в чем опасность урана

В чем опасность урана

Природный уран (238U) является родоначальником радиоактивного ряда, состоящего из 9 элементов, испускающих а-частицы, и 7 элементов, испускающих бета-частицы. Некоторые изотопы, кроме того, обладают у-излучением. Однако биологическое действие 238U обусловлено главным образом токсическими свойствами его как химического элемента, тогда как развитие лучевых поражений происходит в течение длительного времени и при условии попадания в организм значительных количеств веществ.

В химическом отношении 238U является активным элементом, образует большое число легко- и труднорастворимых соединений. Поэтому токсический эффект урана находится и прямой связи от растворимости его соединений, что в одинаковой мере проявляется при любом пути поступления его в организм. Выведение из организма человека и животных труднорастворимых соединений (четырехфтористый уран, двуокись урана, окись — закись урана) происходит очень медленно —в течение нескольких лет с двумя периодами полувыведения в 120 и 360 сут; 86% урана от задержанного количества во всем организме откладывается в костях и 6,5%—в почках [Закутинский Д. И. и др., 1962]. Выделение инкорпорированного вещества в основном осуществляется через почки.

Острая урановая интоксикация характеризуется тяжелыми функциональными и морфологическими изменениями почек, печени, сердечно-сосудистой системы, в меньшей степени— органов кроветворения и костной ткани. Причем в практическом отношении важно отметить, что, по сравнению с 6-валентным ураном, 4-валентный уран в большей мере откладывается в печени и меньше в почках.
Естественно, что в случае попадания вещества в дыхательные пути тяжелые острые изменения и отдаленные последствия возникают в легких.

в чем опасность урана. Смотреть фото в чем опасность урана. Смотреть картинку в чем опасность урана. Картинка про в чем опасность урана. Фото в чем опасность урана

Принято считать, что поражение почек отражает тяжесть поражения ураном всего организма, поэтому изучению этого органа было посвящено большинство морфологических исследований в области патологической анатомии урановой интоксикации.

При остром поражении со смертельными исходами макроскопически в почках обнаруживаются участки некротизированной ткани в кортико-медуллярной зоне и общая сглаженность границы между корковым и мозговым веществом. В особенно тяжелых случаях зона некроза может захватывать всю толщу коркового вещества. Для ранних этапов острой урановой интоксикации характерно сочетание сосудистых нарушений и дистрофических изменений эпителия извитых канальцев, прогрессирующих по мере накопления в почках токсического вещества.

Вначале дистрофические изменения обнаруживаются в дистальных участках проксимальных отделов извитых канальцев и в области перехода их в нисходящую часть петли нефрона (петля Генле), а затем и в других отделах нефрона [Новикова А. П., 1959]. Это свидетельствует о прямой связи между особенностями гистолокализации урана и начальными изменениями в почке.

Источник

в чем опасность урана. Смотреть фото в чем опасность урана. Смотреть картинку в чем опасность урана. Картинка про в чем опасность урана. Фото в чем опасность урана

Уран известен человечеству еще с 79 года нашей эры, когда он использовался в керамической промышленности (в форме природного оксида) в нескольких частях Европы. Химический элемент был официально открыт только в 1789 году, когда во время эксперимента немецкий химик Мартин Генрих Клапрот наткнулся на странное, неизвестное вещество (оксид урана). Клапроту также приписывают открытие циркония, церия и теллура.

Впервые это стало известно на мировой арене в 1930-х годах, когда команда исследователей во главе с физиком Энрико Ферми, а затем Отто Ханом-Фрицем Страсманном раскрыла способность Урана распадаться (делиться) на более легкие элементы.

15. Нет недостатка в Уране как источнике энергии

Исследование, проведенное учеными Массачусетского технологического института в 2010 году показали, что более чем достаточно запасов урана для мировой атомной энергетики в обозримом будущем. В настоящее время все ядерные реакторы используют в этом процессе как уран, так и плутоний.

Интересно отметить, что большая часть используемого плутония фактически производится из изотопов урана, поскольку плутоний доступен только в небольших количествах в природе.

После успешного обнаружения способности деления урана, другая команда во главе с Энрико Ферми, на этот раз в рамках Манхэттенского проекта, начала работу над первым в мире ядерным реактором под названием Чикагская свая-1 (CP-1). 2 декабря 1942 года команда смогла инициировать первую в истории самоподдерживающуюся ядерную цепную реакцию в СР-1.

Их первоначальный план состоял в том, чтобы использовать обогащенный уран-235 в качестве топлива, но был отброшен из-за его дефицита в то время. Вместо этого реактор был заправлен 45 тоннами оксида урана и 5,4 тоннами металлического урана. В качестве замедлителя нейтронов было использовано около 360 тонн гранита. В отличие от многих современных ядерных реакторов, СР-1 не имел системы охлаждения.

13. Уран гораздо важнее, чем вы думаете

в чем опасность урана. Смотреть фото в чем опасность урана. Смотреть картинку в чем опасность урана. Картинка про в чем опасность урана. Фото в чем опасность урана

Распад тория, урана и калия-40 является основным источником тепла вблизи мантии Земли, который управляет критической мантийной конвекцией и удерживает внешнюю жидкость в противоположность твердому внутреннему ядру. Это тепло также играет важную роль в тектонике плит.

Кроме того, длительный период полураспада урана-238 (4,51× 10,9 лет) делает его идеальным для всех видов радиометрических исследований (радиоуглеродного датирования), т. е. Уран-уранового, уран–ториевого и уран-свинцового датирования. Он также используется для создания высокоэнергетических рентгеновских лучей.

12. Это самый тяжелый природный элемент, известный нам

Тяжесть элемента может быть определена двумя способами; с точки зрения его атомного веса и с точки зрения его плотности. С 92 протонами в его ядре и атомным весом около 238,0289 уран является самым тяжелым природным элементом на Земле.

Самым тяжелым синтетическим элементом, известным на сегодняшний день, является Оганесон (атомный номер 118). С другой стороны, самым тяжелым элементом по плотности является осмий (22,59 г / см 3 ).

11. Уран очень нестабилен

Все изотопы урана очень нестабильны, и это в основном из-за его размера. Том Зеллнер в своей книге «Уран: война, энергия и скала» описал уран примерно так: «Атом урана настолько перегружен, что он начал отливать из себя куски, как обманутый человек может сорвать с себя одежду».

10. Уран был впервые выделен в 1841 году.

в чем опасность урана. Смотреть фото в чем опасность урана. Смотреть картинку в чем опасность урана. Картинка про в чем опасность урана. Фото в чем опасность урана

Фотопластинки Беккереля, которая была засвечена излучением солей урана.

Первым человеком, который изолировал уран, был Эжен Пелиго, профессор химии в Национальной консерватории искусств и ремесел (Conservatoire National des Arts et Métiers) в Париже.

Пилиго успешно продемонстрировал, что таинственный черный порошок, открытый Мартином Генрихом Клапротом, был не чистым веществом, а оксидом урана (UO2 ). Он сделал это, обработав тетрахлорид урана (черный порошок) калием.

Затем в 1896 году физик Анри Беккерель обнаружил радиоактивные свойства урана наряду с самой радиоактивностью. Для этого он использовал несколько фосфоресцентных материалов, которые светятся в темноте после воздействия света.

Он накрыл фотопластинку черной бумагой и поочередно поместил разные фосфоресцентные соли. Он предположил, что свечение, создаваемое в ЭЛТ (электронно-лучевые трубки) рентгеновскими лучами, может быть связано с фосфоресценцией.

Результаты были неожиданными, так как урановая соль была единственным веществом, которое вызывало значительное почернение пластины. Исследование прояснило, что фосфоресценция не была позади запотевания пластины (соли урана не являются фосфоресцентными) и что там была какая-то форма невидимого излучения, которое проникало в черную бумагу и создавало вид, будто пластина подвергается воздействию света.

9. Природный реактор ядерного деления

Вам может быть интересно, как это возможно? Ну, чтобы понять это, вы должны сначала знать, что уран-235, который сегодня составляет всего около 0,72% природного урана, может выдерживать цепную реакцию деления, в отличие от урана-238. Он также разлагается гораздо быстрее, чем уран-238. Это означает, что уран-235 истощил намного больше, чем уран-238 с момента рождения Земли.

Краткие и быстрые факты

Теоретически, килограмм урана-235 может произвести

80 тераджоулей энергии. Потребовалось бы более 3000 тонн угля для производства такого же количества энергии.

в чем опасность урана. Смотреть фото в чем опасность урана. Смотреть картинку в чем опасность урана. Картинка про в чем опасность урана. Фото в чем опасность урана

Пенетраторы высокой плотности из обедненного урана военного класса

Однако прямое употребление этого вещества может привести к серьезным повреждениям многих органов, раку и длительным неврологическим расстройствам. Хотя потребление большого количества урана, безусловно, смертельно, почки могут справиться с низким уровнем воздействия урана.

в чем опасность урана. Смотреть фото в чем опасность урана. Смотреть картинку в чем опасность урана. Картинка про в чем опасность урана. Фото в чем опасность урана

Источник

Насколько безопасно и зачем добывать уран: мифы и правда

в чем опасность урана. Смотреть фото в чем опасность урана. Смотреть картинку в чем опасность урана. Картинка про в чем опасность урана. Фото в чем опасность урана

Богдан Петришин

Каково жить рядом с местом добычи урана? В чем выигрыш от этой руды? От каких пещерных представлений нужно избавиться? Вместе с профессором, горным инженером-технологом опровергли пять самых распространенных мифов об уране.

Всего, что хотя бы каким-то образом связано с радиацией, у нас принято бояться. Что неудивительно — после Чернобыльской трагедии такие страхи вполне можно понять. Однако, это вовсе не значит, что каждый такой страх обоснован. Часто страхи порождает незнание, которое превращает их чуть ли не в суеверия. Вот и об уране ходит множество мифов, корнями уходящих в седую старину (большинство, очевидно, тянется из Советского Союза): многим он кажется чем-то ужасным и радиоактивным. Но эти мифы не так уж и сложно развеять — стоит лишь копнуть чуть глубже. Давайте разбираться вместе.

Немного истории

Природная окись урана известна человечеству с древности. Ее использовали, например, в качестве краски для стекла и керамики — так посуда и украшения становились водостойкими. Кстати, и сегодня есть места, где производится урановое стекло — например, в Чехии. Не стоит бояться загадочного свечения изделий из этого стекла — это всего лишь последствие того, что группировки уранила способны поглощать ультрафиолет, а после этого сами испускают свет — уже в видимом диапазоне. Ничего радиоактивного!

Впервые нашел уран немецкий ученый Мартин Генрих Клапрот в конце 18 века, его посчитали обычным металлом. Однако уже в 1840 году обнаружилось, что открытие Клапрота — это вовсе не металл, а оксид — оксид урана. В 1841 году Эжен Мелькиор Пелиго выделил уран в чистом виде.

Еще через 55 лет французский физик Антуан Анри Беккерель благодаря урану открыл лучи, которые позже и назвали радиоактивными. Именно открытие Беккереля определило дальнейшую судьбу урана и то, какое применение ему нашло человечество.

в чем опасность урана. Смотреть фото в чем опасность урана. Смотреть картинку в чем опасность урана. Картинка про в чем опасность урана. Фото в чем опасность урана

С того времени уран оброс множеством мифов и предрассудков. Мы поговорили с Владимиром Бондаренко — профессором, заведующим кафедрой горной инженерии и образования Национального технического университета «Днепровская политехника» (г. Днепр) и попросили его подтвердить или опровергнуть самые часто встречающиеся мифы об уране. » Заблуждений об уране существует много «, — рассказал нам профессор Бондаренко. — » Часто они необоснованы и ненаучны. В основном страхи эти происходят от незнания «.

Вот что из этого получилось:

Миф 1. Добыча урана — это катастрофа для экологии

» Это неправда. Все зависит от используемого метода добычи. Если использовать старые методы открытых горных работ, то вредные факторы есть – образуется очень много пыли. Но так в мире сейчас никто не работает (возможно, только Россия). Сейчас уран добывают современным методом подземного выщелачивания. И цель этой технологии – минимизировать какое-либо влияние на окружающую среду.

Все процессы происходят под землей, как правило — между двумя водоизоляционными горизонтами (или слоями пород). По той геологии, что есть в Украине, это глины — а они являются водоупорами, не пропускают воду. Потом идет та структура, которая называется песок, и в песке находится уран в своих проявлениях. Ниже опять идут водоупоры. Поэтому все происходит между этими двумя изолированными гидроизоляционными слоями. Таким образом в процессе добычи ничего не попадает на поверхность и вглубь . В том числе, в те воды, которые являются питьевыми или снабжающими поверхность для растений и так далее «.

Для справки. Существует три способа добычи урановой руды:

Однако это пока еще не уран, а его оксид. Получение чистого урана — сложная цепочка химических реакций и превращений. Да и мало просто выделить чистый металл. Сам по себе уран не несет такой ценности, и чтобы его применять на АЭС, его нужно обогатить. Все это уже происходит позже — не на руднике.

Миф 2. На месте добычи урана остается мертвая земля

» Это тоже неправда. Даже во время проведения работ на поверхности безопасно. Например, в Казахстане (я связан с Казахстаном тем, что там учится мой аспирант, как раз изучающий метод подземного выщелачивания), очень много таких объектов, месторождений. И вот пока они на глубине 50-70 метров производят выщелачивание, на поверхности стоит лес. И зона отдыха «.

Для справки. Действительно, сегодня воздействие процесса добычи урана на окружающую среду — минимально. После добычи задействованную территорию рекультивируют (конечно, если есть такая потребность — в случае с лесом, который стоит на поверхности и во время добычи, она и вовсе отпадает). Наиболее эффективно рекультивация проходит при методе подземного выщелачивания — тогда окружающая среда терпит меньше всего урона и восстановить ее не составляет труда.

Миф 3. Рядом с местом добычи урана опасно жить

» Это неправда и исключено, потому что все процессы происходят под землей. Конечно, многое зависит от качества работ: чтобы не было нарушения скважин, чтобы они «по дороге» под землей не проникли в водоносный горизонт. Но вероятность этого минимальная «.

Для справки. Уран, как мы знаем, — это радиоактивный элемент. Но насколько сильна его радиоактивность? Можем расслабиться — излучение от урана идет слабое. Объяснение кроется в том, что природный уран содержит три изотопа: 234, 235 и 238, и более 99 процентов урана в природе содержится в виде изотопа уран-238, который практически не опасен для человека. Он считается долгоживущим: его период полураспада составляет 4,5 млрд лет.

Учитывая этот немалый срок, можно сказать, что излучает он слабо — его альфа-частицы не проходят через кожу человека. Интересно, что академик Курчатов, работавший в советское время с ураном, после контакта с металлом просто протирал руки платком. Лучевой болезнью он не страдал — такой контакт вполне безобиден. Более того, когда-то соединения урана можно было даже просто купить в аптеке — как уранат натрия. Сам по себе уран имеет крайне слабую радиоактивность.

Миф 4. Работа на урановой добыче — путь к смерти

» Нет, это не отвечает действительности, потому что то, что мы извлекаем, находится ближе к фоновому режиму. Это то, что мы в повседневной жизни испытываем, когда сидим на граните, например. Гранит фонит — то есть имеет естественный фон. В случае с добычей урана — тоже не более того. Добыча ведь как происходит: мы достаем эти крупицы, а потом, когда мы их уже доставляем на соответствующие заводы, вот там повышается концентрация. Именно химические заводы, на которых и происходит повышение концентрации, требуют определенного режима. А здесь ничего подобного нет. Мы растворили, отправили и все.

Тот уран, что мы извлекаем из-под земли — это уран в рассеянном виде. Там его граммы на тонну породы. При таких концентрациях его можно в руках держать — и ничего не произойдет «.

Чтобы использовать уран на АЭС — его надо обогатить, то есть повысить концентрацию урана-235 от природной до той, которая нужна для работы ядерного реактора. А уран-238 — это просто тяжелый металл серого цвета. Подойдет для того, чтобы сделать брелок для ключей. Абсолютно безопасный.

Миф 5. Украине не нужно добывать свой уран, АЭС и так нормально работают

» Мы ведь говорим о том, что хотим быть экономически и энергетически независимой страной. Если от газа мы зависим, от угля тоже практически зависим, а к тому же есть большие проблемы с использованием угля в мире — со временем мы от этого уйдем, потому что это не экологично, приводит к климатическому кризису из-за запредельного продуцирования СО2 в результате сжигания органических продуктов (как уголь, нефть, газ и так далее). А потом — середина осени, а на улице плюс 26 градусов, хотя раньше в это время уже заморозки были.

С атомом нужно жить. Это цивилизация, шаг в прогресс. И даже при альтернативных источниках энергии — как солнечная энергия или ветряная энергия, все равно понадобятся стабильные источники энергии — а среди стабильных наиболее экологичной является именно атомная энергия.

К тому же, атомная энергетика составляет более 50 процентов сейчас в Украине.

В этой сфере мы пока зависимы от России, так как закупаем уран у государства, воюющего с нами. А сейчас, разрабатывая свой уран, хотим выйти на замкнутый цикл внутри Украины. Это супер. Мы сами себя можем обеспечить топливом, и, тем самым, обеспечить энергетическую безопасность «.

Источник

Уран: факты и фактики

в чем опасность урана. Смотреть фото в чем опасность урана. Смотреть картинку в чем опасность урана. Картинка про в чем опасность урана. Фото в чем опасность урана

Откуда взялся уран? Скорее всего, он появляется при взрывах сверхновых. Дело в том, что для нуклеосинтеза элементов тяжелее железа должен существовать мощный поток нейтронов, который возникает как раз при взрыве сверхновой. Казалось бы, потом, при конденсации из образованного ею облака новых звездных систем, уран, собравшись в протопланетном облаке и будучи очень тяжелым, должен тонуть в глубинах планет. Но это не так. Уран — радиоактивный элемент, и при распаде он выделяет тепло. Расчет показывает, что если бы уран был равномерно распределен по всей толще планеты хотя бы с той же концентрацией, что и на поверхности, то он выделял бы слишком много тепла. Более того, его поток по мере расходования урана должен ослабевать. Поскольку ничего подобного не наблюдается, геологи считают, что не менее трети урана, а может быть, и весь он сосредоточен в земной коре, где его содержание составляет 2,5∙10 –4 %. Почему так получилось, не обсуждается.

Где добывают уран? Урана на Земле не так уж мало — по распространенности он на 38-м месте. А больше всего этого элемента в осадочных породах — углистых сланцах и фосфоритах: до 8∙10 –3 и 2,5∙10 –2 % соответственно. Всего в земной коре содержится 10 14 тонн урана, но главная проблема в том, что он весьма рассеян и не образует мощных месторождений. Промышленное значение имеют примерно 15 минералов урана. Это урановая смолка — ее основой служит оксид четырехвалентного урана, урановая слюдка — различные силикаты, фосфаты и более сложные соединения с ванадием или титаном на основе шестивалентного урана.

Что такое лучи Беккереля? После открытия Вольфгангом Рентгеном Х-лучей французский физик Антуан-Анри Беккерель заинтересовался свечением солей урана, которое возникает под действием солнечного света. Он хотел понять, нет ли и тут Х-лучей. Действительно, они присутствовали — соль засвечивала фотопластинку сквозь черную бумагу. В одном из опытов, однако, соль не стали освещать, а фотопластинка все равно потемнела. Когда же между солью и фотопластинкой положили металлический предмет, то под ним потемнение было меньше. Стало быть, новые лучи возникали отнюдь не из-за возбуждения урана светом и через металл частично не проходили. Их и назвали поначалу «лучами Беккереля». Впоследствии было обнаружено, что это главным образом альфа-лучи с небольшой добавкой бета-лучей: дело в том, что основные изотопы урана при распаде выбрасывают альфа-частицу, а дочерние продукты испытывают и бета-распад.

Насколько велика радиоактивность урана? У урана нет стабильных изотопов, все они радиоактивные. Самый долгоживущий — уран-238 с периодом полураспада 4,4 млрд лет. Следующим идет уран-235 — 0,7 млрд лет. Оба они претерпевают альфа-распад и становятся соответствующими изотопами тория. Уран-238 составляет более 99% всего природного урана. Из- за его огромного периода полураспада радиоактивность этого элемента мала, а кроме того, альфа-частицы не способны преодолеть ороговевший слой кожи на поверхности человеческого тела. Рассказывают, что И. В. Курчатов после работы с ураном просто вытирал руки носовым платком и никакими болезнями, связанными с радиоактивностью, не страдал.

Исследователи не раз обращались к статистике заболеваний рабочих урановых приисков и обрабатывающих комбинатов. Вот, например, недавняя статья канадских и американских специалистов, которые проанализировали данные о здоровье более 17 тысяч рабочих прииска Эльдорадо в канадской провинции Саскачеван за 1950–1999 годы (Environmental Research, 2014, 130, 43–50, DOI:10.1016/j.envres.2014.01.002). Они исходили из того, что сильнее всего радиация действует на быстро размножающиеся клетки крови, приводя к соответствующим видам рака. Статистика же показала, что у рабочих прииска заболеваемость различными видами рака крови меньше, чем в среднем у канадцев. При этом основным источником радиации считается не сам по себе уран, а порождаемый им газообразный радон и продукты его распада, которые могут попасть в организм через легкие.

Чем же вреден уран? Он, подобно другим тяжелым металлам, весьма ядовит, может вызывать почечную и печеночную недостаточность. С другой стороны, уран, будучи рассеянным элементом, неизбежно присутствует в воде, почве и, концентрируясь в пищевой цепочке, попадает в организм человека. Разумно предположить, что в процессе эволюции живые существа научились обезвреживать уран в природных концентрациях. Наиболее опасен уран в воде, поэтому ВОЗ установила ограничение: поначалу оно составляло 15 мкг/л, но в 2011 году норматив увеличили до 30 мк/г. Как правило, урана в воде гораздо меньше: в США в среднем 6,7 мкг/л, в Китае и Франции — 2,2 мкг/л. Но бывают и сильные отклонения. Так в отдельных районах Калифорнии его в сто раз больше, чем по нормативу, — 2,5 мг/л, а в Южной Финляндии доходит и до 7,8 мг/л. Исследователи же пытаются понять, не слишком ли строг норматив ВОЗ, изучая действие урана на животных. Вот типичная работа (BioMed Research International, 2014, ID 181989; DOI:10.1155/2014/181989). Французские ученые девять месяцев поили крыс водой с добавками обедненного урана, причем в относительно большой концентрации — от 0,2 до 120 мг/л. Нижнее значение — это вода вблизи шахты, верхнее же нигде не встречается — максимальная концентрация урана, измеренная в той же Финляндии, составляет 20 мг/л. К удивлению авторов — статья так и называется: «Неожиданное отсутствие заметного влияния урана на физиологические системы. », — уран на здоровье крыс практически не сказался. Животные прекрасно питались, прибавляли в весе как следует, на болезни не жаловались и от рака не умирали. Уран, как ему и положено, откладывался прежде всего в почках и костях и в стократно меньшем количестве — в печени, причем его накопление ожидаемо зависело от содержания в воде. Однако ни к почечной недостаточности, ни даже к заметному появлению каких-либо молекулярных маркеров воспаления это не приводило. Авторы предложили начать пересмотр строгих нормативов ВОЗ. Однако есть один нюанс: воздействие на мозг. В мозгах крыс урана было меньше, чем в печени, но его содержание не зависело от количества в воде. А вот на работе антиоксидантной системы мозга уран сказался: на 20% выросла активность каталазы, на 68–90% — глютатионпероксидазы, активность же суперкоксиддисмутазы упала независимо от дозы на 50%. Это означает, что уран явно вызывал окислительный стресс в мозгу и организм на него реагировал. Такой эффект — сильное действие урана на мозг при отсутствии его накопления в нем, кстати, равно как и в половых органах, — замечали и раньше. Более того, вода с ураном в концентрации 75–150 мг/л, которой исследователи из университета Небраски поили крыс полгода (Neurotoxicology and Teratology, 2005, 27, 1, 135–144; DOI:10.1016/j.ntt.2004.09.001), сказалаcь на поведении животных, главным образом самцов, выпущенных в поле: они не так, как контрольные, пересекали линии, привставали на задние лапы и чистили шерстку. Есть данные, что уран приводит и к нарушениям памяти у животных. Изменение поведения коррелировало с уровнем окисления липидов в мозгу. Получается, что крысы от урановой водички делались здоровыми, но глуповатыми. Эти данные нам еще пригодятся при анализе так называемого синдрома Персидского залива (Gulf War Syndrome).

Загрязняет ли уран места разработки сланцевого газа? Это зависит от того, сколько урана в содержащих газ породах и как он с ними связан. Например, доцент Трейси Бэнк из Университета Буффало исследовала сланцевые породы месторождения Марцелус, протянувшегося с запада штата Нью-Йорк через Пенсильванию и Огайо к Западной Виргинии. Оказалось, что уран химически связан именно с источником углеводородов (вспомним, что в родственных углистых сланцах самое высокое содержание урана). Опыты же показали, что используемый при разрыве пласта раствор прекрасно растворяет в себе уран. «Когда уран в составе этих вод окажется на поверхности, он может вызвать загрязнение окрестностей. Радиационного риска это не несет, но уран — ядовитый элемент», — отмечает Трейси Бэнк в пресс-релизе университета от 25 октября 2010 года. Подробных статей о риске загрязнения окружающей среды ураном или торием при добыче сланцевого газа пока не подготовлено.

Что такое деление ядра? Распад ядра на два неравных больших куска. Именно из-за этого свойства при нуклеосинтезе за счет нейтронного облучения ядра тяжелее урана образуются с большим трудом. Суть явления состоит в следующем. Если соотношение числа нейтронов и протонов в ядре не оптимально, оно становится нестабильным. Обычно такое ядро выбрасывает из себя либо альфа-частицу — два протона и два нейтрона, либо бета-частицу — позитрон, что сопровождается превращением одного из нейтронов в протон. В первом случае получается элемент таблицы Менделеева, отстоящий на две клетки назад, во втором — на одну клетку вперед. Однако ядро урана помимо излучения альфа- и бета-частиц способно делиться — распадаться на ядра двух элементов середины таблицы Менделеева, например бария и криптона, что и делает, получив новый нейтрон. Это явление обнаружили вскоре после открытия радиоактивности, когда физики подвергали новооткрытому излучению все, что придется. Вот как пишет об этом участник событий Отто Фриш («Успехи физических наук», 1968, 96, 4). После открытия бериллиевых лучей — нейтронов — Энрико Ферми облучал ими, в частности, уран, чтобы вызвать бета-распад, — он надеялся за его счет получить следующий, 93-й элемент, ныне названный нептунием. Он-то и обнаружил у облученного урана новый тип радиоактивности, который связал с появлением трансурановых элементов. При этом замедление нейтронов, для чего бериллиевый источник покрывали слоем парафина, увеличивало такую наведенную радиоактивность. Американский радиохимик Аристид фон Гроссе предположил, что одним из этих элементов был протактиний, но ошибся. Зато Отто Ган, работавший тогда в Венском университете и считавший открытый в 1917 году протактиний своим детищем, решил, что обязан узнать, какие элементы при этом получаются. Вместе с Лизой Мейтнер в начале 1938 года Ган предположил на основании результатов опытов, что образуются целые цепочки из радиоактивных элементов, возникающих из-за многократных бета-распадов поглотивших нейтрон ядер урана-238 и его дочерних элементов. Вскоре Лиза Мейтнер была вынуждена бежать в Швецию, опасаясь возможных репрессий со стороны фашистов после аншлюса Австрии. Ган же, продолжив опыты с Фрицем Штрассманом, обнаружил, что среди продуктов был еще и барий, элемент с номером 56, который никоим образом из урана получиться не мог: все цепочки альфа-распадов урана заканчиваются гораздо более тяжелым свинцом. Исследователи были настолько удивлены полученным результатом, что публиковать его не стали, только писали письма друзьям, в частности Лизе Мейтнер в Гётеборг. Там на Рождество 1938 года ее посетил племянник, Отто Фриш, и, гуляя в окрестностях зимнего города — он на лыжах, тетя пешком, — они обсудили возможности появления бария при облучении урана вследствие деления ядра (подробнее о Лизе Мейтнер см. «Химию и жизнь», 2013, №4). Вернувшись в Копенгаген, Фриш буквально на трапе парохода, отбывающего в США, поймал Нильса Бора и сообщил ему об идее деления. Бор, хлопнув себя по лбу, сказал: «О, какие мы были дураки! Мы должны были заметить это раньше». В январе 1939 года вышла статья Фриша и Мейтнер о делении ядер урана под действием нейтронов. К тому времени Отто Фриш уже поставил контрольный опыт, равно как и многие американские группы, получившие сообщение от Бора. Рассказывают, что физики стали расходиться по своим лабораториям прямо во время его доклада 26 января 1939 года в Вашингтоне на ежегодной конференции по теоретической физике, когда ухватили суть идеи. После открытия деления Ган и Штрассман пересмотрели свои опыты и нашли, так же, как и их коллеги, что радиоактивность облученного урана связана не с трансуранами, а с распадом образовавшихся при делении радиоактивных элементов из середины таблицы Менделеева.

Как проходит цепная реакция в уране? Вскоре после того, как была экспериментально доказана возможность деления ядер урана и тория (а других делящихся элементов на Земле в сколько-нибудь значимом количестве нет), работавшие в Принстоне Нильс Бор и Джон Уиллер, а также независимо от них советский физик-теоретик Я. И. Френкель и немцы Зигфрид Флюгге и Готфрид фон Дросте создали теорию деления ядра. Из нее следовали два механизма. Один — связанный с пороговым поглощением быстрых нейтронов. Согласно ему, для инициации деления нейтрон должен обладать довольно большой энергией, более 1 МэВ для ядер основных изотопов — урана-238 и тория-232. При меньшей энергии поглощение нейтрона ураном-238 имеет резонансный характер. Так, нейтрон с энергией 25 эВ имеет в тысячи раз большую площадь сечения захвата, чем с другими энергиями. При этом никакого деления не будет: уран-238 станет ураном-239, который с периодом полураспада 23,54 минуты превратится в нептуний-239, тот, с периодом полураспада 2,33 дня, — в долгоживущий плутоний-239. Торий-232 станет ураном-233.

в чем опасность урана. Смотреть фото в чем опасность урана. Смотреть картинку в чем опасность урана. Картинка про в чем опасность урана. Фото в чем опасность урана

Загрузка ТВЭЛа в реактор на четвертом блоке Калининской АЭС. Фото: ОАО Росатом, www.rosatom.ru

Второй механизм — беспороговое поглощение нейтрона, ему следует третий более-менее распространенный делящийся изотоп — уран-235 (а равно и отсутствующие в природе плутоний-239 и уран-233): поглотив любой нейтрон, даже медленный, так называемый тепловой, с энергией как у молекул, участвующих в тепловом движении, — 0,025 эВ, такое ядро разделится. И это очень хорошо: у тепловых нейтронов площадь сечения захвата в четыре раза выше, чем у быстрых, мегаэлектронвольтных. В этом значимость урана-235 для всей последующей истории атомной энергетики: именно он обеспечивает размножение нейтронов в природном уране. После попадания нейтрона ядро урана-235 становится нестабильным и быстро делится на две неравные части. Попутно вылетает несколько (в среднем 2,75) новых нейтронов. Если они попадут в ядра того же урана, то вызовут размножение нейтронов в геометрической прогрессии — пойдет цепная реакция, что приведет к взрыву из-за быстрого выделения огромного количества тепла. Ни уран-238, ни торий-232 так работать не могут: ведь при делении вылетают нейтроны со средней энергией 1–3 МэВ, то есть при наличии энергетического порога в 1 МэВ значительная часть нейтронов заведомо не сможет вызвать реакцию, и размножения не будет. А значит, про эти изотопы следует забыть и придется замедлять нейтроны до тепловой энергии, чтобы они максимально эффективно взаимодействовали с ядрами урана-235. При этом нельзя допустить их резонансного поглощения ураном-238: все-таки в природном уране этот изотоп составляет чуть меньше 99,3% и нейтроны чаще сталкиваются именно с ним, а не с целевым ураном-235. А действуя замедлителем, можно поддерживать размножение нейтронов на постоянном уровне и взрыва не допустить — управлять цепной реакцией.

Расчет, проведенный Я. Б. Зельдовичем и Ю. Б. Харитоном в том же судьбоносном 1939 году, показал, что для этого нужно применить замедлитель нейтронов в виде тяжелой воды или графита и обогатить ураном-235 природный уран по меньшей мере в 1,83 раза. Тогда эта идея показалась им чистой фантазией: «Следует отметить, что примерно двойное обогащение тех довольно значительных количеств урана, которые необходимы для осуществления цепного взрыва, представляет собой чрезвычайно громоздкую, близкую к практической невыполнимости задачу». Сейчас эта задача решена, и атомная промышленность серийно выпускает для электростанций уран, обогащенный ураном-235 до 3,5%.

Что такое спонтанное деление ядер? В 1940 году Г. Н. Флеров и К. А. Петржак обнаружили, что деление урана может происходить спонтанно, без всякого внешнего воздействия, правда период полураспада гораздо больше, чем при обычном альфа-распаде. Поскольку при таком делении тоже получаются нейтроны, если не дать им улететь из зоны реакции, они-то и послужат инициаторами цепной реакции. Именно это явление используют при создании атомных реакторов.

в чем опасность урана. Смотреть фото в чем опасность урана. Смотреть картинку в чем опасность урана. Картинка про в чем опасность урана. Фото в чем опасность урана

Смоленская АЭС. Фото: ОАО Росатом, www.rosatom.ru

Зачем нужна атомная энергетика? Зельдович и Харитон были в числе первых, кто посчитал экономический эффект атомной энергетики («Успехи физических наук», 1940, 23, 4). «. В настоящий момент еще нельзя сделать окончательных заключений о возможности или невозможности осуществления в уране ядерной реакции деления с бесконечно разветвляющимися цепями. Если такая реакция осуществима, то автоматически осуществляется регулировка скорости реакции, обеспечивающая спокойное ее протекание, несмотря на огромное количество находящейся в распоряжении экспериментатора энергии. Это обстоятельство исключительно благоприятно для энергетического использования реакции. Приведем поэтому — хотя это и является делением шкуры неубитого медведя — некоторые числа, характеризующие возможности энергетического использования урана. Если процесс деления идет на быстрых нейтронах, следовательно, реакция захватывает основной изотоп урана (U238), то стоимость калории из основного изотопа урана оказывается примерно в 4000 раз дешевле, чем из угля (если, конечно, процессы «сжигания» и теплосъема не окажутся в случае урана значительно дороже, чем в случае угля). В случае медленных нейтронов стоимость «урановой» калории (если исходить из вышеприведенных цифр) будет, принимая во внимание, что распространенность изотопа U235 равна 0,007, уже лишь в 30 раз дешевле «угольной» калории при прочих равных условиях».

Первую управляемую цепную реакцию провел в 1942 году Энрико Ферми в Чикагском университете, причем управляли реактором вручную — задвигая и выдвигая графитовые стержни при изменении потока нейтронов. Первая электростанция была построена в Обнинске в 1954 году. Помимо выработки энергии первые реакторы работали еще и на производство оружейного плутония.

Как функционирует атомная станция? Сейчас большинство реакторов работают на медленных нейтронах. Обогащенный уран в виде металла, сплава, например с алюминием, или в виде оксида складывают в длинные цилиндры — тепловыделяющие элементы. Их определенным образом устанавливают в реакторе, а между ними вводят стержни из замедлителя, которые и управляют цепной реакцией. Со временем в тепловыделяющем элементе накапливаются реакторные яды — продукты деления урана, также способные к поглощению нейтронов. Когда концентрация урана-235 падает ниже критической, элемент выводят из эксплуатации. Однако в нем много осколков деления с сильной радиоактивностью, которая уменьшается с годами, отчего элементы еще долго выделяют значительное количество тепла. Их выдерживают в охлаждающих бассейнах, а затем либо захоранивают, либо пытаются переработать — извлечь несгоревший уран-235, наработанный плутоний (он шел на изготовление атомных бомб) и другие изотопы, которым можно найти применение. Неиспользуемую часть отправляют в могильники.

в чем опасность урана. Смотреть фото в чем опасность урана. Смотреть картинку в чем опасность урана. Картинка про в чем опасность урана. Фото в чем опасность урана

В так называемых реакторах на быстрых нейтронах, или реакторах-размножителях, вокруг элементов устанавливают отражатели из урана-238 или тория-232. Они замедляют и отправляют обратно в зону реакции слишком быстрые нейтроны. Замедленные же до резонансных скоростей нейтроны поглощают названные изотопы, превращаясь соответственно в плутоний-239 или уран-233, которые могут служить топливом для атомной станции. Так как быстрые нейтроны плохо реагируют с ураном-235, нужно значительно увеличивать его концентрацию, но это окупается более сильным потоком нейтронов. Несмотря на то что реакторы-размножители считаются будущим атомной энергетики, поскольку дают больше ядерного топлива, чем расходуют, — опыты показали: управлять ими трудно. Сейчас в мире остался лишь один такой реактор — на четвертом энергоблоке Белоярской АЭС.

Как критикуют атомную энергетику? Если не говорить об авариях, то основным пунктом в рассуждениях противников атомной энергетики сегодня стало предложение добавить к расчету ее эффективности затраты по защите окружающей среды после выведения станции из эксплуатации и при работе с топливом. В обоих случаях возникают задачи надежного захоронения радиоактивных отходов, а это расходы, которые несет государство. Есть мнение, что если переложить их на себестоимость энергии, то ее экономическая привлекательность пропадет.

Существует оппозиция и среди сторонников атомной энергетики. Ее представители указывают на уникальность урана-235, замены которому нет, потому что альтернативные делящиеся тепловыми нейтронами изотопы — плутоний-239 и уран-233 — из-за периода полураспада в тысячи лет в природе отсутствуют. А получают их как раз вследствие деления урана-235. Если он закончится, исчезнет прекрасный природный источник нейтронов для цепной ядерной реакции. В результате такой расточительности человечество лишится возможности в будущем вовлечь в энергетический цикл торий-232, запасы которого в несколько раз больше, чем урана.

Теоретически для получения потока быстрых нейтронов с мегаэлектронвольтными энергиями можно использовать ускорители частиц. Однако если речь идет, например, о межпланетных полетах на атомном двигателе, то реализовать схему с громоздким ускорителем будет очень непросто. Исчерпание урана-235 ставит крест на таких проектах.

Что такое оружейный уран? Это высокообогащенный уран-235. Его критическая масса — она соответствует размеру куска вещества, в котором самопроизвольно идет цепная реакция, — достаточно мала для того, чтобы изготовить боеприпас. Такой уран может служить для изготовления атомной бомбы, а также как взрыватель для термоядерной бомбы.

Отдельный вопрос — последствия для здоровья людей. Согласно официальной статистике, многим людям, пережившим бомбардировку или живущим на загрязненной территории, облучение пошло на пользу — у первых более высокая продолжительность жизни, у вторых меньше онкологических заболеваний, а некоторое увеличение смертности специалисты связывают с социальным стрессом. Количество же людей, погибших именно от последствий аварий или в результате их ликвидации, исчисляется сотнями человек. Противники атомных электростанций указывают, что аварии привели к нескольким миллионам преждевременных смертей на европейском континенте, просто они незаметны на статистическом фоне.

Вывод земель из человеческого использования в зонах аварий приводит к интересному результату: они становятся своего рода заповедниками, где растет биоразнообразие. Правда, отдельные животные страдают от болезней, связанных с облучением. Вопрос, как быстро они приспособятся к повышенному фону, остается открытым. Есть также мнение, что последствием хронического облучения оказывается «отбор на дурака» (см. «Химию и жизнь», 2010, №5): еще на стадии эмбриона выживают более примитивные организмы. В частности, применительно к людям это должно приводить к снижению умственных способностей у поколения, родившегося на загрязненных территориях вскоре после аварии.

Что такое обедненный уран? Это уран-238, оставшийся после выделения из него урана-235. Объемы отхода производства оружейного урана и тепловыделяющих элементов велики — в одних США скопилось 600 тысяч тонн гексафторида такого урана (о проблемах с ним см. «Химию и жизнь», 2008, №5). Содержание урана-235 в нем — 0,2%. Эти отходы надо либо хранить до лучших времен, когда будут созданы реакторы на быстрых нейтронах и появится возможность переработки урана-238 в плутоний, либо как-то использовать.

в чем опасность урана. Смотреть фото в чем опасность урана. Смотреть картинку в чем опасность урана. Картинка про в чем опасность урана. Фото в чем опасность урана

Ампулы с изотопами, выделенными из облученного материала в НИИЯР ОАО Росатом. Фото: ОАО Росатом, www.rosatom.ru

Применение ему нашли. Уран, как и другие переходные элементы, используют в качестве катализатора. Например, авторы статьи в ACS Nano от 30 июня 2014 года пишут, что катализатор из урана или тория с графеном для восстановления кислорода и перекиси водорода «имеет огромный потенциал для применения в энергетике». Поскольку плотность урана высока, он служит в качестве балласта для судов и противовесов для самолетов. Годится этот металл и для радиационной защиты в медицинских приборах с источниками излучения.

Зато известно, что пластины из обедненного урана применяют для укрепления брони американских танков (этому способствуют его высокие плотность и температура плавления), а также вместо вольфрамового сплава в сердечниках для бронебойных снарядов. Урановый сердечник хорош еще и тем, что уран пирофорен: его горячие мелкие частицы, образовавшиеся при ударе о броню, вспыхивают и поджигают все вокруг. Оба применения считаются радиационно безопасными. Так, расчет показал, что, даже просидев безвылазно год в танке с урановой броней, загруженном урановым боекомплектом, экипаж получит лишь четверть допустимой дозы. А чтобы получить годовую допустимую дозу, надо на 250 часов прикрутить к поверхности кожи такой боеприпас.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *