в чем преимущество переменного тока перед постоянным
Трехфазный ток: его описание
Трехфазный переменный ток. Очень многие слышали о существовании такого. Однако сталкиваются с этим током люди, работающие на производствах. В быту трехфазный ток не находит пока применения. Только если вы не решили установить у себя в гараже токарный или фрезерный станок, предназначенный для промышленных нужд.
Что такое ток?
Током называют упорядоченное движение заряженных частиц по проводнику. В металлическом проводнике (провода, кабели) проводят ток электроны. В воздухе и жидкости – ионы.
Источник тока или то, откуда начинают свое движение электроны, обозначают знаком «+», а то, куда они приходят, обозначают знаком «-». Это поведение электрического тока называют постоянным током. Он на протяжении всего времени, пока замкнута цепь, не меняет своего направления.
Переменный ток
Переменному току свойственно изменять свое направление течения по проводнику. Для нашей сети частота изменения направления, то есть, ток протек в одном направлении, а затем вернулся, равна 50 Гц.
Генерация переменного тока происходит следующим образом: в статор, в котором намотаны обмотки, устанавливается электромагнит, который создает магнитное поле, которое, в свою очередь, и заставляет упорядоченно двигаться заряженные частицы. При прохождении рядом с обмоткой магнитного поля сила тока возрастает, и он протекает в одну сторону.
После прохождения пика сила магнитного потока относительно обмотки спадает до нуля, а затем противоположным полюсом магнита снова возрастает сила тока. Только в этот раз он протекает в обратном направлении. Питание на электромагнит приходит в зависимости от конструкции генератора переменного тока.
Трехфазный переменный ток
Преимущество переменного тока перед постоянным
Теперь о преимуществе трехфазного переменного тока. Объяснить это достаточно просто. Прежде всего:
Машины, работающие на переменном токе, также просты в ремонте и обслуживании, у них отсутствует искрящий коллектор, как у двигателя постоянного тока. Искрящий коллектор является причиной помех радиосигнала, как аналогового, так и цифрового, поэтому некоторая электроника буквально «сходит с ума» рядом с такими агрегатами. Машины постоянного тока требуют регулярного осмотра, замены щеток, а также их сложнее ремонтировать, и, как следствие, дороже.
Переменный ток в любой момент можно выпрямить при помощи диодного моста. Но он будет пульсировать.
Для того, чтобы избавиться от пульсаций, в цепь устанавливают конденсатор и катушку. Эта конструкция называется L-C фильтром. При повышении тока конденсатор заряжается, немного снижая максимальную величину, а при его падении разряжается, сглаживая пульсации, и напряжение перестает падать до нуля. Катушка способна сгладить остаточные пульсации. Трехфазный ток выравнивается при помощи выпрямителя Миткевича или Ларионова, при этом на выходе пульсации уже мизерные.
Выпрямитель Миткевича выглядит так:
Недостатки переменного тока
В первую очередь, довольно низкое напряжение, которое может нанести вред здоровью или даже стать причиной смерти: всего 42 В при том, что для постоянного тока считается опасным 110 В. Конечно, эта цифра для каждого своя и зависит от множества факторов.
Также у машин переменного тока ограничена максимальная скорость вращения: 3000 об. /мин. Это предел асинхронного двигателя. Скорость вращения может быть ниже. Это зависит от количества полюсных пар.
Для повышения скорости вращения асинхронного двигателя, а также для динамического управления скоростью придется использовать частотный преобразователь. Чем выше частота, тем выше скорость вращения магнитного потока в пространстве, а значит и ротора. Такие частотные преобразователи довольно дорогие.
Проблема в том, что там на выходе переменный ток, но не синусоидальный. Скорее, там находится раскачанный постоянный ток. Такие устройства намного дешевле, но, к примеру, двигатель от них работать не будет. Суть в том, что магнитный поток в моторе плавно перетекает при вращении, а в данном случае он будет меняться вспышками, что делает невозможным работу асинхронного двигателя, и, скорее всего, выведет его из строя.
Заключение
В заключение хотим сказать, что перечисленные недостатки переменного тока, на наш взгляд, несущественны, так как они имеют более дешевые аналогичные решения. Переменный ток более универсален, а высокие мощности проще преобразуются. Последнее происходит при помощи силовых трансформаторов. Потери, которые образуются на переходах у переменного тока, ниже, чем у постоянного. К примеру, для передачи электричества на большие расстояния напряжение повышают до огромных величин (35, 110, 220, 550 кВ) для того, чтобы уменьшить потери. С постоянным током эта история не пройдет, так как устройства в теории будут очень дорогими или же принесут огромные потери.
Чем отличаются и где используются постоянный и переменный ток
В современном мире каждый человек с детства сталкивается с электричеством. Первые упоминания об этом природном явлении относятся к временам философов Аристотеля и Фалеса, которые были заинтригованы удивительными и загадочными свойствами электрического тока. Но лишь в 17 веке великие ученые умы начали череду открытий, касающихся электрической энергии, продолжающихся по сей день.
Открытие электрического тока и создание Майклом Фарадеем в 1831 г. первого в мире генератора кардинально изменило жизнь человека. Мы привыкли, что нашу жизнь облегчают приборы, работающие с использованием электрической энергии, но до сих пор у большинства людей нет понимания этого важного явления. Для начала, чтобы понять основные принципы электричества, необходимо изучить два основных определения: электрический ток и напряжение.
Что такое электрический ток и напряжение
Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:
Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.
Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.
Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).
Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд — это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.
Что такое переменный ток
Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.
Что такое постоянный ток
Когда упорядоченное движение заряженных частиц имеет всегда только одно направление, то такой ток именуется постоянным. Постоянный ток возникает в сети постоянного напряжения, когда полярность зарядов с одной и другой стороны постоянна во времени. Его очень часто используют в различных электронных устройствах и технике, когда не требуется передача энергии на большое расстояние.
Источники электрического тока
Источником электрического тока обычно называется прибор или устройство, с помощью которого в цепи можно создать электрический ток. Такие устройства могут создавать как переменный ток, так и постоянный. По способу создания электрического тока они подразделяются на механические, световые, тепловые и химические.
Механические источники электрического тока преобразуют механическую энергию в электрическую. Таким оборудованием являются различного рода генераторы, которые за счет вращения электромагнита вокруг катушки асинхронных двигателей вырабатывают переменный электрический ток.
Световые источники преобразуют энергию фотонов (энергию света) в электрическую энергию. В них используется свойство полупроводников при воздействии на них светового потока выдавать напряжение. К такому оборудованию можно отнести солнечные батареи.
Тепловые – преобразуют энергию тепла в электричество за счет разности температур двух пар контактирующих полупроводников – термопар. Величина тока в таких устройствах напрямую связана с разностью температур: чем больше разница – тем больше сила тока. Такие источники применяются, например, в геотермальных электростанциях.
Химический источник тока производит электричество в результате химических реакций. Например, к таким устройствам можно отнести различного рода гальванические батареи и аккумуляторы. Источники тока на основе гальванических элементов обычно применяются в автономных устройствах, автомобилях, технике и являются источниками постоянного тока.
Преобразование переменного тока в постоянный
Электрические устройства в мире используют постоянный и переменный ток. Поэтому возникает потребность в том, чтобы преобразовывать один ток в другой или наоборот.
Из переменного тока можно получить постоянный ток с помощью диодного моста или, как его еще называют, «выпрямителя». Основной частью выпрямителя является полупроводниковый диод, который проводит электрический ток только в одном направлении. После этого диода ток не изменяет своего направления, но появляются пульсации, которые устраняют при помощи конденсаторов и других фильтров. Выпрямители бывают в механическом, электровакуумном или полупроводниковом исполнении.
В зависимости от качества изготовления такого устройства, пульсации тока на выходе будут иметь разное значение, как правило, чем дороже и качественнее сделан прибор – тем меньше пульсаций и чище ток. Примером таких устройств являются блоки питания различных приборов и зарядные устройства, выпрямители электросиловых установок в различных видах транспорта, сварочные аппараты постоянного тока и другие.
Для того, чтобы преобразовать постоянный ток в переменный используются инверторы. Такие приборы генерируют переменное напряжение с синусоидой. Существует несколько видов таких аппаратов: инверторы с электродвигателями, релейные и электронные. Все они отличаются друг от друга по качеству выдаваемого переменного тока, стоимости и размерам. В качестве примера такого устройства можно привести блоки бесперебойного питания, инверторы в автомобилях или, например, в солнечных электростанциях.
Где используется и в чём преимущества переменного и постоянного тока
Для выполнения различных задач может потребоваться использование как переменного тока, так и постоянного. У каждого вида тока есть свои недостатки и достоинства.
Переменный ток чаще всего используется тогда, когда присутствует необходимость передачи тока на большие расстояния. Такой ток передавать целесообразнее с точки зрения возможных потерь и стоимости оборудования. Именно поэтому в большинстве электроприборов и механизмов используется только этот вид тока.
Жилые дома и предприятия, инфраструктурные и транспортные объекты находятся на расстоянии от электростанций, поэтому все электрические сети — переменного тока. Такие сети питают все бытовые приборы, аппаратуру на производствах, локомотивы поездов. Приборов, работающих на переменном токе невероятное количество и намного проще описать те устройства, в которых используется постоянный ток.
Постоянный ток используется в автономных системах, таких, например, как бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов. Он широко используется в питании микросхем различной электроники, в средствах связи и прочей технике, где требуется минимизировать количество помех и пульсаций или исключить их полностью. В ряде случае, такой ток используется в электросварочных работах с помощью инверторов. Существуют даже железнодорожные локомотивы, которые работают от систем постоянного тока. В медицине такой ток используется для введения лекарств в организм с помощью электрофореза, а в научных целях для разделения различных веществ (электрофорез белков и прочее).
Обозначения на электроприборах и схемах
Часто возникает потребность в том, чтобы определить на каком токе работает устройство. Ведь подключение устройства, работающего на постоянном токе в электрическую сеть переменного тока, неминуемо приведет к неприятным последствиям: повреждению прибора, возгоранию, электрическому удару. Для этого в мире существуют общепринятые условные обозначения для таких систем и даже цветовая маркировка проводов.
Условно, на электроприборах, работающих на постоянном токе указывается одна черта, две сплошных черты или сплошная черта вместе с пунктирной, расположенные друг под другом. Также такой ток маркируется обозначением латинскими буквами DC. Электрическая изоляция проводов в системах постоянного тока для положительного провода окрашена в красный цвет, отрицательного в синий или черный цвет.
На электрических аппаратах и машинах переменный ток обозначается английской аббревиатурой AC или волнистой линией. На схемах и в описании устройств его также обозначают двумя линиями: сплошной и волнистой, расположенных друг под другом. Проводники в большинстве случаев обозначаются следующим образом: фаза – коричневым или черным цветом, ноль – синим, а заземление желто-зеленым.
Почему переменный ток используется чаще
Выше мы уже говорили о том, почему переменный ток в настоящее время используется чаще, чем постоянный. И все же, давайте рассмотрим этот вопрос подробнее.
Споры о том, какой же ток в использовании лучше идет со времен открытий в области электричества. Существует даже такое понятие, как «война токов» — противоборство Томаса Эдисона и Николы Теслы за использование одного из видов тока. Борьба между последователями этих великих ученых просуществовала вплоть до 2007 года, когда город Нью-Йорк перевели на переменный ток с постоянного.
Для того, чтобы получить максимальную мощность необходимо увеличивать либо толщину проводов (и уменьшать тем самым сопротивление), либо увеличивать напряжение.
В системах переменного тока можно увеличивать напряжение при минимальной толщине проводов тем самым сокращая стоимость электрических линий. Для систем с постоянным током доступных и эффективных способов увеличивать напряжение не существует и поэтому для таких сетей необходимо либо увеличивать толщину проводников, либо строить большое количество мелких электростанций. Оба этих способа являются дорогостоящими и существенно увеличивают стоимость электроэнергии в сравнении с сетями переменного тока.
При помощи электротрансформаторов напряжение переменного тока эффективно (с КПД до 99%) можно изменять в любую сторону от минимальных до максимальных значений, что тоже является одним из важных преимуществ сетей переменного тока. Применение трехфазной системы переменного тока еще больше увеличивает эффективность, а механизмы, например, двигатели, которые работают в электросетях переменного тока намного меньше, дешевле и проще в обслуживании, чем двигатели постоянного тока.
Исходя из всего вышесказанного можно сделать вывод о том, что использование переменного тока выгодно в больших сетях и при передаче электрической энергии на большие расстояния, а для точной и эффективной работы электронных приборов и для автономных устройств целесообразно использовать постоянный ток.
Что такое короткое замыкание по-простому?
Какие существуют виды источников электрического тока?
Способы вычисления потребления электроэнергии бытовыми приборами
Как пользоваться мультиметром – измерение напряжения, силы тока и сопротивления
Что такое фазное и линейное напряжение?
Сравнение основных параметров светодиодных ламп и ламп накаливания, таблица соответствия мощности и светового потока
В чем преимущество переменного тока по сравнению с постоянным
Постоянный и переменный ток: преимущества и недостатки
Какой электрический ток лучше: постоянный или переменный ток? Чтобы дать ответ на данный вопрос нужно оценить их преимущества и недостатки по следующим основным направлениям: выработка, передача, распределение и потребление электроэнергии. Проще говоря, нужно ответить на следующие вопросы. Какой род тока проще и дешевле получить, затем передать его на большое расстояние, после чего распределить электроэнергию между потребителями. Потребители какого рода энергии более эффективны?
Сегодня преимущественное большинство электрической энергии, добываемой или генерируемой в мире, выпадет на переменный ток. И в первую очередь это связано с тем, что переменный ток проще преобразовывать из более низкого напряжения в более высокое и наоборот, то есть он проще в трансформации.
Место производство электрической энергии большой мощности, к сожалению пока что невозможно базировать в тех местах, где хотелось бы, то есть непосредственно рядом с потребителями. Например, мощную гидроэлектростанцию можно соорудить только на полноводной реке и то не в каждом месте. А конечный потребитель может находиться на расстоянии сотни и тысячи километров от электростанции. Поэтому очень важно обеспечить такие условия, чтобы минимизировать потери мощности в проводах линии электропередачи ЛЭП. В этом случае потери электроэнергии снижаются с ростом напряжения. Давайте остановимся на этом более подробно. Предположим, имеется некая электростанция, а точнее ее генератор, выдающий мощность 1000 кВт и нам необходимо передать эту мощность потребителю, который находится на расстоянии, например на 100 км от генератора.
Для сравнения электрическую энергию будем передавать напряжением 10 кВ и 100 кВ. При заданных мощности и напряжениях определим величины токов, протекающих в проводах.
I1 = P/U1 = 1000 кВт/10 кВ = 100 А.
I2 = P/U2 = 1000 кВт/100 кВ = 10 А.
Как мы видим, при увеличении напряжения в 10 раз, ток снижается тоже в 10 раз.
Потери электроэнергии в проводах ЛЭП и не только в них определяются квадратом тока, протекающего в них и сопротивлением самого провода. Для простоты расчет примем сопротивление проводов, равным 10 Ом. Подсчитаем потери мощности для обоих случаев.
Pпот1 = I1 2 ∙R = 100 2 ∙10 = 100000 Вт = 100 кВт.
Pпот2 = I2 2 ∙R = 10 2 ∙10 = 1000 Вт = 1 кВт.
Теперь, как мы видим, с ростом напряжения в 10 раз потери электроэнергии снижаются в 100 раз! При более низком напряжении доля потерь в проводах составляет 10 % от мощности, выдаваемой генератором. А при более высоком напряжении эта доля составляет всего 0,1 %. Поэтому очень важным параметров сравнения родов тока является возможность повышать напряжение, а затем его снижать в конечных пунктах.
Можно было бы и не повышать напряжение, а для снижения потерь применять более толстые провода, но такой подход экономически не оправдан, поскольку медные провода стоят денег.
Также можно было бы и не повышать напряжение генератора, а создать такой генератор, который сразу бы выдавал высокое напряжения. Но здесь возникают сложности при изготовлении таких генераторов. Сложности связаны в основном с изоляцией высоковольтных элементов генератора. Короче говоря, изготовить трансформатор на высокое напряжение гораздо проще и дешевле, нежели генератор.
Преимущества переменного тока
Вопрос повышения и снижения переменного напряжения при нынешнем уровне технического развития решается гораздо проще, чем постоянного электрического тока.
Такие преобразования довольно просто выполняются с помощью относительно простого устройства – трансформатора. Трансформатор обладает высоким коэффициентом полезного действия, который достигает 99 %. Это значит, что не более одного процента мощности теряется при повышении или снижении напряжения. К тому же трансформатор позволяет развязать высокое напряжение с более низким, что для большинства электроустановок является очень весомым аргументом.
Применение трехфазной системы переменного тока позволяет еще больше повысить эффективность системы электроснабжения. Для передачи электричества аналогичной мощности потребуется меньше проводов, чем при однофазном переменном токе. К тому же трехфазный трансформатор меньше габаритов однофазного трансформатора равной мощности.
Электрические машины переменного тока, в частности асинхронные двигатели с короткозамкнутым ротором имеют гораздо проще конструкцию, чем двигатели постоянного тока. Главным преимуществом трехфазных асинхронных двигателей является отсутствие коллекторно-щеточного узла. Благодаря чему снижаются расходы на изготовление и эксплуатацию таких электрических машин. Кроме того за счет отсутствия коллекторно-щеточного узла асинхронные двигатели имеют в разы большую мощность по сравнению с двигателями постоянного тока.
Недостатки постоянного тока
Из выше изложенного следуют такие недостатки.
Недостатки переменного тока
Однако большинство нагрузок – двигатели, трансформаторы и сами провода являются индуктивными элементами. А чем больше индуктивность, тем большую долю составляет реактивная мощность от полной и с этим нужно бороться.
Чем выше частота, тем сильнее вытесняется ток к поверхности проводника и в конечном счете, тем выше потери мощности.
Преимущества постоянного тока
Указанные два пункта приводят к тому, что если передавать одну и ту же мощность при равных напряжениях постоянным и переменным токами, то потери мощности электроэнергии постоянным током были бы почти в два раза меньше, чем при переменном токе.
К тому же, если рассматривать такие бытовые электронные устройства как ноутбуки, компьютеры, телевизоры и т. п., то все они имеют блоки питания, преобразующие переменное напряжение 220 В (230 В) в постоянное напряжение более низкой величины. А такие преобразования связаны с частичной потерей мощности.
Кроме того, как было сказано ранее, трехфазный асинхронный двигатель (АД) можно подключить напрямую к сети 380 В, что вполне оправдано в том случае, когда не требуется изменять режим работы двигателя. Но если необходимо изменять частоту вращения его вала, то нужно на обмотки статора подавать напряжение, частота и амплитуда которого должны изменяться пропорционально, согласно закону Костенка. Для этого применяют трехфазные автономные инверторы (АИ), чаще всего инверторы напряжения. Такие инверторы должны получать питание от источника постоянного напряжения.
Также следует заметить, что последним временем начали очень широко применяться солнечные батареи, которые вырабатывают постоянный ток. К тому же, значительно возросла мощность аккумуляторных батарей и повысилась емкость суперконденсаторов, которые также относятся к источникам постоянного тока и с каждым днем находят все большее практическое применение.
Выводы: постоянный или переменный ток
Несмотря на все преимущества постоянного тока, значительная сложность, вызванная преобразованием больших мощностей, главным образом сказывается сложность повышения и понижения постоянного напряжения, сводит на нет указанные выше преимущества. Поэтому, до тех пор, пока не будут разработаны полупроводниковые ключи огромной мощности и соответствующие преобразователи на их основе, переменный ток остается вне конкуренции. К тому же сейчас уже применяются четырехквадрантные преобразователи или активные выпрямители, позволяющие скомпенсировать реактивную составляющую нагрузки, что позволяет получить коэффициент мощности, равный почти единице. Благодаря чему исключается потребление реактивной мощности.
Как вы видите, однозначного ответа на вопрос, какой ток лучше: постоянный или переменный, не существует. Следует сравнивать все преимущества и недостатки для конкретного случая.
LiveInternetLiveInternet
–Метки
–Рубрики
–Музыка
–Подписка по e-mail
–Поиск по дневнику
–Интересы
–Постоянные читатели
–Статистика
Конец эры переменного тока
В большинстве промышленно развитых стран электроэнергетика основана на переменном токе. Используется трехфазная система с частотой тока 50Гц (СНГ, зап. Европа) или 60Гц (США).
Род тока был выбран не случайно, потому что переменный ток имеет множество преимуществ для электрификации страны по сравнению с постоянным:
1) возможность преобразования напряжения таким простым, надежным и эффективным устройством, как трансформатор. В энергосистеме возникает объективная необходимость использовать различные уровни напряжений. Например, для передачи энергии на большие расстояния, с целью уменьшения потерь, предпочтительно высокое напряжение порядка 100кВ, в то время как у бытовых потребителей напряжение 220В, у троллейбусов, метро и трамваев – 600В, железной дороги – 3-25кВ, у генераторов на электростанциях – порядка 6кВ.
2) Использование трансформаторов в электроприборах служит также цели защиты от поражения электротоком – гальваническая развязка с сетью.
3) напрямую к трехфазной системе можно подключать асинхронные двигатели переменного тока, которые характеризуются простотой конструкции, отсутствием щеток и высоким кпд.
4) “длинные” люминесцентные лампы могут работать только от переменного тока, и 220В/50Гц им очень хорошо подходит.
Наряду с этим переменный ток имеет и недостатки, которые, однако, не могли до недавних пор превысить его преимущества, а именно:
1) переменный ток более опасен для жизни. Так, для частот 50 и 60Гц опасным для жизни считается напряжение 40В, тогда как для постоянного тока опасное для жизни напряжение составляет 100В.
2) необходимость синхронизации всех генераторов в энергосистеме. Иначе они будут генерировать напряжение в противофазе и взаимно подавлять друг друга. Эта проблема была успешно решена в масштабах даже крупнее стран. Cинхронизированы все электростанции, входящие в Единую Энергосистему России, а также стран СНГ, в том числе Прибалтики. Существует также единая энергосистема западной Европы. Вероятно, существуют аналогичные крупные системы в Америке и других континентах. Чем крупнее энергосистема – тем более эффективно она функционирует, позволяя динамически перераспределять нагрузки между генераторами и потребителями.
3) несмотря на решение проблемы 2), передача электроэнергии между энергосистемами крайне затруднена из-за того, что они не синхронизированы друг с другом. Между ЕЭС России и Европы существуют связки по постоянному току, но их мощность очень мала. Был период времени, когда в Литве, благодаря ИАЭС, был переизбыток электроэнергии. Так вот, Литва не могла продавать эту энергию в западную Европу из-за несвязанности энергосистем.
4) потери энергии из-за реактивных нагрузок в сети. Проблемы эти решаются путем усложнения оборудования. Например, на промышленных предприятиях устанавливаются крупногабаритные батареи конденсаторов, для компенсации фазовых сдвигов, вносимых электродвигателями, работающими не в полную нагрузку. Бытовые потребители обычно не имеют средств компенсации реактивных нагрузок и потому способствуют излишним потерям энергии в системе.
5) потери энергии из-за индукции паразитных токов, посредством магнитного поля. Грубо говоря, пространственные конфигурации проводов и других объектов создают нежелательные трансформаторы, которые высасывают энергию из сети и рассеивают ее в тепло или хуже того, приводят к порче имущества из-за протекания паразитных токов.
6) потери энергии при работе простых выпрямителей. Выпрямители, которые используются в большинстве современного электронного оборудования, расходуют электричество короткими импульсами, а не равномерно, как, например, лампы. Потребление тока короткими импульсами, по сравнению с непрерывным потреблением, приводит к большему разогреву проводов и тепловым потерям в сети. В некоторых приборах эта проблема решается путем усложнения схемы и ценой ее удорожания.
7) создание помехи частотой 50 или 60Гц при работе чувствительных приборов и схем.
Короче говоря, недостатков много, но все они перевешиваются даже не всеми, а всего лишь одним преимуществом переменного тока: существованием трансформаторов. Для сравнения, преобразователь постоянного тока, используемый в советских электричках серий ЭР1, ЭР2 представляет собой электродвигатель, соединенный с генератором! Именно таким сложным и неэффективным (потери на трение, шум, вибрация, износ) образом до недавних пор можно было преобразовывать постоянный ток.
Отдельно можно говорить о выбранной частоте (50/60Гц). Она не является идеальной для всех случаев, а является компромиссом, при котором может работать большинство потребителей и генераторов электроэнергии. Так, например, в Германии на железной дороге используется пониженная частота тока (12,5Гц или 16Гц – точно не помню). Из-за этого железная дорога вынуждена иметь свою, отделенную от общегосударственной, энергосистему, включающую электростанции, подстанции и т.д.
Конец эры переменного тока был ознаменован тем, что зарядки для мобильников неожиданно стали гораздо меньше по габаритам и массе.
Развитие полупроводниковых технологий и микросхем явило на свет импульсные преобразователи напряжения постоянного тока. Это компактные и дешевые схемы с высоким кпд, которые сейчас можно встретить почти в любом электронном приборе. Импульсный преобразователь по своей массе, габаритам и кпд оказался эффективнее трансформатора! Вспомните, как грелись китайские блоки питания и зарядки для мобилок, и насколько меньше они греются сейчас.
Строго говоря, импульсный преобразователь в некотором роде переводит сначала постоянный ток в переменный, преобразует напряжение с помощью трансформатора или катушки индуктивности (то есть по тому же принципу, что и просто трансформатор), а потом обратно выпрямляет переменный ток в постоянный. Чем же это лучше, чем просто трансформатор? А лучше тем, что параметры переменного тока, который используется в качестве промежуточного, подобраны так, чтобы обеспечить максимальную эффективность трансформатора. При использовании частот 25-50кГц и выше, требуются существенно более малогабаритные трансформаторы. В них используется меньше меди. А медь – довольно дорогой металл, так что экономия достигается существенная. Собственно, из-за экономии меди обычные (трансформаторные) блоки питания и грелись. Параметры трансформаторов в них не обеспечивали максимальный кпд, но обеспечивали экономию металла. Вот так.
Импульсные преобразователи появились уже давно. Еще в 80х годах они уже использовались в компьютерах и другом оборудовании. Но тогда еще эта технология была недостаточно отработана. Из-за высокой сложности схемы были ненадежными, часто отказывали с бурными фейерверками. По тем же причинам – плохая ремонтопригодность. Сложность в разработке и отсутствие типовых схемных решений требовала высокой квалификации инженеров. И только недавно все эти проблемы были решены в такой степени, чтобы создать предпосылки для революции в энергетике. Выпускаются микросхемы (собственно, одну из них, MC34063, я описывал в своем блоге), которые берут большую часть задач на себя. Разработаны методики расчета и компьютерные программы, облегчающие жизнь инженера. Повысилась надежность выпускаемых микросхем, транзисторов и прочих радиоэлементов, наработана статистика отказов, в соответствии с ней выработаны меры защиты схем.
Итак, первое преимущество переменного тока над постоянным – существование трансформаторов – было ликвидировано появлением импульсных преобразователей. Я не уверен, что существуют импульсные преобразователи высокой мощности, такой как трасформаторы на АЭС, но не исключаю принципиальную возможность их создать.
Что касается второй функции трансформаторов – гальваническая развязка с целью защиты от поражения электротоком – то она успешно исполняется малогабаритными трансформаторами, которые являются частью импульсных преобразователей. Иначе такие зарядки для мобилок просто не выпустили бы на рынок – запрещено нормами безопасности.
Наступление на третье преимущество переменного тока – трехфазные асинхронные электродвигатели – ведется с другого направления. Этот двигатель, на самом деле, имеет свои недостатки, такие как необходимость использования трехфазного тока, сложность регулирования скорости вращения. Появились бесколлекторные двигатели постоянного тока. Они требуют сложных электронных схем для управления, а также полупроводниковых ключей, которые в сущности тоже преобразуют постоянный ток в переменный. Все это стало возможным благодаря развитию электроники. Самым прогрессивным двигателем для мощных машин, таких как поезда метро, трамваи и т.д., сейчас считается все тот же асинхронный двигатель, но с электронными схемами управления и импульсным преобразованием напряжения. В таких схемах даже используются высокопроизводительные 16-битные микроконтроллеры – все ради того, чтобы крутить один мотор! Исходным же источником энергии для такой системы, предпочтительно, является все тот же постоянный ток. Проблемы, связанные со сложностью и надежностью электронных схем, в этой области тоже успешно решаются. Так что и это преимущество переменного тока на сегодняшний день отпало. Более того, благодаря полупроводниковым схемам управления и преобразования напряжения, стало возможным реализовать рекуперативное торможение подвижного состава на асинхронных двигателях. С возвратом энергии в энергосистему.
И последнее, четвертое преимущество, касательно ламп. Тут тоже все предельно просто. В настоящее время широко распространены компактные люминесцентные лампы-“змейки”. Так вот, в них установлен электронный преобразователь напряжения и частоты. Используются частоты 25кГц и выше. Это позволяет сделать более компактный, чем у традиционных длинных ламп, блок управления и защиты, а также устранить мерцание этих ламп, являвшееся долгое время предметом обсуждения специалистов по охране труда и профессиональным заболеваниям.
Поэтому, благодаря развитию электроники, на сегодняшний день, переменный ток в электросетях не имеет больше преимуществ по сравнению с постоянным. К перечисленным его недостаткам можно добавить и то, что для вышеописанных “прогрессивных” электронных схем преобразования напряжения, является неудобным поступление исходной энергии в виде переменного тока. Это ведет к усложнению и удорожанию таких схем, либо понижению их эффективности.
Сохранение существующего статус-кво поддерживается наличием огромного количества электрооборудования, рассчитанного на переменный ток. Невозможно мгновенно заменить такой парк техники. Так что я думаю, что переход к электрификации на постоянном токе будет проходить очень постепенно.
Привожу еще преимущества электрификации на постоянном токе с использованием современных полупроводниковых преобразователей напряжения:
1) уменьшение габаритов оборудования электроподстанций
2) уменьшение габаритов ЛЭП всех типов. В существующих ЛЭП необходимо использование трех проводов (три фазы), причем между ними требуется достаточный воздушный промежуток, чтобы не пробило. Для ЛЭП на постоянном токе той же мощности потребуется два провода с меньшим расстоянием изоляции, т.к. переменный ток имеет пиковое напряжение в 1.4 раза выше, чем среднеквадратичное
3) упрощение конструкции всех потребителей электроэнергии (отсутствие необходимости в выпрямителях и схемах Power factor correction)
4) упрощение электропроводки, в том числе в домах
5) отсутствие уязвимости энергосистем, связанных с синхронизацией; облегчение передачи энергии между странами
Метки: электрификация постоянный ток
Процитировано 2 раз
Понравилось: 1 пользователю
Проектируем электрику вместе
Постоянный и переменный ток
Постоянный ток (DC).. Свободные электроны.. Направление электрического тока.. Переменный ток (AC).. Преимущества переменного тока.. Трансформатор напряжения (тока)..
Электрическим током называется направленное движение носителей электрического заряда (в проводниках – это свободные электроны) под действием электрического поля.
Если полярность источника электрической энергии не меняется, то направление движения электронов в проводнике остается неизменным все время, когда цепь замкнута.
В такой цепи электроны выходят из отрицательного полюса (минус источника) и двигаются к положительному полюсу (плюс источника) – одноименные заряды отталкиваются, противоположные – притягиваются.
Такое, неизменное по направлению движение носителей электрического заряда под действием электрического поля называется постоянным током.
Общим обозначением для любого источника постоянного тока (напряжения) является символ батареи ( рис. 1 ).
Важно напомнить, что в физике за направление электрического тока принимают направление движения положительных зарядов (от плюса источника к минусу), т. е. противоположное истинному направлению. Причины такого несоответствия были рассмотрены здесь.
Этот тип электрического тока используется в большинстве игрушек, в многочисленных электронных приборах (телефоны, смартфоны, плеера, ноутбуки и т. д.), в автомобильной электронике и других устройствах, использующих аккумуляторы и выпрямители переменного тока.
Электрический ток может протекать в электрической цепи двумя разными способами.
При наличии постоянного источника электрической энергии мы имеем в такой цепи постоянный ток.
Если полярность источника электрической энергии периодически меняется, то мы имеем в такой цепи переменный ток (рис. 3). В этом случае направление электрического поля в проводнике меняется с частотой сети, а свободные электроны совершают колебательные движения относительно некоторого положения равновесия. При этом свободные электроны не движутся ни в одну, ни в другую сторону, но под действием переменного электрического поля (изменяющегося по синусоидальному закону) они совершают колебания в полном соответствии с изменениями электрического поля.
Таким образом, переменный ток – это ток, который с определенной периодичностью (50 или 60 раз в секунду – в зависимости от электрической системы, принятой в стране) меняет направление движения и величину (рис. 4).
У нас в России в бытовой сети используется стандарт переменного напряжения и тока – 220 В, 50 Гц в отличие от США, где переменный ток в розетках меняет свое направление 60 раз в секунду (60 Гц). Под эти параметры сети рассчитаны все бытовые потребители (светильники, электродвигатели пылесосов и холодильников, стиральные машины и др.). Многие бытовые электроприборы работают на постоянном токе при напряжении в 5-12 вольт, однако из сети они получают переменный ток, а затем внутри электроприборов переменный ток с помощью выпрямительных устройств преобразуется в постоянный, если в этом есть необходимость.
В чем преимущества переменного тока?
Можно спросить, а зачем нужен такой ток, в чем его преимущество?
Действительно, в некоторых случаях переменный ток (AC) не имеет никакого практического преимущества по сравнению с постоянным током (DC).
В тех случаях, когда электроэнергия используется для рассеивания энергии в виде тепла, полярность или направление тока не имеет значения до тех пор, пока существует достаточное напряжение и ток в нагрузке для получения требуемого тепла (рассеиваемой мощности).
Вместе с тем, на переменном токе можно построить электрические генераторы и двигатели, которые будут более простыми и более надежными, чем на постоянном токе.
Но главное, переменный ток наилучшим образом подходит для передачи электроэнергии на дальние расстояния.
Это становится возможным при использовании такого устройства, как трансформатор (рис. 5).
В простейшем случае трансформатор представляет собой две индуктивные катушки, расположенные на общем сердечнике.
Если мы активируем одну катушку переменным током, то за счет эффекта взаимной индукции в другой катушке также будет создаваться напряжение переменного тока. Если количество витков W2 > W1, то и напряжение U2 > U1. И наоборот.
Способность трансформатора легко увеличивать или уменьшать напряжение переменного тока простым изменением числа витков вторичной обмотки дает переменному току непревзойденное преимущество в области распределения электроэнергии (рис. 6).
Рис. 6
При помощи трансформатора низкое напряжение вначале преобразуется в высокое напряжение, после чего его можно передавать на любые расстояния (при меньших значениях тока, меньшем диаметре проводов, с меньшими тепловыми потерями энергии).
У потребителей происходит обратное преобразование тока высокого напряжения – в переменный ток низкого напряжения.
Постоянный и переменный ток
Технический прогресс с появлением электричества начал развиваться семимильными шагами. Новый вид энергии и практическое применение продуктов, получаемых в результате её преобразования, изменили класс жизни человека.
Что такое электрический ток
Перемещения свободных носителей электрических зарядов в вакууме или веществе в фиксированном направлении назвали электрическим током. Свободными носителями в металлах являются электроны, в жидкостях или газах – ионы. Название «ток» имеет два толкования. Первое – обозначает само продвижение электрического заряда в проводнике, второе – оценку числа электронов, проходящих по проводнику за 1 с. Его силу можно определить по Закону Ома. Для этого используется формула:
где U – напряжение, В; R – сопротивление, Ом.
Ток постоянный и переменный
Электроны в проводниках движутся от плюса к минусу. Движение равномерное, всё время с постоянной величиной. Если задаться вопросом, какие токи носят определение постоянных, сначала нужно хорошо представлять, куда течёт ток.
Внимание! Направлением тока считают то направление, куда движутся положительно заряженные частицы: от плюса к минусу. Хотя дорога свободных электронов лежит от минуса к плюсу.
Значит, постоянный ток – это направленное перемещение заряженных частиц, несущих в себе положительный заряд, которые не меняют свои величину и направление с течением времени. Все остальные токи – переменные. В этом их разница.
Alternative Current – AC, так обозначается переменный ток на приборах. Direct Current – DC, это понятное обозначение постоянного тока.
Различия токов
Незнание отличий приводит к неправильному подключению потребителей напряжения к источникам питания. Это вызывает повреждение приборов или, того хуже, опасные для жизни ситуации.
Чтобы чётко разобраться, какой ток называется переменным, какой постоянным, нужно сопоставить параметры.
При сравнении характеристик этих двух видов электричества выделяют отличия:
Для информации. В мире действует два головных стандарта частоты и напряжения в потребительской сети переменного тока. Европейский стандарт – 50 герц, 220-240 вольт, и американский – 60 герц, 100-127 вольт.
Преимущества переменного тока
Аккумуляторные батареи практичны как источник постоянного электричества. Однако бесконечно снабжать токоприёмники энергией без подзарядки они не могут. Поэтому создание изменяющегося во времени тока и его доставка потребителю – главные задачи энергосистемы страны. К преимуществам этого вида относятся:
Снизить или повысить величину напряжения переменного тока проще. Для этого стоит только пропустить его через трансформатор. Большой КПД этого преобразователя – 99%, потеря мощности – лишь 1%. Трансформатор, имея отдельные обмотки по напряжению, ещё разделяет высокое напряжение от низкого, что допускает возможность разделить установки до 1000 В и свыше 1000 В.
Атомные и гидроэлектростанции расположены в местах, отдалённых от центральных районов расположения потребителей. Поэтому напряжение добытой электроэнергии повышают до сотен кВт, чтобы снизить потери при транспортировке, и передают по ЛЭП в нужное место, где снова понижают.
Применяя трёхфазное переменное напряжение, повышают производительность структуры энергосистемы. Передача одинаковой мощности трёхфазной сети требует меньшего количества проводников, в отличие от однофазной линии.
Важно! Если сравнить два трансформатора одинаковой мощности, то габариты однофазного трансформатора больше, чем трёхфазного. Изготовление асинхронных двигателей обходится дешевле, чем двигателей постоянного тока. В них отсутствуют коллектор и щётки, по мощности при одинаковых размерах асинхронные двигатели обгоняют постоянные в 2-3 раза.
Недостатки постоянного тока
Кроме того, что источники этого вида тока имеют непростую конструкцию, они сложнее в эксплуатации. При КПД, равном 94%, предельная мощность этих машин не выше 20 МВт. Присущи и другие минусы:
Полностью отказаться от таких источников и потребителей не получается, так как они востребованы и имеют свои преимущества.
Недостатки переменного тока
При передаче энергии изменяющего направление тока на большие расстояния возникают затруднения. Создание Единой Энергетической Системы выявило ряд недостатков:
К сведению. При повышенном напряжении у воздушных линий возникает коронный разряд. Это процесс ионизации у проводников с малым радиусом. Чтобы в этом случае не происходило стекание электричества, приходится увеличивать диаметр проводов, это ведёт к удорожанию линии.
Преимущества постоянного тока
Какие качества делают незаменимым постоянный ток? К плюсам относятся:
К достоинствам добавляется то, что такое электричество, как постоянный ток, течёт по всему сечению проводника, поэтому потери мощности минимальны.
История появления и «войны токов»
Никола Тесла и Томас Эдисон не дожили до того момента, когда представитель компании Consolidated Edison поставил точку в борьбе двух технологий. Переменный электрический ток одержал победу. В 2007 году ведущий инженер компании отсоединил кабель, символизирующий питание Нью-Йорка постоянным током.
Сербский учёный Никола Тесла ещё в 1882 году придумал, как применить эффект вращающегося электромагнитного поля. В то время Эдисон уже ввёл в строй 2 электростанции, вырабатывающие постоянный ток, и организовал производство кабелей, устройств освещения и динамо-машин. Тесла одно время работал в компании Эдисона и ремонтировал машины постоянного тока. Эдисон обещал Николе заплатить за проекты по модернизации двигателей, но выплатить вознаграждение за проведённую работу отказался. Тесла продал патенты своих изобретений Джорджу Вестингаузу, президенту компании Westinghouse Electric Corporation за 1 млн. долларов. Первая электростанция на 500 В изменяющего свою полярность электричества запущена в 1886 г. Война токов продолжалась более века.
Источники постоянного электрического тока
Для его получения используют специальный генератор, работа которого основана на законе электромагнитной индукции – ЭДС. Если вращать металлическую рамку, в зоне действия электромагнитного поля возникнет ЭДС, и по рамке потечёт электричество.
Внимание! Увеличение ЭДС получают повышением силы поля или скорости вращения рамки. Снижения пульсации полученного движения электричества добиваются добавлением числа рамок.
Немеханические производители электричества постоянной природы:
Аккумуляторы энергии из этой группы ограниченного срока действия и требуют периодической подзарядки.
Применение
Использование в электронике для питания схем – это не конечные варианты применения DC. Постоянный ток нашёл употребление в следующих случаях:
Для информации. В СССР начинали электрификацию железной дороги постоянным током на участках Баку – Сурамский перевал и Сабучини. До Великой Отечественной войны напряжение составляло 1,5 кВ, потом было переведено на 3 кВ. В общей сложности половина ж/д линий работало от этого вида тока.
Переменный ток
Вынужденные гармонические электромагнитные колебания – это синусоидальный ток. Колебания происходят с частотой 50 Гц в секунду. Напряжение и ток за период в среднем равны нулю.
Чем постоянный ток отличается от переменного, и каков его путь от источника до потребителя?
Ток постоянный не совершает колебаний, в этом постоянный и переменный ток различаются. Подача Direct Current – DC к потребителям также происходит по проводам и кабелям. Действуют до сих пор ЛЭП Волгоград – Донбасс.
Преобразование
К бытовым приборам, требующим снабжение схем электричеством типа DC, его подают через блоки питания. Это схемы, включающие в себя понижающий трансформатор и выпрямляющий блок. При подключении блока питания к устройству следят за совпадением их параметров по напряжению и мощности. Параметры указаны на корпусе прибора.
В настоящий момент оба вида электричества отлично уживаются в современном мире. Схемы смешанного питания потребителей только дополняют друг друга.
Видео
Переменный ток и постоянный ток: отличие
В чём разница переменного и постоянного тока
Общее понятие электрического тока можно выразить как движение различных заряженных частиц (электронов, ионов) в некотором направлении. А его величину охарактеризовать числом заряженных частиц, которые прошли через проводник за определенный промежуток времени.
Если величина заряженных частиц в 1 кулон проходит через определенное сечение проводника за время в 1 секунду, тогда можно говорить о силе тока в 1 ампер протекающего через проводник. Таким образом определяется количество ампер или сила тока. Это общее понятие тока. А теперь рассмотрим понятие переменного и постоянного тока и их различие.
Постоянный электрический ток по определению – это ток, который течёт только в одном направлением и не меняет его со временем. Переменный ток характерен тем, что меняет свое направление и величину со временем. Если графически постоянный ток отображается как прямая линия, то переменный ток течет по проводнику по закону синуса и графически отображается как синусоида.
Графическое изображение постоянного тока
Так как переменный ток меняется по закону синусоиды, то он имеет такие параметры как период полного цикла, время которого обозначается буквой Т. Частота переменного тока обратна периоду полного цикла. Частота переменного тока выражается числом полных периодов в определенный промежуток времени (1 сек).
Графическое изображение переменного тока
Таких периодов в нашей электросети переменного тока равно 50, что соответствует частоте 50 Гц. F = 1/Т, где период для 50 Гц равен 0,02 сек. F =1/0,02 = 50 Гц. Обозначается переменный ток английскими буквами AC и знаком «
». Постоянный ток имеет обозначение DC и значок «-». Кроме того переменный ток может быть однофазным или многофазным. В основном используется трехфазная сеть.
Почему в сети переменное напряжение, а не постоянное
Переменный ток имеет много преимуществ перед постоянным током. Низкие потери при передаче переменного тока в линиях электропередач (ЛЭП) по сравнению с постоянным током. Генераторы переменного тока простые и дешевые. При передаче на большие расстояния по ЛЭП высокое напряжение достигает 330 тысяч вольт с минимальным током.
Чем меньше ток в ЛЭП, тем меньше потерь. Передача постоянного тока на большие расстояния понесет немалые потери. Также высоковольтные генераторы переменного тока значительно проще и дешевле. Из переменного напряжения легко получить более низкое напряжение через простые трансформаторы.
Также, значительно дешевле получить постоянное напряжение из переменного, чем наоборот, использовать дорогие преобразователи постоянного напряжения в переменное. Такие преобразователи имеют низкий КПД и большие потери. По пути передачи переменного тока используют двойное преобразование.
Сначала с генератора получает 220 – 330 Кв, и передают на большие расстояния до трансформаторов, которые понижают высокое напряжение до 10 Кв и далее идут подстанции которые понижают высокое напряжение до 380 В. С этих подстанций электроэнергия расходится по потребителям и поступает в дома и на электрощиты многоквартирного дома.
Три фазы трехфазного тока сдвинутые на 120 градусов
Для однофазного напряжения характерна одна синусоида, а для трехфазного три синусоиды, смещенные на 120 градусов относительно друг друга. Трехфазная сеть также имеет свои преимущества перед однофазными сетями. Это меньше габариты трансформаторов, электродвигатели также конструктивно меньших размеров.
Имеется возможность изменить направление вращения ротора асинхронного электродвигателя. В трехфазной сети можно получить 2 напряжения – это 380 В и 220 В, которые используются для изменения мощности двигателя и регулировки температуры нагревательных элементов. Используя трехфазное напряжение в освещении можно устранить мерцание люминесцентных ламп, для чего их подключают к разным фазам.
Постоянный ток используется в электронике и во всех бытовых приборах, так как он легко преобразуется из переменного за счёт его деления на трансформаторе до нужной величины и дальнейшего выправления. Источником постоянного тока являются аккумуляторы, батареи, генераторы постоянного тока, светодиодные панели. Как видно различие в переменном и постоянном токе немалое. Теперь мы узнали – Почему в нашей розетки течет переменный ток, а не постоянный?