в чем принимают участие нейротрубочки

В чем принимают участие нейротрубочки

Функциональная единица нервной системы — нервная клетка, нейрон. Нейроны способны генерировать электрические импульсы и передавать их в виде нервных импульсов. Нейроны образуют между собой химические связи — синапсы. Соединительная ткань нервной системы представлена нейроглией (дословно— «нервная глия»). Клетки нейроглии так же многочисленны, как и нейроны, и выполняют трофическую и опорную функции.

Миллиарды нейронов формируют поверхностный слой — кору— полушарий головного мозга и полушарий мозжечка. Кроме того, в толще белого вещества нейроны образуют скопления—ядра.

Практически все нейроны ЦНС мультиполярны: сома (тело) нейронов характеризуется наличием нескольких полюсов (вершин). От каждого полюса, за исключением одного, отходят отростки — дендриты, которые образуют многочисленные разветвления. Дендритные стволы могут быть гладкими или образовывать многочисленные шипики. Дендриты образуют синапсы с другими нейронами в области шипиков или ствола дендритного дерева.

От оставшегося полюса сомы отходит отросток, проводящий нервные импульсы,— аксон. Большинство аксонов формирует коллатеральные ветви. Концевые ветви образуют синапсы с нейронами-мишенями.

Нейроны образуют два основных типа синаптических контактов: аксодендритические и аксосоматические. Аксодендритические синапсы в большинстве случаев передают возбуждающие импульсы, а аксосоматические — тормозящие.

в чем принимают участие нейротрубочки. Смотреть фото в чем принимают участие нейротрубочки. Смотреть картинку в чем принимают участие нейротрубочки. Картинка про в чем принимают участие нейротрубочки. Фото в чем принимают участие нейротрубочкиФормы нейронов мозга.
(1) Пирамидальные нейроны коры полушарий.
(2) Нейроэндокринные нейроны гипоталамуса.
(3) Шипиковые нейроны полосатого тела.
(4) Корзинчатые нейроны мозжечка. Дендриты нейронов 1 и 3 образуют шипики.
А — аксон; Д — дендрит; КА — коллатерали аксона.
в чем принимают участие нейротрубочки. Смотреть фото в чем принимают участие нейротрубочки. Смотреть картинку в чем принимают участие нейротрубочки. Картинка про в чем принимают участие нейротрубочки. Фото в чем принимают участие нейротрубочкиДендритные шипики.
Срез мозжечка, на котором имеются дендриты гигантских клеток Пуркинье, образующие шипики.
В поле зрения различимы три шипика (Ш), образующие синаптические контакты с булавовидными расширениями аксонов (А).
Четвертый аксон (слева вверху) образует синапс с дендритным стволом.
в чем принимают участие нейротрубочки. Смотреть фото в чем принимают участие нейротрубочки. Смотреть картинку в чем принимают участие нейротрубочки. Картинка про в чем принимают участие нейротрубочки. Фото в чем принимают участие нейротрубочки(А) Двигательный нейрон переднего рога серого вещества спинного мозга.
(Б) Увеличенное изображение (А). Миелиновые оболочки участков 1 и 2, располагающихся в белом веществе ЦНС, образованы олигодендроцитами.
Возвратная коллатеральная ветвь аксона начинается от немиелинизированного участка.
Миелиновые оболочки участков 3 и 4, относящихся к периферической части нервной системы, образованы шванновскими клетками.
Утолщение аксона в области вхождения в спинной мозг (переходного участка) соприкасается с одной стороны с олигодендроцитом, а с другой—со шванновской клеткой.
(В) Нейрофибриллы, состоящие из нейрофиламентов, видны после окрашивания солями серебра.
(Г) Тельца Ниссля (глыбки гранулярной эндоплазматической сети) видны при окрашивании катионными красителями (например, тионином).

Внутреннее строение нейронов

Цитоскелет всех структур нейрона образован микротрубочками и нейрофиламентами. Тело нейрона содержит ядро и окружающую его цитоплазму— перикарион (греч.peri— вокруг и karyon—ядро). В перикарионе расположены цистерны гранулярной (шероховатой) эндоплазматической сети — тельца Ниссля, а также комплекс Гольджи, свободные рибосомы, митохондрии и агранулярная (гладкая) эндоплазматическая сеть.

1. Внутриклеточный транспорт. В нейронах происходит обмен веществ между мембранными структурами и компонентами цитоскелета: непрерывно синтезируемые в соме новые клеточные компоненты перемещаются в аксоны и дендриты путем антероградного транспорта, а продукты метаболизма поступают путем ретроградного транспорта в сому, где происходит их лизосомальное разрушение (распознавание клеток-мишеней).

Выделяют быстрый и медленный антероградный транспорт. Быстрый транспорт (300-400 мм в сутки) осуществляют свободные клеточные элементы: синаптические пузырьки, медиаторы (или их предшественники), митохондрии, а также липидные и белковые молекулы (в том числе и белки-рецепторы), погруженные в плазматическую мембрану клетки. Медленный транспорт (5-10 мм в сутки) обеспечивают компоненты цнто-скелета и растворимые белки, в том числе и некоторые белки, задействованные в процессе высвобождения медиаторов в нервных окончаниях.

Аксон формирует множество микротрубочек: они начинаются от сомы короткими пучками, которые продвигаются вперед относительно друг друга вдоль начального сегмента аксона; в дальнейшем аксон формируется за счет элонгации (до 1 мм однократно). Процесс элонгации происходит за счет присоединения тубулиновых полимеров на дистальном конце и частичной деполимеризации («разборки») на проксимальном конце. В дистальной части продвижение нейрофиламентов практически полностью замедляется: в этом участке происходит процесс их достраивания за счет присоединения филаментных полимеров, поступающих в этот отдел из сомы посредством медленного транспорта.

Ретроградный транспорт метаболитов митохондрий, агранулярной эндоплазматической сети и плазматической мембраны с расположенными в ней рецепторами осуществляется с достаточно высокой скоростью (150-200 мм в сутки). Помимо выведения продуктов клеточного метаболизма, ретроградный транспорт участвует в процессе распознавания клеток-мишеней. В синапсе аксоны захватывают с поверхности плазматической мембраны клетки-мишени сигнальные эндосомы, содержащие белки,— нейротрофины («пища для нейронов»). Затем нейротрофины транспортируются в сому, где встраиваются в комплекс Гольджи.

Кроме того, захват таких «маркерных» молекул клеток-мишеней играет важную роль в распознавании клеток в процессе их развития. В дальнейшем этот процесс обеспечивает выживание нейронов, поскольку со временем их объем уменьшается, что может привести к гибели клеток в случае разрыва аксона вблизи его первых ответвлений.

Первым среди нейротрофинов был изучен фактор роста нервов, выполняющий особенно важные функции в развитии периферической чувствительной и вегетативной нервной системы. В соме нейронов зрелого мозга синтезируется фактор роста, выделенный из головного мозга (BDNF), который транспортируется антероградно в их нервные окончания. Согласно данным, полученным в результате исследований на животных, фактор роста, выделенный из головного мозга, обеспечивает жизнедеятельность нейронов, принимая участие в обмене веществ, проведении импульсов и синаптической передаче.

в чем принимают участие нейротрубочки. Смотреть фото в чем принимают участие нейротрубочки. Смотреть картинку в чем принимают участие нейротрубочки. Картинка про в чем принимают участие нейротрубочки. Фото в чем принимают участие нейротрубочкиВнутреннее строение двигательного нейрона.
Изображены пять дендритных стволов, три возбуждающих синапса (выделены красным цветом) и пять тормозных синапсов.

2. Механизмы транспорта. В процессе нейронального транспорта роль поддерживающих структур выполняют микротрубочки. Связанные с микротрубочками белки перемещают органеллы и молекулы вдоль внешней поверхности миктротрубочек за счет энергии АТФ. Антероградный и ретроградный транспорт обеспечивают разные виды АТФаз. Ретроградный транспорт осуществляется за счет динеиновых АТФаз. Нарушение функционирования динеинов приводит к болезни двигательного нейрона.
Ниже описано клиническое значение нейронального транспорта.

Столбняк. При загрязнении раны почвой возможно заражение столбнячной палочкой (Clostridium tetani). Этот микроорганизм продуцирует токсин, который связывается с плазматическими мембранами нервных окончаний, проникает путем эндоцитоза в клетки и посредством ретроградного транспорта попадает в нейроны спинного мозга. Нейроны, расположенные на более высоких уровнях, также захватывают этот токсин путем эндоцитоза. Среди этих клеток необходимо особенно отметить клетки Реншоу, которые в норме оказывают тормозное действие на двигательные нейроны путем выделения тормозного медиатора—глицина.

При поглощении клетками токсина выделение глицина нарушается, вследствие чего прекращаются тормозные влияния на нейроны, осуществляющие двигательную иннервацию мышц лица, челюстей и позвоночника. Клинически это проявляется длительными и изнурительными спазмами этих мышц и в половине случаев заканчивается гибелью пациентов от истощения в течение нескольких дней. Предотвратить столбняк возможно, проведя своевременную иммунизацию в должном объеме.

Вирусы и токсичные металлы. Считают, что за счет ретроградного аксонального транспорта происходит распространение вирусов (например, вируса простого герпеса) из носоглотки в ЦНС, а также перенос токсичных металлов—алюминия и свинца. В частности, распространение вирусов по структурам мозга осуществляется за счет ретроградного межнейронального переноса.

Периферические нейропатии. Нарушение антероградного транспорта — одна из причин дистальных аксональных нейропатий, при которых развивается прогрессирующая атрофия дистальных участков длинных периферических нервов.

в чем принимают участие нейротрубочки. Смотреть фото в чем принимают участие нейротрубочки. Смотреть картинку в чем принимают участие нейротрубочки. Картинка про в чем принимают участие нейротрубочки. Фото в чем принимают участие нейротрубочкиТельце Ниссля в соме двигательного нейрона.
Эндоплазматическая сеть имеет многоуровневую структуру. Полирибосомы образуют выросты на внешних поверхностях цистерн или свободно лежат в цитоплазме.
(Примечание: для лучшей визуализации структуры слабо окрашены).

Редактор: Искандер Милевски. Дата публикации: 11.11.2018

Источник

В чем принимают участие нейротрубочки

Цитоархитектоника головного мозга человека организована таким образом, что более чем 10 млрд. нервных клеток, занимая относительно небольшое пространство и будучи сформированными в специализированные структуры, обеспечивают специфические функции мозга, связанные с восприятием, переработкой и проведением информации, в соответствии с которой осуществляется взаимодействие организма с внешней средой на основе высокой нейрональной специфичности и пластичности.

Основной структурной единицей нервной системы является нейрон. Различные типы нейронов дифференцируются по величине и форме тела клетки, а также по длине и степени ветвистости ее отростков.

Клеточное тело по своим размерам варьирует очень широко — от 5 до 100 мкм в диаметре. Оно содержит следующие органеллы: ядро, митохондрии, эндоплазматический ретикулум (гладкий и шероховатый), расположенные на цистернах эндоплазматического ретикулума и в свободном пространстве рибосомы и полисомы, комплекс Гольджи и различные внутриклеточные включения (гранулы гликогена, липидные капли, скопления частиц пигмента в особых нейронах и др.), везикулы, а также лизосомы. Группы параллельно расположенных цистерн шероховатого эндоплазматического ретикулума в виде ограниченных мембраной удлиненных цистерн с прикрепленными к ним рибосомами образуют субстанцию (тельца) Ниссля (тигроидное вещество). В цитоплазме имеются также нейрофиламенты и нейротрубочки (рис. 3).

Все перечисленные ультраструктурные органеллы клетки несут определенные функции. Ядро является субстратом основных генетических процессов в клетке. Митохондрии обеспечивают энергетический обмен — в них происходит окислительное фосфорилирование, приводящее к продукции энергии в виде молекул АТФ. Эндоплазматический ретикулум с прикрепленными на его цистернах рибосомами, а также свободно расположенные рибосомы и их комплексы (полисомы) имеют отношение к белковому обмену и синтетическим процессам в клетке. Лизосомам приписывается обменно-выделительная роль. Нейротрубочки и нейрофиламенты обеспечивают транспорт внутриклеточных веществ, имеющих отношение к проведению нервного импульса. Долгое время считали, что комплекс Гольджи, состоящий из параллельно расположенных цистерн и скоплений пузырьков на их концах, выполняет неопределенные обменно-выделительные функции. Хотя об этом комплексе известно далеко не все, привлекают к себе накопленные многими исследователями данные, свидетельствующие о том, что он играет главную роль в процессах обновления клеточной мембраны и ее генетически обусловленной специализации. Известно, что в комплексе Гольджи может происходить первичная сборка специализированных участков мембраны (рецепторов), которые в виде пузырьков транспортируются к наружной клеточной оболочке и встраиваются в нее. Такие исследования были обобщены А.А.Милохиным (1983).

От тела нейрона отходят основной отросток — аксон и многочисленные ветвящиеся отростки — дендриты. Длина аксонов различных нейронов колеблется от 1 мм до почти 1 м (нервное волокно). Вблизи окончания аксон разделяется на терминали, на которых расположены синапсы, контактирующие с телом и дендритами других нейронов. Синапсы вместе с нейрофиламентами и нейротрубочками являются субстратом проведения нервного импульса.

в чем принимают участие нейротрубочки. Смотреть фото в чем принимают участие нейротрубочки. Смотреть картинку в чем принимают участие нейротрубочки. Картинка про в чем принимают участие нейротрубочки. Фото в чем принимают участие нейротрубочки

Рис. 3. Основные ультраструктурные компоненты нейрона.

Л — лизосомы; ШЭР — шероховатый эндоплазматический ретикулум (цистерны с прикрепленными рибосомами); М — митохондрии; НФ — нейрофиламенты; НТ — нейротрубочки; P — рибосомы; П — полисомы (комплексы рибосом); КГ — комплекс Гольджи; Я — ядро; ЦЭР — цистерны эндоплазматического ретикулума; ЛГ — липидные гранулы; ЛФ — липофусцин.

Кроме нейронов, в ткани мозга имеются различные виды глиальных клеток — астроглия, олигодендроглия, микроглия. Астроглия играет большую роль в обеспечении функции нейрона и формировании реакции мозговой ткани на вредоносные воздействия (инфекция, интоксикация и др.) — принимает участие в воспалительных процессах и ликвидации их последствий (заместительный глиоз). Олигодендроглия, как известно, обеспечивает миелинизацию нервного волокна и регулирует водный обмен (дренажная глия). Функции микроглии не до конца изучены, но ее значение подчеркивается размножением этих клеток при некоторых специфических процессах (участие в формировании сенильных бляшек; существует предположение о выработке микроглиальными клетками амилоидных фибрилл и т.п.).

Особые клеточные структуры характерны для желудочковых поверхностей головного мозга и его сосудистого сплетения. Желудочковая поверхность мозга покрыта клетками эпендимы с многочисленными микроворсинками и ресничками, принимающими участие в ликворообращении; сосудистое сплетение представлено «гроздьями» ворсинок, состоящих из капилляров, покрытых эпителиальными клетками. Их основная функция связана с обменом веществ между кровью и цереброспинальной жидкостью.

в чем принимают участие нейротрубочки. Смотреть фото в чем принимают участие нейротрубочки. Смотреть картинку в чем принимают участие нейротрубочки. Картинка про в чем принимают участие нейротрубочки. Фото в чем принимают участие нейротрубочки

Типичный синапс состоит из пресинаптической терминали, постсинаптической области и расположенной между ними синаптической щели. Пресинаптическая терминаль является окончанием аксона. Она содержит нейрофиламенты, нейротрубочки, митохондрии и синаптические пузырьки, скопления которых видны около пресинаптической мембраны. Через последнюю переносятся содержащиеся в пузырьках нейротрансмиттеры. Постсинапс характеризуется наличием постсинаптического утолщения. Постсинаптическое утолщение представлено мембраной клетки с расположенными на ней рецепторами, входящими в структуру самой мембраны. Синапс представлен на рис. 4, а его электронно-микроскопическая картина на рис. 5.

в чем принимают участие нейротрубочки. Смотреть фото в чем принимают участие нейротрубочки. Смотреть картинку в чем принимают участие нейротрубочки. Картинка про в чем принимают участие нейротрубочки. Фото в чем принимают участие нейротрубочки

Синапс может быть расположен на теле (соме) клетки — аксосоматический синапс, на дендрите — аксодендритный, на шипике дендрита — аксошипиковый (рис. 6) и на аксоне другой клетки — аксо-аксональный. Аксошипиковые синапсы несколько отличаются по своему строению от типичного синапса, что определяется строением шипика, имеющего в составе постсинапса особый шипиковый аппарат.

Взаимодействие пресинапса и постсинапса обеспечивается благодаря переносу нейротрансмиттера через синаптическую щель. Выделяясь из пресинапса, нейротрансмиттер (медиатор) может связываться с рецептором постсинаптической мембраны, инактивироваться в синаптической щели и частично вновь захватываться пресинаптической мембраной (процесс обратного захвата — reuptake ). Если рецептор постсинаптической мембраны заблокирован, то возможны оба последних процесса, а также избыточное накопление медиатора и связанное с этим развитие гиперчувствительности рецепторов (см. рис. 4).

Более подробно эти процессы рассматриваются в разделе «Нейрохимические системы мозга».

Рецепторы нейронов — это белковые структуры, расположенные на внешней поверхности мембраны клеток. Они способны «распознавать» и связывать биологически активные вещества — нейротрансмиттеры, различные эндогенные вещества, а также экзогенные соединения, в том числе психофармакологические средства. Соединения, которые могут связывать рецепторы, называются лигандами. Лиганды бывают эндогенными и экзогенными.

Распознавание лиганда рецептором обеспечивается специальными структурными элементами, или сайтами. Специфичность связывания лиганда происходит благодаря структурному соответствию молекул лиганда и рецептора, когда они подходят друг к другу по типу «ключ к замку». Реакция связывания является моментом запуска каскада внутриклеточных реакций, приводящих к изменению функционального состояния нейрона. В зависимости от «силы» и «прочности» связывания лиганда с рецептором употребляют понятие аффинности (сродства) лиганда по отношению к рецептору.

При связывании рецептора с лигандом может происходить как активация, так и блокада рецептора. В связи с этим говорят об агонистах и антагонистах рецепторов, а также о частичных агонистах (рис. 7).

Максимальную эффективность в отношении активации рецептора имеет полный агонист, минимальную (практически нулевую) — антагонист. Между ними находятся вещества, называемые частичными агонистами. Последние действуют значительно мягче, чем полные агонисты. Частичные агонисты, кроме того, занимая определенное пространственное положение в молекуле рецептора, могут предотвращать избыточное действие полного агониста, т.е. действуют частично как антагонисты. В этом случае употребляют понятие агонист/антагонист.

Высокой аффинностью могут обладать как агонисты, так и антагонисты рецептора. Агонист активирует рецептор, вызывая соответствующий физиологический эффект, в то время как антагонист, связываясь с рецептором, блокирует его и предотвращает развитие физиологического эффекта, выявляемого агонистами. Примером антагонистов могут служить нейролептики, которые предотвращают эффекты дофамина на уровне дофаминового рецептора.

При связывании лиганда с рецептором происходит изменение конфигурации последнего (рис. 7).

Многие вещества, как эндогенные, так и экзогенные, реагируют не с одним, а с несколькими типами рецепторов — «семейством» их, которое подразделяется на отдельные типы. Примером могут служить многие нейротрансмиттеры, реагирующие с несколькими типами специфических рецепторов (например, Д1—Д5-типы дофаминовых рецепторов). Существование нескольких рецепторов к одному лиганду носит название гетерогенности рецепторов.

Представление о функции рецепторов было бы неполным, если не представить внутриклеточные процессы, развивающиеся после связывания рецептора соответствующим веществом, и механизмы, обеспечивающие трансформацию внешнего сигнала в процессы, приводящие к появлению нервного импульса. Связывание лиганда с рецептором может приводить либо непосредственно к открытию (или закрытию) соответствующих ионных каналов (см. рис. 7), либо к активации вторичных мессенджерных систем (в качестве первичного мессенджера рассматривается вещество, реагирующее с рецептором).

в чем принимают участие нейротрубочки. Смотреть фото в чем принимают участие нейротрубочки. Смотреть картинку в чем принимают участие нейротрубочки. Картинка про в чем принимают участие нейротрубочки. Фото в чем принимают участие нейротрубочки

в чем принимают участие нейротрубочки. Смотреть фото в чем принимают участие нейротрубочки. Смотреть картинку в чем принимают участие нейротрубочки. Картинка про в чем принимают участие нейротрубочки. Фото в чем принимают участие нейротрубочки

Позднее были открыты и другие вторичные мессенджеры. Сейчас выделяют среди них 3 класса: 1) циклические нуклеотиды (цАМФ, циклический гуанозинмонофосфат — цГМФ); 2) ионы кальция (Са 2+ ); 3) метаболиты фосфолипидов — инозитол-1,4,5-трифосфат (1Р 3 ), диглицерин (ДАГ), арахидоновую кислоту. В отличие от других вторичных мессенджеров Са 2+ транспортируется в нейрон из внутриклеточного пространства.

Источник

Нейрофиламенты и нейротрубочки

Основными структурными компонентами рассматриваемой системы служат нейротрубочки (микротрубочки нервных кле­ток) и нейрофиламенты. Имеется предположение, что нейрофиламенты связаны с миозином, который, в свою очередь, взаимо­действует с субмембранным актином, присутствующим в от­ростках нервных клеток. По этой гипотезе, с одной стороны, нейротрубочки принимают участие в работе актин-миозиновой системы, а с другой стороны, они могут играть самостоятель­ную транспортную роль при перемещении отдельных ограничен­ных мембраной структур. Перемещение осуществляется, по-видимому, за счет их собственной механохимической системы. Однако интересные предположения относительно взаимодейст­вия актин-миозиновой, скелетной и микротрубочковой систем аксонов при медленном токе аксоплазмы в настоящее время подвергаются сомнению. Как уже отмечалось выше, в процес­сах направленного смещения аксоплазмы значительную роль играют, по-видимому, особые свойства белков нейрофиламентов. Материал с сайта http://wiki-med.com

Более определенные данные имеются о механохимических си­стемах и о регуляции их работы в пресинаптической области химических синапсов. В области субмембранных утолщений пре­синаптической мембраны сосредоточен актиноподобный белок нейрин. Второй основной компонент этой системы — миозино­подобный белок стенин — локализован преимущественно на наружной поверхности мембран синаптических пузырьков. Ра­бота рассматриваемой механохимической системы при выведе­нии синаптических пузырьков регулируется, как и в мышцах, при помощи кальцийзависимой тропонин-тропомиозиновой си­стемы, также локализованной в пресинаптической области. Ионы кальция регулируют и разборку нейротрубочек и нейрофиламентов в пресинаптической области. Это осуществляется либо непосредственно (нейротрубочки), либо путем активации специальных гидролитических ферментов (нейрофиламенты). В последнее время на некоторых синапсах удалось показать, что микротрубочки могут и не подвергаться разборке в преси­наптической области. Здесь микротрубочки транспортируют синаптические пузырьки до утолщений субмембранной гиало­плазмы в области пресинаптической мембраны. Следовательно, в описываемых синапсах наблюдаются весьма тесные струк­турные взаимодействия между актин-миозиновой и микротру­бочковой системами.

Источник

Cтроение и функции нейрона

Строение и функции нейрона [ править | править код ]

в чем принимают участие нейротрубочки. Смотреть фото в чем принимают участие нейротрубочки. Смотреть картинку в чем принимают участие нейротрубочки. Картинка про в чем принимают участие нейротрубочки. Фото в чем принимают участие нейротрубочки

Возбудимые клетки реагируют на раздражители путем изменения состояния мембран. Существуют два типа возбудимых клеток: нервные клетки, которые проводят и преобразуют импульсы в нервной системе, и мышечные клетки, которые сокращаются либо в ответ на нервные импульсы, либо автономно.

Везикулы, содержащие различные вещества (белки, липиды, сахара и молекулы медиаторов), транспортируются от комплекса Гольджи в соме к синаптическому окончанию и к кончикам дендритов путем быстрого аксонного транспорта (40 см/сутки). Этот вид антероградного (направленного вперед) транспорта по ходу нейротрубочек осуществляется кинезином (миозино-подобным белком), а энергия, необходимая для этого, поставляется АТФ. Эндогенные и экзогенные вещества, такие как фактор роста нервов (ФРН, или NRF), вирус герпеса, вирус полиомиелита и столбнячный токсин, проводятся ретроградным (направленным назад) транспортом от периферических участков к соме со скоростью

25 см/сутки. Медленный аксонный транспорт (

1 мм/сутки) играет важную роль при лечении тяжелых невритов.

Плазматическая мембрана сомы продолжается вдоль аксона и называется аксолеммой (А1, 2).

Синапс (А3) — это участок, где аксон нейрона взаимодействует с эффекторами или другими нейронами. Синаптическая передача почти у всех млекопитающих осуществляется с помощью химических соединений, а не с помощью электрических сигналов. В ответ на электрический сигнал в аксоне из везикул на пресинаптической мембране происходит высвобождение нейромедиаторов путем экзоцитоза. Медиатор диффундирует через синаптическую щель (10-40 нм) к постсинаптической мембране, где он соединяется с рецепторами, создающими новые электрические сигналы (АЗ). В зависимости от типа участвующих в процессе нейромедиатора и рецептора нейромедиатор оказывает на постсинаптическую мембрану или возбуждающий (например, ацетилхолин в скелетной мышце), или тормозящий эффект (например, глицин в ЦНС). Поскольку постсинаптическая мембрана в норме не высвобождает нейромедиаторы (существует всего несколько исключений), нервные импульсы могут пройти через синапс только в одном направлении. Таким образом, синапс действует как клапан, который обеспечивает упорядоченную передачу сигнала. Синапсы являются также участками, в которых передача нервного импульса может быть преобразована другими (возбуждающими или тормозными) нейронами.

Искусственная стимуляция нервной клетки [ править | править код ]

Когда электрический импульс из внешнего источника приложен к нервной клетке, ток течет от положительно заряженного электрода (анода) и выходит на отрицательно заряженный электрод [катод). Нервное волокно ниже катода деполяризуется, и при условии, что достигнут пороговый потенциал, генерируется потенциал действия.

Скорость проведения импульса по нерву можно измерить, поместив два электрода на кожу по ходу нерва на известном расстоянии друг от друга, с последующей стимуляцией этого нерва (содержащего многочисленные нейроны) и регистрацией времени, которое потребовалось суммарному потенциалу действия для прохождения расстояния между электродами. Скорость проведения сигнала у человека обычно составляет от 40 до 70 м/с. Значения ниже 40 м/с считаются патологическими.

Постоянный ток обычно действует как стимул только при включении и выключении: высокочастотный переменный ток (> 15 кГц), напротив, не способен вызвать деполяризацию, но повреждает ткани организма. На этом принципе основана диатермия.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *