в чем различия энергетического обмена аэробов и анаэробов. Смотреть фото в чем различия энергетического обмена аэробов и анаэробов. Смотреть картинку в чем различия энергетического обмена аэробов и анаэробов. Картинка про в чем различия энергетического обмена аэробов и анаэробов. Фото в чем различия энергетического обмена аэробов и анаэробов

в чем различия энергетического обмена аэробов и анаэробов. Смотреть фото в чем различия энергетического обмена аэробов и анаэробов. Смотреть картинку в чем различия энергетического обмена аэробов и анаэробов. Картинка про в чем различия энергетического обмена аэробов и анаэробов. Фото в чем различия энергетического обмена аэробов и анаэробов

Пластический обмен

АТФ является универсальным источником энергии в клетке: энергия макроэргических связей АТФ используется для реакций пластического обмена (ассимиляции), протекающих с затратой энергии: синтеза белка на рибосоме (трансляции), удвоению ДНК (репликации) и т.д.

В результате пластического обмена в нашем организме происходит синтез белков, жиров и углеводов.

в чем различия энергетического обмена аэробов и анаэробов. Смотреть фото в чем различия энергетического обмена аэробов и анаэробов. Смотреть картинку в чем различия энергетического обмена аэробов и анаэробов. Картинка про в чем различия энергетического обмена аэробов и анаэробов. Фото в чем различия энергетического обмена аэробов и анаэробов

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *