в чем происходит газообмен

В чем происходит газообмен

После поступления свежего воздуха в альвеолы начинается следующий этап дыхательного процесса: диффузия кислорода из альвеол в кровь и диффузия двуокиси углерода в обратном направлении — из крови в альвеолы. Процесс диффузии представляет собой беспорядочное движение молекул, прокладывающих себе дорогу через дыхательную мембрану и жидкости во всех направлениях. Однако в физиологии дыхания нас интересуют не только основные механизмы диффузии, но и ее скорость, что представляет собой намного более сложную проблему и потребует более глубоких знаний в области физики диффузии и обмена газов.

Физические основы диффузии и парциальные давления газов

Все газы, представляющие интерес для физиологии дыхания, являются простыми молекулами, которые свободно перемещаются в смеси. Этот процесс называют диффузией. Это справедливо и для газов, растворенных в жидкостях и тканях тела.

Для процесса диффузии необходимо наличие источника энергии. Энергия производится кинетическим движением самих молекул. При температуре выше абсолютного нуля молекулы находятся в постоянном движении. Это значит, что свободные молекулы, не связанные с другими молекулами, двигаются линейно на высокой скорости до встречи с другими молекулами. После столкновения их движение получит новое направление — до следующего столкновения. Таким образом, молекулы находятся в быстром и случайном движении среди себе подобных.

а) Диффузия газа одном направлении. Влияние градиента концентрации. Если в емкости или в растворе концентрация одного газа в одной зоне высокая, а в другой — низкая (для облегчения понимания просим вас изучить рисунок ниже), то суммарная диффузия газа будет направлена от зоны с высокой концентрацией в зону с низкой концентрацией: на рисунке в зоне А находится больше молекул, способных двигаться в направлении зоны Б, чем молекул, которые могут переместиться в обратном направлении, поэтому диффузия в каждом из направлений пропорциональна концентрации молекул, что на рисунке демонстрирует длина стрелок.

в чем происходит газообмен. Смотреть фото в чем происходит газообмен. Смотреть картинку в чем происходит газообмен. Картинка про в чем происходит газообмен. Фото в чем происходит газообменДиффузия кислорода из одной зоны (А) в другую (Б). Разница в длине стрелок представляет величину конечной диффузии

б) Давление газов в газовой смеси. Парциальные давления отдельных газов. Давление создается множественными ударами движущихся молекул о поверхность, поэтому давление газа на поверхности дыхательных ходов и альвеол пропорционально суммарной силе ударов о поверхность всех молекул данного газа в данный момент, т.е. давление газа прямо пропорционально концентрации молекул газа.

В физиологии дыхания мы имеем дело со смесями газов, состоящих главным образом из кислорода, азота и двуокиси углерода. Скорость диффузии каждого из них прямо пропорциональна давлению, создаваемому только этим газом, и это давление называют парциальным давлением данного газа. Далее приводим объяснение концепции парциального давления.

Воздух состоит примерно из 79% азота и 21% кислорода. Общее давление этой смеси на уровне моря равно 760 мм рт. ст. Из приведенного ранее объяснения молекулярных основ возникновения давления ясно, что доля каждого газа в давлении их смеси находится в прямой пропорции с его концентрацией, поэтому 79% из 760 мм рт. ст. давления воздуха создается азотом (600 мм рт. ст.) и 21% — кислородом (160 мм рт. ст.). Таким образом, парциальное давление азота в смеси составляет 600 мм рт. ст., парциальное давление кислорода — 160 мм рт.ст., а общее давление (760 мм рт. ст.) является суммой отдельных парциальных давлений. Парциальное давление отдельных газов обозначают PCO2, PO2, PN2, PH2O, PHe и т.д.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

Процесс газообмена в легких и тканях: состав воздуха, диффузия газов, особенности газообмена

Процесс газообмена в легких и тканях

Состав воздуха

Состав поступающего и выходящего из дыхательных путей воздуха не меняется. Во вдыхаемом воздухе кислород составляет около 21%, углекислый газ — 0,03%. В выдыхаемом воздухе эти показатели уже другие: 16-17% кислорода и 4% углекислого газа.

В альвеолярном воздухе процент содержания кислорода достигает 14,4%, а углекислого газа — 5,6%. Во время выдоха происходит смешивание воздуха мертвого пространства и содержимого ацинусов.

Важно, что объем атмосферного азота, который вдыхается и выдыхается, остается неизменным.

При выдохе происходит вывод паров воды из организма.

При длительном вдыхании воздуха, содержащего значительную концентрацию кислорода, для организма могут наступить пагубные последствия. Тем не менее ингаляция 100-процентным кислородом — лечебное мероприятие при некоторых заболеваниях.

Диффузия газов

Разграничительная черта между кровью и воздухом альвеол называется легочной мембраной или аэрогематическим барьером.

Как происходит газообмен в легких?

Газообмен в легких осуществляется за счет:

Газы переходят через аэрогематический барьер за счет разности их концентраций.

Парциальным давлением газа выступает часть общего давления, принадлежащая данному газу.

Кислород в воздушной среде характеризуется парциальным давлением (напряжением), которое равно 160 мм. рт. ст. Углекислый газ, в свою очередь, обладает парциальным давлением, равным 0,2 мм. рт. ст.

Что касается альвеолярного воздуха, то парциальное давление для кислорода и двуокиси углерода отличаются другими значениями: давление кислорода равно 100 мм. рт. ст, а углекислого газа — 40 мм. рт. ст.

Газы находятся в крови в двух состояниях: в химическом связанном и в растворенном. При этом, в процессе диффузии могут участвовать только те молекулы газа, которые находятся в растворенном состоянии.

Есть несколько условий, от которых зависит способность газа быть растворенным в жидкостях. Это:

При более низкой температуре и более высоком давлении газа обеспечивается большее растворение газа.

При условии температуры 38 градусов и давлении в 760 мм. рт. ст. в 1 мл. крови растворится 2,2% кислорода и 5,1% углекислого газа.

Между кровью и альвеолярным воздухом градиент давления для кислорода составляет 60 мм. рт. ст. Это обеспечивает диффузию кислорода в кровь. В крови происходит связывание кислорода с гемоглобином, который находится в эритроцитах, в результате чего происходит образование оксигемоглобина. Очень много оксигемоглобина содержится в артериальной крови.

У здорового человека гемоглобин может насыщаться кислородом на 96%.

Под кислородной емкостью крови понимают максимум кислорода, которое при глубоком насыщении гемоглобина кислородом может связываться с кровью.

Эффектом Холдейна называют повышенную способность крови в процессе перехода оксигемоглобина в гемоглобин связывать углекислый газ.

В 100 мл. крови содержится примерно 20 мл. кислорода — это в норме. В венозной крови в таком же объеме содержится от 13 до 15 мл. кислорода.

Образованный в тканях углекислый газ по градиенту концентрации поступает в кровь и объединяется с гемоглобином — таким образом происходит образование карбгемоглобин. Большая часть углекислого газа находится во взаимодействии с водой, и образует, в результате, карбоновую кислоту. Эта кислота имеет способность диссоциировать, что приводит к образованию ион водорода и бикорбонат-ион. Основная часть углекислого газа перемещается в виде бикарбоната.

Эритроциты крови содержат такой фермент как карбоангидраза. У него есть способность осуществлять катализацию расщепления карбоновой кислоты и ее образование. Процесс расщепления происходит в капиллярах легких.

Напряжение двуокиси углерода в венозной крови — около 46 мм. рт. ст. Парциальное давление двуокиси углерода в альвеолярном воздухе составляет 40 мм. рт. ст. Это значит, что градиент давления равен 6 мм. рт. ст. в пользу крови.

Из человеческого организма в состоянии покоя выходит примерно 230 мд. двуокиси углерода.

Диффузия газов осуществляется по разности концентрации: из среды, где отмечается большее напряжение, в среду, где отмечается меньшее напряжение.

Диффузионная способность легких — это способность газа превращаться из альвеол в эритроциты.

Особенности газообмена в тканях

В митохондриях обнаруживается минимальное напряжение кислорода. Все потому, что митохондрии — это места, где кислород используется для биологического окисления. Как результат расщепления оксигемоглобина — молекулы кислорода диффундируют в направлении меньших значений напряжения кислорода.

Факторы, влияющие на парциальное давление в тканях:

В тканевой жидкости вблизи капилляров напряжение кислорода меньше, чем в крови — оно составляет от 20 до 40 мм. рт. ст.

Интенсивные окислительные процессы в клетках способствуют тому, что напряжение кислорода может доходить до нулевого показателя. Однако при увеличении скорости кровотока напряжение кислорода мгновенно повысится.

Наивысший показатель давление углекислого газа в клетках достигается в случае его образования в митохондриях — оно равно 60 мм. рт. ст. Что касается давления углекислого газа, то в тканевой жидкости оно меняется (примерно 46 мм. рт. ст.), а в артериальной крови остается равным 40 мм. рт. ст.

Перемещение двуокиси углерода осуществляется по градиенту напряжений в капилляры крови, после чего кровь перемещает ее к легким.

Источник

В чем происходит газообмен

4.1. Транспорт кислорода

В сложных механизмах транспорта газов кровью и газообмена в тканях важная роль отводится эритроцитам, ответственным за доставку О2 к различным органам и удаление образующегося в процессе метаболизма СО2.

Эритроцит – безъядерная клетка, лишенная митохондрий, основным источником энергии для эритроцита служит глюкоза, метаболизируемая в гексозомонофосфатном шунте или цикле Эмбдена-Мейергофа. Транспорт О2 обеспечивается в значительной мере гемоглобином, состоящим из белка глобина и гема. Последний представляет собой комплексное соединение железа и порфирина. Глобин представляет собой тетрамер полипептидной цепи. Hb A (HbA) – основной гемоглобин взрослых содержит 2 – альфа и 2 – бета – цепи, Hb A2 – содержит две альфа и две дельта цепи.

Гем состоит из иона железа, встроенного в порфириновое кольцо. Ион железа гема обратимо связывает одну молекулу О2. С одной молекулой Hb максимально связываются 4 молекулы О2 с образованием оксигемоглобина.

Гем может подвергаться не только оксигенации, но и истинному окислению, когда железо становится из двухвалентного трехвалентным. Окисленный гем носит название гематина, а молекула гемоглобина становится метгемоглобином. В крови человека метгемоглобин находится в незначительных количествах, его уровень резко возрастает при отравлениях. Метгемоглобин не способен отдавать кислород тканям.

В норме метгемоглобин составляет менее 3% общего Hb крови. Основная форма транспорта О2 – в виде оксигемоглобина. Кислород транспортируется артериальной кровью не только в связи с гемоглобином, но и в растворенном виде. Принимая во внимание тот факт, что 1 г Hb может связать 1,34 мл О2, кислородная емкость крови в среднем у взрослого человека составляет около 200 мл/л крови. Одним из показателей кислородного транспорта является насыщение артериальной крови О2(Sa O2), равного отношению О2, связанного с Hb, к кислородной емкости крови:

SaO2=O2, связанного с Hb/O2 емкость крови* 100%.

В соответствии с кривой диссоциации оксигемоглобина насыщение артериальной крови кислородом в среднем составляет 97%, в венозной крови – 75%.

PaO2 в артериальной крови около 100 мм. рт. ст., а в венозной – около 40 мм. рт. ст.

Количество растворенного кислорода в крови пропорционально парциальному давлению О2 и коэффициэнту его растворимости.

Последний для О2 составляет 0,0031/100 мл крови/ 1 мм. рт. ст.. Таким образом, 100 мл крови при PaO2, равном 100 мм. рт. ст., содержит менее 0,31 мл O2.

Диссоциация оксигемоглобина в тканях обусловлена главным образом химическими свойствами гемоглобина, а также рядом других факторов – температурой тела, рН среды, р СО2.

При понижении температуры тела наклон кривой диссоциации оксигемоглобина возрастает, а при ее повышении – снижается, и соответственно снижается сродство Hb к О2.

При снижении рН, т.е. при закислении среды, сродство гемоглобина к О2 уменьшается. Увеличение напряжения в крови СО2 также сопровождается снижением сродства Hb к О2 и уплощением кривой диссоциации оксигемоглобина.

Известно, что степень диссоциации оксигемоглобина определяется содержанием в эритроцитах некоторых фосфорорганических соединений, главным из которых является 2,3 – ДФГ (2,3 дифосфоглицерат), а также содержанием в эритроцитах катионов. В случаях развития алкалозов, поглощение О2 в легких увеличивается, но в то же время затрудняется отдача кислорода тканями. При ацидозах наблюдается обратная картина.

4.2.Утилизация кислорода тканями

Тканевое или клеточное дыхание включает три стадии. На первой стадии пируват, аминокислоты и жирные кислоты окисляются до двухуглеродных фрагментов ацетильных групп, входящих в состав ацетилкофермента А. Последние на втором этапе окисления включаются в цикл лимонной кислоты, где происходит образование высокоэнергетических атомов водорода и высвобождение СО2 – конечного продукта окисления органических субстратов. На третьей стадии клеточного дыхания атомы водорода делятся на протоны (Н+) и «высокоэнергетические» электроны, передающиеся по дыхательной цепи на молекулярный О2 и восстанавливающие его до НО2. Перенос электронов сопряжен с запасом энергии в форме АТФ, т.е. с окислительным фосфорилированием (рис.6).

Касаясь патогенеза метаболических сдвигов, свойственных гипоксическим состояниям, следует отметить, что в организме человека более 90% всего потребляемого кислорода восстанавливается с участием цитохромоксидазы митохондрий, и лишь около 10% кислорода метаболизируется в тканях с участием оксигеназ: диоксигеназы и монооксигеназы.

в чем происходит газообмен. Смотреть фото в чем происходит газообмен. Смотреть картинку в чем происходит газообмен. Картинка про в чем происходит газообмен. Фото в чем происходит газообмен

Рис.6. Схема тканевого дыхания. Конечные продукты каждой стадии даны в рамке (Ленинджер А., 1999)

Наиболее многочисленны и сложны монооксигеназные реакции, протекающие в эндоплазматическом ретикулуме клеток при участии цитохрома Р-450 и обеспечивающие гидроксилирование субстрата (стероидных гормонов, лекарственных препаратов и различных др. соединений) и, как правило, его инактивацию.

Диоксигеназы катализируют реакции, в которых в молекулу органического субстрата включаются оба атома молекулы кислорода (например, реакция окисления катехола молекулярным кислородом с раскрытием кольца).

В реакциях, связанных с переносом электронов, т.е. в реакциях окисления-восстановления, где, как указывалось выше, используется более 90% потребляемого кислорода, атомы водорода, отщепленные дегидрогеназами от субстратов в цикле лимонной кислоты, передают свои электроны в цепь переноса электронов и превращаются также в Н +. Как известно, помимо 4 пар атомов водорода, поставляемых каждым оборотом цикла лимонной кислоты, образуются и другие атомы водорода, отщепленные дегидрогеназами от пирувата, жирных кислот и аминокислот в процессе их расщепления до Ацетил-СоА и других продуктов.

Таким образом, все атомы водорода, отщепляемые дегидрогеназами от субстратов, передают свои электроны в дыхательную цепь к конечному акцептору электронов – кислороду.

Скорость утилизации О2 в различных тканях различна. В среднем взрослый человек потребляет 250 мл О2 в 1 мин. Максимальное извлечение О2 из притекающей артериальной крови свойственно миокарду.

Кислород используется в клетках, в основном в метаболизме белков, жиров, углеводов, ксенобиотиков, в окислительно-восстановительных реакциях в различных субклеточных фракциях: в митохондриях, в эндоплазматическом ретикулуме, в реакциях липопероксидации, а также в межклеточном матриксе и в биологических жидкостях.

Коэффициент утилизации О2 в тканях равен отношению потребления О2 к интенсивности его доставки, широко варьирует в различных органах и тканях.

В условиях нормы минимальную потребность в О2 проявляют почки и селезенка, а максимальную потребность – кора головного мозга, миокард и скелетные мышцы, где коэффициент утилизации О2 колеблется от 0,4 до 0,6, а в миокарде до 0,7. При крайне интенсивной физической работе коэффициент утилизации О2 мышцами и миокардом может возрастать до 0,9.

Обмен дыхательных газов в тканях происходит в процессе свободной и облегченной диффузии. При этом О2 переносится по градиенту напряжения газа из эритроцитов и плазмы крови в окружающие ткани.

Одновременно происходит диффузия СО2 из тканей в кровь. На выход О2 из крови в ткани влияет диссоциация оксигемоглобина в эритроцитах, что обеспечивает так называемую облегченную диффузию О2. Интенсивность диффузионного потока О2 и СО2 определяется градиентом их напряжения между кровью и тканями, а также площадью газообмена, плотностью капилляров, распределением кровотока в микроциркуляторном русле. Интенсивность окислительных процессов в тканях определяется величиной критического напряжения О2 в митохондриях, которое в условиях нормы должно превосходить 0,1-1 мм рт. ст.

Соответствие доставки О2 к органам и тканям, возросшим потребностям в оксигенации обеспечивается на клеточном, органном уровнях за счет образования метаболитов изнашивания, а также при участии нервных, гормональных и гуморальных влияний.

Основная масса углекислого газа (СО2) образуется в организме как конечный продукт различных метаболических реакций и транспортируется к легким с кровью. Вдыхаемый воздух содержит лишь незначительное количество СО2.

Транспорт СО2 кровью осуществляется в 3-х состояниях: в виде аниона бикарбоната, в растворенной форме и в виде карбаминовых соединений.

СО2 хорошо растворяется в плазме крови и в артериальной крови, около 5% от общей двуокиси углерода содержится в крови в растворенной форме.

Третьей формой транспорта СО2 кровью являются карбаминовые соединения, образованные взаимодействием СО2 с концевыми группами белков крови преимущественно с гемоглобином:

Карбаминовые соединения составляют около 5% от общего количества СО2, транспортируемого кровью.

В оксигенированной артериальной крови напряжение СО2 составляет 40 мм. рт. ст., а в венозной крови Рv СО2 равно 46 мм. рт. ст.

4.4.Связывание гемоглобина с окисью углерода

Источник

Легкие

Строение легких

в чем происходит газообмен. Смотреть фото в чем происходит газообмен. Смотреть картинку в чем происходит газообмен. Картинка про в чем происходит газообмен. Фото в чем происходит газообмен

Газообмен в легких и тканях

Соединение гемоглобина с угарным газом гораздо устойчивее, чем остальные: угарный газ легко выигрывает в конкуренции с кислородом и занимает его место. Этим объясняются тяжелые последствия отравлений угарным газом, который быстро скапливается при пожаре в замкнутом помещении.

в чем происходит газообмен. Смотреть фото в чем происходит газообмен. Смотреть картинку в чем происходит газообмен. Картинка про в чем происходит газообмен. Фото в чем происходит газообмен

По мере того, как кровь отдает углекислый газ и принимает кислород, из венозной крови (бедной кислородом) она превращается в кровь артериальную. В тканях происходит обратный процесс: клетки нуждаются в кислороде, необходимом для тканевого дыхания, а углекислый газ, побочный продукт обмена веществ, требует удаления из клетки в кровь.

в чем происходит газообмен. Смотреть фото в чем происходит газообмен. Смотреть картинку в чем происходит газообмен. Картинка про в чем происходит газообмен. Фото в чем происходит газообмен

Парциальным давлением газа называют ту часть от общего объема газа, которая приходится на долю данного газа. Не рекомендую вам заучивать таблицу, приведенную выше, но для понимания она весьма хороша.

в чем происходит газообмен. Смотреть фото в чем происходит газообмен. Смотреть картинку в чем происходит газообмен. Картинка про в чем происходит газообмен. Фото в чем происходит газообмен

Жизненная емкость легких

в чем происходит газообмен. Смотреть фото в чем происходит газообмен. Смотреть картинку в чем происходит газообмен. Картинка про в чем происходит газообмен. Фото в чем происходит газообмен

Механизм легочного дыхания

Между наружной поверхностью легкого и стенками грудной клетки имеется плевральная полость, которая играет важнейшую роль в процессе вдоха и выдоха, а также уменьшает трение легких при дыхательных движениях.

Давление в плевральной полости всегда ниже на 5-7 мм. рт. ст. атмосферного давления, поэтому легкие постоянно находятся в расправленном состоянии, скреплены через плевру со стенками грудной полости.

в чем происходит газообмен. Смотреть фото в чем происходит газообмен. Смотреть картинку в чем происходит газообмен. Картинка про в чем происходит газообмен. Фото в чем происходит газообмен

Вообразите: легкое подтягивается к плевре, которая скреплена с грудной клеткой. А грудная клетка постоянно совершает дыхательные движения, расширяясь и сужаясь, таким образом, легкое следует за дыхательными движениями грудной клетки.

в чем происходит газообмен. Смотреть фото в чем происходит газообмен. Смотреть картинку в чем происходит газообмен. Картинка про в чем происходит газообмен. Фото в чем происходит газообмен

Состав крови сильно влияет на интенсивность дыхания. В многочисленных опытах было выявлено, что увеличение концентрации CO2 возбуждает дыхательный центр. Этим можно объяснить учащение дыхания во время физической нагрузки, к примеру, бега, когда в клетках мышц ног идет активное образование CO2 и поступление его в кровь, дыхание учащается рефлекторно.

в чем происходит газообмен. Смотреть фото в чем происходит газообмен. Смотреть картинку в чем происходит газообмен. Картинка про в чем происходит газообмен. Фото в чем происходит газообмен

Пневмоторакс

В норме давление в плевральной полости отрицательное, оно обеспечивает растяжение легких. Однако при ранениях грудной клетки целостность плевральной полости может нарушаться: в таком случае давление в полости становится равным атмосферному.

в чем происходит газообмен. Смотреть фото в чем происходит газообмен. Смотреть картинку в чем происходит газообмен. Картинка про в чем происходит газообмен. Фото в чем происходит газообмен

Горная и кессонная болезни

Поначалу горная болезнь проявляется эйфорией (беспричинной радостью) и учащением пульса. Если покорение горных вершин продолжается, то к этим симптомам постепенно присоединяется апатия (состояние равнодушия), мышечная слабость, судороги и головная боль.

в чем происходит газообмен. Смотреть фото в чем происходит газообмен. Смотреть картинку в чем происходит газообмен. Картинка про в чем происходит газообмен. Фото в чем происходит газообмен

При резком быстром подъеме растворимость азота в крови понижается, и кровь буквально вскипает. Только представьте, в сосудах возникают настоящие пузыри газа! Они могут закупорить сосуды легких, сердца, других внутренних органов, в результате чего кровообращение остановится, и последствия могут быть самыми печальными, вплоть до летального исхода.

Как же предупредить кессонную болезнь? Можно использовать в дыхательной смеси вместо азота газ гелий, который не приводит к таким последствиям. Также необходимо придерживаться правила постепенного подъема, с остановками, избегать резкого всплытия.

в чем происходит газообмен. Смотреть фото в чем происходит газообмен. Смотреть картинку в чем происходит газообмен. Картинка про в чем происходит газообмен. Фото в чем происходит газообмен

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Газообмен

Газообмен — обмен газов между организмом и внешней средой, т. е. дыхание. Из окружающей среды в организм непрерывно поступает кислород, который потребляется всеми клетками, органами и тканями; из организма выделяются образующийся в нём углекислый газ и незначительное количество др. газообразных продуктов метаболизма. Газообмен необходим почти для всех организмов, без него невозможен нормальный обмен веществ и энергии, а, следовательно, и сама жизнь.

Кислород, поступающий в ткани, используется для окисления продуктов, образующихся в итоге длинной цепи химических превращений углеводов, жиров и белков. При этом образуются CO2, вода, азотистые соединения и освобождается энергия, используемая для поддержания температуры тела и выполнения работы. Количество образующегося в организме и, в конечном итоге, выделяющегося из него CO2 зависит не только от количества потребляемого О2, но и от того, что преимущественно окисляется: углеводы, жиры или белки. Отношение удаляемого из организма CO2 к поглощённому за то же время O2 называется дыхательным коэффициентом, который равен примерно 0,7 при окислении жиров, 0,8 при окислении белков и 1,0 при окислении углеводов. Количество энергии, освобождающееся на 1 л потребленного O2 (калорический эквивалент кислорода), равно 20,9 кДж (5 ккал) при окислении углеводов и 19,7 кДж (4,7 ккал) при окислении жиров. По потреблению O2 в единицу времени и по дыхательному коэффициенту можно рассчитать количество освободившейся в организме энергии.

Газообмен (соответственно и расход энергии) у пойкилотермных животных (холоднокровных) понижается с понижением температуры тела. Такая же зависимость обнаружена и у гомойотермных животных (теплокровных) при выключении терморегуляции (в условиях естественной или искусственной гипотермии); при повышении температуры тела (при перегреве, некоторых заболеваниях) газообмен увеличивается.

При понижении температуры окружающей среды газообмен у теплокровных животных (особенно у мелких) увеличивается в результате увеличения теплопродукции. Он увеличивается также после приёма пищи, особенно богатой белками (т. н. специфически-динамическое действие пищи). Наибольших величин газообмен достигает при мышечной деятельности. У человека при работе умеренной мощности он увеличивается, через 3–6 мин. после её начала достигает определённого уровня и затем удерживается в течение всего времени работы на этом уровне. При работе большой мощности газообмен непрерывно возрастает; вскоре после достижения максимального для данного человека уровня (максимальная аэробная работа) работу приходится прекращать, так как потребность организма в O2 превышает этот уровень. В первое время после окончания работы сохраняется повышенное потребление O2, используемого для покрытия кислородного долга, то есть для окисления продуктов обмена веществ, образовавшихся во время работы. Потребление O2 может увеличиваться с 200–300 мл/мин. в состоянии покоя до 2000–3000 при работе, а у хорошо тренированных спортсменов — до 5000 мл/мин. Соответственно увеличиваются выделение CO2 и расход энергии; одновременно происходят сдвиги дыхательного коэффициента, связанные с изменениями обмена веществ, кислотно-щелочного равновесия и лёгочной вентиляции.

Расчёт общего суточного расхода энергии у людей разных профессий и образа жизни, основанный на определениях газообмена важен для нормирования питания. Исследования изменений газообмена при стандартной физической работе применяются в физиологии труда и спорта, в клинике для оценки функционального состояния систем, участвующих в газообмене.

Сравнительное постоянство газообмена при значительных изменениях парциального давления O2 в окружающей среде, нарушениях работы органов дыхания и т. п. обеспечивается приспособительными (компенсаторными) реакциями систем, участвующих в газообмене и регулируемых нервной системой.

У человека и животных газообмен принято исследовать в условиях полного покоя, натощак, при комфортной температуре среды (18–22 °C). Количества потребляемого при этом O2 и освобождающейся энергии характеризуют основной обмен. Для исследования применяются методы, основанные на принципе открытой либо закрытой системы. В первом случае определяют количество выдыхаемого воздуха и его состав (при помощи химических или физических газоанализаторов), что позволяет вычислять количества потребляемого O2 и выделяемого CO2. Во втором случае дыхание происходит в закрытой системе (герметичной камере либо из спирографа, соединённого с дыхательными путями), в которой поглощается выделяемый CO2, а количество потребленного из системы O2 определяют либо измерением равного ему количества автоматически поступающего в систему O2, либо по уменьшению объёма системы.

Газообмен у человека происходит в альвеолах легких и в тканях тела.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *