в чем особенность фактографической бд
Фактографические БД
Используются для хранения жестко структурируемых данных, представляющих собой факты, сведения, содержащиеся в явном виде в документах, для представления данных и манипулирования ими используются соответственно языке описания данных и язык манипулирования данными. В фактографических БД содержатся краткие сведения об описываемых объектах, представленные в строго определенном формате. Современные информационные технологии постепенно стирают границу между фактографическими и документальными БД. Существуют средства, позволяющие легко подключать любой документ (текстовый, графический, звуковой) к фактографической базе данных.Фактографические модели данныхсоответствуют представлению информации в виде определенных структур данных (дерево, сеть, таблица). В системах фактографического типа в БД хранится информация об интересующих пользователя объектах предметной области в виде фактов; в ответ на запрос пользователя выдается требуемая информация об интересующем его объекте или сообщение о том, что информация отсутствует.
По мощности СУБД делятся на настольные и корпоративные. Для настольных характерны невысокие требования к техническим средствам, ориентация на конечного пользователя, низкая стоимость. Корпоративные – обеспечивают работу в распределенной среде, высокую производительность, поддержку коллективной работы при проектировании систем, имеют развитые средства администрирования и более широкие возможности поддержания целостности. Оба типа систем интенсивно развиваются.
СУБД по способу доступа к БД
Централизованные.
При использовании этой технологии база данных, СУБД и прикладная программа (приложение) располагаются на одном компьютере (мэйнфрейме или персональном компьютере). Для такого способа организации не требуется поддержки сети и все сводится к автономной работе. Работа построена следующим образом:
· База данных в виде набора файлов находится на жестком диске компьютера.
· На том же компьютере установлены СУБД и приложение для работы с БД.
· Пользователь запускает приложение. Используя предоставляемый приложением пользовательский интерфейс, он инициирует обращение к БД на выборку/обновление информации.
· Все обращения к БД идут через СУБД, которая инкапсулирует внутри себя все сведения о физической структуре БД.
· СУБД инициирует обращения к данным, обеспечивая выполнение запросов пользователя (осуществляя необходимые операции над данными).
· Результат СУБД возвращает в приложение.
· Приложение, используя пользовательский интерфейс, отображает результат выполнения запросов.
Подобная архитектура использовалась в первых версиях СУБД DB2, Oracle, Ingres.
Многопользовательская технология работы обеспечивалась либо режимом мультипрограммирования (одновременно могли работать процессор и внешние устройства – например, пока в прикладной программе одного пользователя шло считывание данных из внешней памяти, программа другого пользователя обрабатывалась процессором), либо режимом разделения времени (пользователям по очереди выделялись кванты времени на выполнении их программ). Такая технология была распространена в период «господства» больших ЭВМ (IBM-370, ЕС-1045, ЕС-1060). Основным недостатком этой модели является резкое снижение производительности при увеличении числа пользователей.
Файл-серверные.
Увеличение сложности задач, появление персональных компьютеров и локальных вычислительных сетей явились предпосылками появления новой архитектуры файл-сервер. Эта архитектура баз данных с сетевым доступом предполагает назначение одного из компьютеров сети в качестве выделенного сервера, на котором будут храниться файлы базы данных. В соответствии с запросами пользователей файлы с файл-сервера передаются на рабочие станции пользователей, где и осуществляется основная часть обработки данных. Центральный сервер выполняет в основном только роль хранилища файлов, не участвуя в обработке самих данных.
Работа построена следующим образом:
· База данных в виде набора файлов находится на жестком диске специально выделенного компьютера (файлового сервера).
· Существует локальная сеть, состоящая из клиентских компьютеров, на каждом из которых установлены СУБД и приложение для работы с БД.
· На каждом из клиентских компьютеров пользователи имеют возможность запустить приложение. Используя предоставляемый приложением пользовательский интерфейс, он инициирует обращение к БД на выборку/обновление информации.
· Все обращения к БД идут через СУБД, которая инкапсулирует внутри себя все сведения о физической структуре БД, расположенной на файловом сервере.
· СУБД инициирует обращения к данным, находящимся на файловом сервере, в результате которых часть файлов БД копируется на клиентский компьютер и обрабатывается, что обеспечивает выполнение запросов пользователя (осуществляются необходимые операции над данными).
· При необходимости (в случае изменения данных) данные отправляются назад на файловый сервер с целью обновления БД.
· Результат СУБД возвращает в приложение.
· Приложение, используя пользовательский интерфейс, отображает результат выполнения запросов.
В рамках архитектуры «файл-сервер» были выполнены первые версии популярных так называемых настольных СУБД, таких, как dBase и Microsoft Access.
Основные недостатки данной архитектуры:
· При одновременном обращении множества пользователей к одним и тем же данным производительность работы резко падает, т.к. необходимо дождаться пока пользователь, работающий с данными, завершит свою работу. В противном случае возможно затирание исправлений, сделанных одними пользователями, изменениями других пользователей.
· Вся тяжесть вычислительной нагрузки при доступе к БД ложится на приложение клиента, так как при выдаче запроса на выборку информации из таблицы вся таблица БД копируется на клиентскую машину и выборка осуществляется на клиенте. Таким образом, неоптимально расходуются ресурсы клиентского компьютера и сети. В результате возрастает сетевой трафик и увеличиваются требования к аппаратным мощностям пользовательского компьютера.
· Недостаточно развитый аппарат транзакций служит потенциальным источником ошибок в плане нарушения смысловой и ссылочной целостности информации при одновременном внесении изменений в одну и ту же запись.
Клиент-серверные.
Итак, в результате работа построена следующим образом:
· База данных в виде набора файлов находится на жестком диске специально выделенного компьютера (сервера сети).
· СУБД располагается также на сервере сети.
· Существует локальная сеть, состоящая из клиентских компьютеров, на каждом из которых установлено клиентское приложение для работы с БД.
· На каждом из клиентских компьютеров пользователи имеют возможность запустить приложение. Используя предоставляемый приложением пользовательский интерфейс, он инициирует обращение к СУБД, расположенной на сервере, на выборку/обновление информации. Для общения используется специальный язык запросов SQL, т.е. по сети от клиента к серверу передается лишь текст запроса.
· СУБД инкапсулирует внутри себя все сведения о физической структуре БД, расположенной на сервере.
· СУБД инициирует обращения к данным, находящимся на сервере, в результате которых на сервере осуществляется вся обработка данных и лишь результат выполнения запроса копируется на клиентский компьютер. Таким образом СУБД возвращает результат в приложение.
· Приложение, используя пользовательский интерфейс, отображает результат выполнения запросов.
В архитектуре «клиент – сервер» работают так называемые «промышленные» СУБД. Промышленными они называются из-за того, что именно СУБД этого класса могут обеспечить работу информационных систем масштаба среднего и крупного предприятия, организации, банка. К разряду промышленных СУБД принадлежат MS SQL Server, Oracle, Gupta, Informix, Sybase, DB2, InterBase и ряд других.
Как правило, SQL-сервер обслуживается отдельным сотрудником или группой сотрудников (администраторы SQL-сервера). Они управляют физическими характеристиками баз данных, производят оптимизацию, настройку и переопределение различных компонентов БД, создают новые БД, изменяют существующие и т.д., а также выдают привилегии (разрешения на доступ определенного уровня к конкретным БД, SQL-серверу) различным пользователям.
Рассмотрим основные достоинства данной архитектуры по сравнению с архитектурой «файл-сервер»:
· Существенно уменьшается сетевой трафик.
· Уменьшается сложность клиентских приложений (большая часть нагрузки ложится на серверную часть), а, следовательно, снижаются требования к аппаратным мощностям клиентских компьютеров.
· Наличие специального программного средства – SQL-сервера – приводит к тому, что существенная часть проектных и программистских задач становится уже решенной.
· Существенно повышается целостность и безопасность БД.
К числу недостатков можно отнести более высокие финансовые затраты на аппаратное и программное обеспечение, а также то, что большое количество клиентских компьютеров, расположенных в разных местах, вызывает определенные трудности со своевременным обновлением клиентских приложений на всех компьютерах-клиентах. Тем не менее, архитектура «клиент – сервер» хорошо зарекомендовала себя на практике, в настоящий момент существует и функционирует большое количество БД, построенных в соответствии с данной архитектурой.
Рассмотрев архитектуру «клиент – сервер», можно заключить, что она является 2-звенной: первое звено – клиентское приложение, второе звено – сервер БД + сама БД. В трехзвенной архитектуре вся бизнес-логика (деловая логика), ранее входившая в клиентские приложения, выделяется в отдельное звено, называемое сервером приложений. При этом клиентским приложениям остается лишь пользовательский интерфейс. Так, в качестве клиентского приложения в описанном выше примере выступает Web-браузер.
Что улучшается при использовании трехзвенной архитектуры? Теперь при изменении бизнес-логики более нет необходимости изменять клиентские приложения и обновлять их у всех пользователей. Кроме того, максимально снижаются требования к аппаратуре пользователей.
Итак, в результате работа построена следующим образом:
В общем случае под СУБД можно понимать любой программный продукт, поддерживающий процессы создания, ведения и использования БД. Рассмотрим, какие из имеющихся на рынке программ имеют отношение к БД и в какой мере они связаны с базами данных.
К СУБД относятся следующие основные виды программ:
• средства разработки программ работы с БД.
Полнофункционалъные СУБД(ПФСУБД) представляют собой традиционные СУБД, которые сначала появились для больших машин, затем для мини-машин и для ПЭВМ. Из числа всех СУБД современные ПФСУБД являются наиболее многочисленными и мощными по своим возможностям. К ПФСУБД относятся, например, такие пакеты, как Clarion Database Developer, DataBase, Dataplex, dBase IV, Microsoft Access, Microsoft FoxPro и Paradox.
Обычно ПФСУБД имеют развитый интерфейс, позволяющий с помощью команд меню выполнять основные действия с БД: создавать и модифицировать структуры таблиц, вводить данные, формировать запросы, разрабатывать отчеты, выводить их на печать и т. п. Многие ПФСУБД включают средства программирования для профессиональныхразработчиков.
Некоторые системы имеют в качестве вспомогательных и дополнительные средства проектирования схем БД или CASE-подсистемы. Для обеспечениядоступа к другим БД или к данным SQL-серверов полнофункциональные СУБД имеют факультативные модули.
Серверы БД предназначены для организации центров обработки данных в сетях ЭВМ. Эта группа БД в настоящее время менее многочисленна, но их количество постепенно растет. Серверы БД реализуют функции управления базами данных, запрашиваемые другими (клиентскими) программами обычно с помощью операторов SQL
Примерами серверов БД являются следующие программы: NetWare SQL (Novell), MS SQL Server (Microsoft), InterBase (Borland), SQLBase Server (Gupta), Intelligent Database (Ingress).
В роли клиентских программ для серверов БД в общем случае могут использоваться различные программы: ПФСУБД, электронные таблицы, текстовые процессоры, программы электронной почты и т.д. При этом элементы пары «клиент — сервер» могут принадлежать одному или разным производителям программного обеспечения.
В случае, когда клиентская и серверная части выполнены одной фирмой, естественно ожидать, что распределение функций между ними выполнено рационально. В остальных случаях обычно преследуется цель обеспечения доступа к данным «любой ценой». Примером такого соединения является случай, когда одна из полнофункциональных СУБД играет роль сервера, а вторая СУБД (другого производителя) — роль клиента. Так, для сервера БД SQL Server (Microsoft) в роли клиентских (фронтальных) программ могут выступать многие СУБД, такие как dBASE IV, Paradox, DataBase, Focus, 1-2-3, MDBS III, Revelation и другие.
Средства разработки программ работы с БД могут использоваться для создания разновидностей следующих программ:
• серверов БД и их отдельных компонентов;
Программы первого и второго вида довольно малочисленны, так как предназначены, главным образом, для системных программистов. Пакетов третьего вида гораздо больше, но меньше, чем полнофункциональных СУ БД.
К средствам разработки пользовательских приложений относятся системы программирования, например Clipper, разнообразные библиотеки программ для различных языков программирования, а также пакеты автоматизации разработок (в том числе систем типа клиент-сервер). В числе наиболее распространенных можно назвать следующие инструментальные системы: Delphi и Power Builder (Borland), Visual Basic (Microsoft), SILVERRUN (Computer Advisers Inc.), S-Designer (SDP и Powersoft) и ERwin (LogicWorks).
Дата добавления: 2017-01-08 ; просмотров: 6725 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Фактографические базы научных данных
БД научных данных позволяет пользователю в сжатые сроки и в концентрированном виде получить интересующие его сведения, прошедшие экспертную проверку на достоверность. БД научных данных имеют ряд особенностей:
· могут содержать библиотеку научных программ для обработки данных;
· должны выполнять широкий спектр запросов от простейших информационных до сложных, требующих расчетов по прикладным программам;
· могут быть использованы как основа АРМ исследователя с правом доступа к справочным данным и внесением собственных данных.
При проектировании БД следует учитывать, что все БД можно разбить на два класса:
· БД для оперативной обработки информации в реальном времени;
· хранилища данных (data warehouse), в которых накапливается ретроспективная информация.
БД первого типа отличаются высокой степенью нормализации данных, что в значительной степени уменьшает избыточность представления информации и облегчает поддержку согласованности. Как правило, промышленная БД такого типа содержит сотни и тысячи таблиц малого объема с небольшим количеством атрибутов и имеет сложную структуру.
Хранилища данных обычно имеют простую денормализованную структуру, обеспечивающую высокую скорость выполнения сложных запросов. Типовой схемой хранилища данных является так называемая «звезда» (star schema), при которой вся хранимая фактографическая информация записывается в одну большую таблицу фактов (fact table). Каждая строка таблицы фактов соответствует точке в многомерном пространстве, определяемом измерениями хранилища данных. Измерение классифицирует некоторый факт и, как правило, имеет иерархическую структуру.
Всем хранилищам данных свойственны следующие общие черты:
· Предметная ориентированность. Информация в хранилище данных организована в соответствии с основными аспектами деятельности предприятия (заказчики, продажи, склад и т.п.); это отличает хранилище данных от оперативной БД, где данные организованы в соответствии с процессами (выписка счетов, отгрузка товара и т.п.). Предметная организация данных в хранилище способствует как значительному упрощению анализа, так и повышению скорости выполнения аналитических запросов. Выражается она, в частности, в использовании иных, чем в оперативных системах, схемах организации данных. В случае хранения данных в реляционной СУБД применяется схема «звезды» (star) или «снежинки» (snowflake). Кроме того, данные могут храниться в специальной многомерной СУБД в n-мерных кубах.
· Интегрированность. Исходные данные извлекаются из оперативных БД, проверяются, очищаются, приводятся к единому виду, в нужной степени агрегируются (то есть вычисляются суммарные показатели) и загружаются в хранилище. Такие интегрированные данные намного проще анализировать.
· Привязка ко времени. Данные в хранилище всегда напрямую связаны с определенным периодом времени. Данные, выбранные их оперативных БД, накапливаются в хранилище в виде «исторических слоев», каждый из которых относится к конкретному периоду времени. Это позволяет анализировать тенденции в развитии бизнеса.
· Неизменяемость. Попав в определенный «исторический слой» хранилища, данные уже никогда не будут изменены. Это также отличает хранилище от оперативной БД, в которой данные все время меняются, «дышат», и один и тот же запрос, выполненный дважды с интервалом в 10 минут, может дать разные результаты. Стабильность данных также облегчает их анализ.
Хранилище данных (Data Warehouse) — большая предметно-ориентированная информационная корпоративная база данных, специально разработанная и предназначенная для подготовки отчётов, анализа бизнес-процессов с целью поддержки принятия решений в организации. Строится на базе клиент-серверной архитектуры, реляционной СУБД и утилит поддержки принятия решений. Данные, поступающие в хранилище данных, становятся доступны только для чтения.
Дата добавления: 2015-04-21 ; просмотров: 9 ; Нарушение авторских прав
В чем особенность фактографической бд
Классификация БД
По форме представляемой информации можно выделить фактографические, документальные и мультимедийные БД.
Особенностью фактографической информации является практическая очевидность (минимальная неопределённость, не требующая использования сложных или нечётких процедур) идентификации и интерпретации факта, как его имени, так и состояния. То есть, в этом случае контекст (содержание) в достаточной степени определяется однозначно понимаемым объявлением о назначении базы данных и таким именованием полей данных, когда в качестве имени используется общепринятое, не зависящее от прикладных задач, имя свойства (и таким образом определяются характеристические признаки).
Документальная информация отличается неопределённостью или переменной структурой данных (документов).
По типу хранимой информации (исключая мультимедийную) можно выделить фактографические, документальные, лексикографические БД.
Лексикографические базы – это классификаторы, кодификаторы, словари основ слов, тезаурусы, рубрикаторы и т.д., обычно используемые в качестве справочных совместно с документальными или фактографическими БД.
Документальные базы подразделяются по уровню представления информации на полнотекстовые (обрабатывающие «первичные» документы) и библиографическо-реферативные (обрабатывающие «вторичные» документы, отражающие на адресном и содержательном уровне первичный документ).
По типу используемой модели данных традиционно выделяют три класса БД: иерархические, сетевые, реляционные. Иерархические и сетевые модели данных называют ещё навигационными.
Иерархическая модель вообще реализовывалась средствами древовидных структур с корневыми сегментами, имеющими физический указатель на другие сегменты. Преимущество таких моделей БД заключалось в том, что они уменьшали избыточность данных. Одно из неудобств такой модели данных заключается в том, что реальный мир не может быть легко представлен в виде древовидной структуры с единственным корневым сегментом. Иерархические базы данных обеспечивали указатели между различными деревьями баз данных, но обработка данных с использованием таких связей иногда могла оказаться неудобной. Примером такой модели является файловая структура.
Сетевая модель данных включала язык определения данных (Data Definition Language, DDL) и язык манипулирования данными (Data Manipulation Language, DML) – формальные языки, предназначенные для определения и манипулирования содержимым базы данных. Предложенное разграничение функций между различными типами языков в системах управления базами данных привело к выделению языков управления транзакциями, языков манипулирования схемой и других групп языков. В сетевых БД, в отличие от иерархических, нет необходимости в корневой записи, поскольку между типами записей могут быть созданы наборы без искусственных ограничений, свойственных иерархии. Однако здесь, как и в иерархических БД, ассоциации поддерживаются с помощью физических указателей. Примером этой модели является Интернет.
Реляционная модель данных обеспечивает ряд важных возможностей, которые делают управление БД и их использование относительно легким, устойчивым по отношению к ошибкам и предсказуемым. Она описывает данные с их естественной структурой, не добавляя каких-либо дополнительных структур, необходимых для машинного представления или для целей реализации; обеспечивает математическую основу для интерпретации выводимости, избыточности и непротиворечивости отношений; обеспечивает независимость данных от их физического представления, от связей между данными и от соображений реализации, связанных с эффективностью и подобными заботами. Главным элементом в реляционной модели является отношение. Для большинства людей обычной визуализацией отношения служит «таблица». Таблица, как известно, имеет строки и столбцы. Столбцы отношения соответствуют «элементам данных» каждой записи, которая представляется строкой отношения. Важное различие между отношением и таблицей (в том виде, как она реализована в большинстве поставляемых реляционных СУБД) заключается в том, что отношение не может иметь дубликатов кортежей (т.е. записей в файле), в то время как для таблиц допускается возможность содержать дубликаты строк.
Реляционная модель данных (РМД) некоторой предметной области представляет собой набор отношений, изменяющихся во времени. При создании информационной системы совокупность отношений позволяет хранить данные об объектах предметной области и моделировать связи между ними.
Разработчики приложений на основе иерархической или сетевой БД обладают контролем над тем, каким образом были определены связи и как осуществляется навигация по ним. При создании систем реляционных БД большая часть этой обработки заключается в саму реляционную СУБД. Поэтому оптимизация запросов стала важной функцией (отсутствие которой первоначально ограничивало производительность) коммерческих реляционных СУБД.
Классическая реляционная модель предполагает неделимость данных, хранящихся в полях записей таблиц, что в ряде случаев мешает эффективной реализации приложений. Развитие технологий обработки данных привело к появлению постреляционных, объектно-ориентированных, многомерных БД, которые в той или иной степени соответствуют упомянутым классическим моделям.
Постреляционная модель данных представляет собой расширенную реляционную модель, снимающую ограничение неделимости данных, хранящихся в записях таблиц. Она допускает многозначные поля – поля, значения которых состоят из подзначений. Набор значений многозначных полей считается самостоятельной таблицей, встроенной в основную таблицу.
Первые публикации, связанные с объектно-ориентированными базами данных (ООБД) появились в середине 1980-х годов.
В общей классической постановке объектно-ориентированный подход базируется на концепциях:
• объекта и идентификатора объекта;
• атрибутов и методов;
• классов;
• иерархии и наследования классов.
Объектно-ориентированные базы данных (ООБД) строятся из объектов. Объекты хранятся физически как строки или столбцы таблицы.
В этом случае реляционную модель можно рассматривать как «таблично-ориентированную» модель данных, так как соответствующие ей БД строятся из таблиц. В ООБД важнейшее место отводится объектам, на основе которых могут определяться другие объекты благодаря использованию концепции, называемой наследованием. При этом некоторые или все атрибуты (либо свойства) определяющего объекта наследуются каким-либо другим объектом, одни атрибуты и (или) свойства добавляются, а другие могут удаляться.
Любая сущность реального мира в объектно-ориентированных языках и системах моделируется в виде объекта. Любой объект при своем создании получает генерируемый системой уникальный идентификатор, который связан с объектом во все время его существования и не меняется при изменении состояния объекта.
Множество объектов с одним и тем же набором атрибутов и методов образует класс объектов. Объект должен принадлежать только одному классу (если не учитывать возможности наследования).
По типологии доступа и характеру использования хранимой информации выделяют специализированные и интегрированные БД.
По топологии хранения данных различают локальные и распределённые БД.
По степени доступности можно выделить общедоступные и с ограниченным доступом пользователей к БД.
Представленная классификация не является полной. Она в большей степени отражает исторически сложившееся состояние дел в сфере деятельности, связанной с разработкой и применением баз данных.
Классификация СУБД
Рассмотрим ряд классификационных признаков, относящихся к СУБД.
По языкам общения СУБД делятся на открытые, замкнутые и смешанные. Открытые системы – это системы, в которых для обращения к базам данных используются универсальные языки программирования. Замкнутые системы имеют собственные языки общения с пользователями БД. Открытые системы в настоящее время используются редко.
По числу уровней в архитектуре различают одноуровневые, двухуровневые, трехуровневые системы. В принципе возможно выделение и большего числа уровней.
Под архитектурным уровнем СУБД понимают функциональный компонент, механизмы которого служат для поддержки некоторого уровня абстракции данных (логический и физический уровень, а также «взгляд» пользователя — внешний уровень).
По выполняемым функциям СУБД делятся на информационные и операционные. Информационные СУБД позволяют организовать хранение информации и доступ к ней. Для выполнения более сложной обработки необходимо писать специальные программы. Операционные СУБД выполняют достаточно сложную об-работку, например, автоматически позволяют получать агрегированные показатели, не хранящиеся непосредственно в базе данных, могут изменять алгоритмы обработки и т. д.
По сфере возможного применения различают универсальные и специализированные, обычно проблемно-ориентированные СУБД. Системы управления базами данных поддерживают разные типы данных. Набор типов данных, допустимых в разных СУБД, различен. В настоящее время наблюдается тенденция к расширению числа используемых типов данных. Кроме того, ряд СУБД позволяет разработчику (прикладному программисту или администратору БД) добавлять новые типы данных и новые операции над этими данными. Такие системы называются расширяемыми системами баз данных (РСБД).
Дальнейшим развитием концепции РСБД являются объектно-ориентированные системы баз данных, обладающие достаточно мощными выра-зительными возможностями, чтобы непосредственно моделировать сложные объекты.
СУБД в зависимости от архитектуры делятся на локальные и распределённые. В локальной СУБД её компоненты размещаются на одном компьютере, а в распределённой – на нескольких, которые могут находиться на любом удалении друг от друга.
По языкам общения СУБД делятся на открытые, замкнутые и смешанные.
Открытые системы – это системы, в которых для обращения к базам данных используются универсальные языки программирования. Замкнутые системы имеют собственные языки общения с пользователями БД. Открытые системы в настоящее время используются редко.
По сфере возможного применения различают универсальные и специализированные, обычно проблемно-ориентированные СУБД.
Набор типов данных, допустимых в разных СУБД, различен. Ряд СУБД позволяет разработчику добавлять новые типы данных и новые операции над этими данными. Такие системы называются расширяемыми системами баз данных (РСБД). СУБД, основанные на использовании реляционной модели данных, называют реляционными СУБД.
Если компьютер и ОС поддерживают многопользовательский режим работы, то в такой среде может функционировать многопользовательская СУБД. В общем случае она позволяет одновременно обслуживать нескольких пользователей, работающих непосредственно с СУБД или с приложениями.
При обслуживании нескольких параллельных источников запросов (от пользователей и приложений) СУБД планирует использование своих ресурсов и ресурсов ЭВМ таким образом, чтобы обеспечивать независимое или почти независимое выполнение порождаемых запросами операций. Многопользовательские СУБД часто применяются на больших и средних ЭВМ, где основным режимом использования ресурсов является коллективный доступ.
Дальнейшим развитием концепции РСБД являются объектно-ориентированные системы баз данных, обладающие достаточно мощными выразительными возможностями, чтобы непосредственно моделировать сложные объекты.
Обычно СУБД, как и БД, различают по используемой модели данных. К основным типам СУБД относят три базовые модели данных: иерархические, сетевые и реляционные.
Реляционная модель данных обеспечивает ряд важных возможностей, которые делают управление БД и их использование относительно легким, устойчивым по отношению к ошибкам и предсказуемым. СУБД, основанные на использовании реляционной модели данных, называют реляционными СУБД.
Транзакция – последовательность операций с БД, рассматриваемая СУБД как единое целое; переводящая БД из одного непротиворечивого состояния в другое, которое может быть представлено как одно «событие». Если транзакция успешно выполняется, то СУБД фиксирует изменения БД, произведенные этой транзакцией во внешней памяти. Каждая транзакция начинается при целостном состоянии БД и оставляет это состояние целостным после своего завершения. Это делает удобным использование понятия транзакции, например, как единицы активности пользователя по отношению к БД.