в чем измеряются микроорганизмы
Размеры микроорганизмов.
Полезное
Смотреть что такое «Размеры микроорганизмов.» в других словарях:
Морфология микроорганизмов — Размеры и и форма клеток Большинство прокариот одноклеточные формы. Величина клеток многих прокариот находится в пределах 0,2 10,0 мкм. Однако среди них есть карлики (примерно 0,1 мкм трепонемы, микоплазмы) и гиганты (длиной до 100 мкм… … Википедия
Изменчивость фагов и изменчивость микроорганизмов под влиянием фагов — Фаги, как и микроорганизмы, способны изменять все свои свойства: форму и размеры негативных колоний, спектр литического действия, способность к адсорбции на микробной клетке, устойчивость к внешним воздействиям, антигенные свойства.… … Биологическая энциклопедия
Инволюционные (гетероморфные) формы микроорганизмов — адаптивные или дегенеративные формы бактерий, грибов и простейших, возникающие при старении или резком изменении среды обитания, напр., при появлении в среде конкурента, фага, антибиотиков, антисептиков, дезинфектантов, накоплении продуктов… … Словарь микробиологии
Микроскоп (оптич. прибор) — Микроскоп (от микро. и греч. skopéo смотрю), оптический прибор для получения сильно увеличенных изображений объектов (или деталей их структуры), невидимых невооружённым глазом. Человеческий глаз представляет собой естественную оптическую… … Большая советская энциклопедия
Микроскоп — I Микроскоп (от Микро. и греч. skopéo смотрю) оптический прибор для получения сильно увеличенных изображений объектов (или деталей их структуры), невидимых невооружённым глазом. Человеческий глаз представляет собой естественную… … Большая советская энциклопедия
Оптический микроскоп — Современный оптический микроскоп Микроскоп (от греч. μικρός малый и … Википедия
Оптическая микроскопия — Современный оптический микроскоп Микроскоп (от греч. μικρός малый и σκοπεῖν смотрю) оптический прибор для получения увеличенных изображений объектов (или деталей их структуры), невидимых невооружённым глазом. Содержание … Википедия
Бинокуляр — Один из первых микроскопов, 1876 год Современный бинокуляр Olympus SZIII Stereo microscope Микроскоп (греч. μικρός маленький и … Википедия
Микроскоп оптический — Современный оптический микроскоп Микроскоп (от греч. μικρός малый и σκοπεῖν смотрю) оптический прибор для получения увеличенных изображений объектов (или деталей их структуры), невидимых невооружённым глазом. Содержание … Википедия
Световой микроскоп — Современный оптический микроскоп Микроскоп (от греч. μικρός малый и σκοπεῖν смотрю) оптический прибор для получения увеличенных изображений объектов (или деталей их структуры), невидимых невооружённым глазом. Содержание … Википедия
Микроорганизмы
Содержание
Общие сведения
Повсеместная распространенность и суммарная мощность метаболического потенциала микроорганизмов определяет их важнейшую роль в круговороте веществ и поддержании динамического равновесия в биосфере Земли.
Краткое рассмотрение различных представителей микромира, занимающих определенные «этажи» размеров, показывает, что, как правило, величина объектов определенно связана с их структурной сложностью. Нижний предел размеров свободноживущего одноклеточного организма определяется пространством, требуемым для упаковки внутри клетки аппарата, необходимого для независимого существования. Ограничение верхнего предела размеров микроорганизмов определяется, по современным представлениям, соотношениями между клеточной поверхностью и объемом. При увеличении клеточных размеров поверхность возрастает в квадрате, а объем — в кубе, поэтому соотношение между этими величинами сдвигается в сторону последнего.
Среда обитания
Микроорганизмы обитают почти повсеместно, где есть вода, включая горячие источники, дно мирового океана, а также глубоко внутри земной коры. Они являются важным звеном в обмене веществ в экосистемах, в основном выполняя роль редуцентов, но в некоторых экосистемах они — единственные производители биомассы — продуценты.
Микроорганизмы, обитающие в различных средах, участвуют в круговороте серы, железа, фосфора и других элементов, осуществляют разложение органических веществ животного, растительного происхождения, а также абиогенного происхождения (метан, парафины), обеспечивают самоочищение воды в водоемах.
Впрочем, не все виды микроорганизмов приносят человеку пользу. Весьма многочисленное количество видов микроорганизмов является условно-патогенной или патогенной для человека и животных. Некоторые микроорганизмы вызывают порчу сельскохозяйственной продукции, обедняют почву азотом, вызывают загрязнение водоемов, накопление в продуктах питания ядовитых веществ (например, микробных токсинов).
В природе среда обитания с такой температурой существует под давлением в горячих вулканических источниках на дне океанов (Черные курильщики).
Известны микроорганизмы, процветающие при гибельных для многоклеточных существ уровнях ионизирующего излучения, в широком интервале значений рН, при 25 % концентрации хлорида натрия, в условиях различного содержания кислорода вплоть до полного его отсутствия (Анаэробные микроорганизмы).
В то же время, патогенные микроорганизмы вызывают болезни человека, животных и растений.
Наиболее общепризнанные теории о происхождении жизни на Земле предполагают, что протомикроорганизмы были первыми живыми организмами, появившимися в процессе эволюции.
Микробиологические меры длины и веса
Микробиологические меры длины и веса
Астрономы измеряют огромные пространства Вселенной такой мерой длины, как световой год, подразумевая под этим расстояние, проходимое лучом света за один год. Он равен приблизительно девяти с половиной биллионам километров.
Моряки в своих плаваниях измеряют расстояния в морских милях; мы, путешествуя, используем в качестве меры длины километр, а в повседневной жизни обходимся метрами, дециметрами, сантиметрами и миллиметрами.
Но для микроорганизмов все эти меры слишком велики. Ведь бактериальная клетка средних размеров достигает в длину лишь тысячной доли миллиметра! Поэтому микробиологи применяют еще более мелкие единицы измерения: микрометр (мкм), или тысячная доля миллиметра, нанометр (нм), или миллионная доля миллиметра. При работе с электронным микроскопом используется еще более мелкая единица — ангстрем (?), или десятимиллионная часть миллиметра. Таким образом,
Громадное большинство клеток бактерий имеет в среднем величину 0,5—1 мкм, клетки дрожжевых грибов или красных кровяных телец человека достигают 5—10 мкм. Поэтому-то их нельзя увидеть невооруженным глазом и долгое время они оставались скрытыми для человека, пока на помощь ему не пришел микроскоп.
Как же измерить длину такой клетки? Самый первый способ придумал еще Левенгук в 1684 году. Он подобрал несколько одинаковых песчинок, положил их одну за другой на отрезке прямой, равном ширине большого пальца, и пересчитал. А потом сравнил величину красных кровяных телец с этими песчинками. Таков был этот простой метод. С тех пор измерение при помощи микроскопа прошло путь длительного усовершенствования. Сейчас величину клеток мы измеряем под микроскопом специальными приборами; кроме того, существуют полуавтоматические и автоматические устройства для измерения не только величины, но и объема клетки!
Самые мелкие бактерии имеют в диаметре около десятой доли микрометра, но есть и такие, волокнообразные клетки которых достигают в длину нескольких сантиметров, а в ширину всего 40 мкм. Если величина клеток дрожжей, как мы уже знаем, 5—10 мкм, то волокнистые клетки других грибов достигают в длину нескольких миллиметров. Большая часть одноклеточных водорослей имеет также микроскопические размеры, хотя известны случаи, когда их длина составляет не меньше нескольких сантиметров. Вообще же можно считать, что клетки микроорганизмов — это живые существа бесконечно малых размеров. Чтобы лучше понять, сколь ничтожны эти размеры, можно представить их себе увеличенными во много раз и сравнить с видимыми предметами, увеличенными во столько же раз. Если, например, клетку бактерии величиной в полмикрометра микроскоп увеличит до размеров макового зернышка, то само зернышко, увеличенное во столько же раз, представляло бы собою «шарик» до двух метров в диаметре, а человек среднего роста при таком увеличении превратился бы в гиганта, которому Герлаховски-Штит[4] не доходил бы до плеча.
Различные объекты в световом и электронном микроскопах.
Вполне понятно, что такие маленькие существа, как бактерии, должны быть и необычайно легкими. На один миллиграмм веса приходится 5 миллиардов бактерий. При этом такое астрономическое количество клеток занимает крохотное пространство. Если в одном кубическом сантиметре питательной среды насчитывается миллиард бактерий размером 1×5 нанометров, то указанное выше количество займет всего одну двухсотую долю этого объема!
Читайте также
Вредители и меры борьбы с ними
Вредители и меры борьбы с ними На различных клематисах, произрастающих в природе и выращиваемых в культуре в открытом и защищённом грунте, паразитирует более 25 видов вредителей, причём 20 из них обнаружено в Крыму.На ЮБК на корнях клематиса паразитирует галловая нематода.
Болезни, их профилактика и меры борьбы
Болезни, их профилактика и меры борьбы Паразитическая микрофлора клематисов насчитывает более 30 возбудителей грибковых и бактериальных заболеваний. У нас известны 11 возбудителей, из которых 7 выявлены в Крыму. Кратко перечислим наиболее распространённые грибковые
Хромосома 19 Меры предосторожности
Хромосома 19 Меры предосторожности Когда в медицине появляется любая новая технология, перед человечеством стоит морально-этическая дилемма. Если новая технология позволяет спасти жизнь, человек чувствует себя виноватым, не воспользовавшись этой возможностью, даже
Меры санитарии
Меры санитарии Ученые давно уже предполагали, но долго не могли доказать, что источник болезней — грязь. Высказывались предположения, что причиной заболевания служит «загрязненный воздух» (отсюда название «малярия» — дурной воздух). С помощью микроскопа удалось
Какой длины был телескоп Гевелия?
Какой длины был телескоп Гевелия? Основным недостатком однолинзовых телескопов-рефракторов (а первые телескопы были именно однолинзовыми) является хроматическая аберрация. Линза объектива ведет себя как призма и не только преломляет свет, но и разлагает его на
Какой длины может достигать хоботок бабочки?
Какой длины может достигать хоботок бабочки? Ботаники, обнаружившие на острове Мадагаскар орхидею Angraecum sesquipedale с поразительной глубины венчиком (25–30 сантиметров), недоумевали: кто же опыляет такое растение? Чарлз Дарвин предположил, что это проделывает бражник с
Каких размеров и веса может достигать сом?
Каких размеров и веса может достигать сом? Сом – одна из самых больших пресноводных рыб нашей планеты. Он может достигать в длину 5 метров, а в весе – 300 килограммов. Питается он крупной рыбой, в том числе промысловой, и сам еще в прошлом веке являлся важным объектом
Чему равен мировой рекорд веса среди крупного рогатого скота?
Чему равен мировой рекорд веса среди крупного рогатого скота? Мировой рекорд веса среди крупного рогатого скота держит французский бык мясной породы, нагулявший 1922
Как определить оптимальность (недостаточность, избыточность) массы своего веса?
Как определить оптимальность (недостаточность, избыточность) массы своего веса? Для определения нормальной массы тела обычно пользуются формулой, предложенной еще в XIX веке известным французским антропологом Полем Брока (1824–1880): идеальный вес в килограммах равен росту
Прибавление веса
Прибавление веса Щенки растут быстро и должны прибавлять в весе равномерно. Единственный надежный способ определить хорошо ли развиваются щенки — это взвешивать их раз в два дня в течение первых двух недель, а после этого времени один раз в неделю. Если щенки прибавляют
Прибавление веса
Прибавление веса Щенки растут быстро и должны прибавлять в весе равномерно. Единственный надежный способ определить хорошо ли развиваются щенки — это взвешивать их раз в два дня в течение первых двух недель, а после этого времени один раз в неделю. Если щенки прибавляют
Микробы и микробиология
Основы микробиологии
Микробиология изучает строение, жизнедеятельность, условия жизни и развития мельчайших организмов, называемых микробами, или микроорганизмами.
Микробы были открыты голландцем А. Левенгуком (1632-1723) в конце XVII в., когда он изготовил первые линзы, дававшие увеличение в 200 и более раз. Увиденный микромир поразил его, Левенгук описал и зарисовал микроорганизмы, обнаруженные им на различных объектах.
Он положил начало описательному характеру новой науки. Открытия Луи Пастера (1822-1895) доказали, что микроорганизмы отличаются не только формой и строением, но и особенностями жизнедеятельности. Пастер установил, что дрожжи вызывают спиртовое брожение, а некоторые микробы способны вызывать заразные болезни людей и животных.
Пастер вошел в историю как изобретатель метода вакцинации против бешенства и сибирской язвы. Всемирно известен вклад в микробиологию Р. Коха (1843-1910) — открыл возбудителей туберкулеза и холеры, И. И. Мечникова (1845-1916) — разработал фагоцитарную теорию иммунитета, основоположника вирусологии Д. И. Ивановского (1864-1920), Н. Ф. Гамалея (1859-1940) и многих других ученых.
Классификация и морфология микроорганизмов
Микробы характеризуются огромным разнообразием видов, отличающихся строением, свойствами, способностью существовать в различных условиях среды. Они могут быть одноклеточными, многоклеточными и неклеточными.
Бактерии
Бактерии — преимущественно одноклеточные микроорганизмы размером от десятых долей микрометра, например микоплазмы, до нескольких микрометров, а у спирохет — до 500 мкм.
Различают три основные формы бактерий — шаровидные (кокки), палочковидные (бациллы и др.), извитые (вибрионы, спирохеты, спириллы) (рис. 1).
Шаровидные бактерии (кокки) имеют обычно форму шара, но могут быть немного овальной или бобовидной формы. Кокки могут располагаться поодиночке (микрококки); попарно (диплококки); в виде цепочек (стрептококки) или виноградных гроздьев (стафилококки), пакетом (сарцины). Стрептококки могут вызывать ангину и рожистое воспаление, стафилококки — различные воспалительные и гнойные процессы.
Рис. 1. Формы бактерий: 1 — микрококки; 2 — стрептококки; 3 — сардины; 4 — палочки без спор; 5 — палочки со спорами (бациллы); 6 — вибрионы; 7- спирохеты; 8 — спириллы (с жгутиками); стафилококки
Палочковидные бактерии самые распространенные. Палочки могут быть одиночными, соединяться попарно (диплобактерии) или в цепочки (стрептобактерии). К палочковидным относятся кишечная палочка, возбудители сальмонеллеза, дизентерии, брюшного тифа, туберкулеза и др. Некоторые палочковидные бактерии обладают способностью при неблагоприятных условиях образовывать споры. Спорообразующие палочки называют бациллами.Бациллы, напоминающие по форме веретено, называют клостридиями.
Спорообразование представляет собой сложный процесс. Споры существенно отличаются от обычной бактериальной клетки. Они имеют плотную оболочку и очень малое количество воды, им не требуются питательные вещества, а размножение полностью прекращается. Споры способны длительно выдерживать высушивание, высокие и низкие температуры и могут находиться в жизнеспособном состоянии десятки и сотни лет (споры сибирской язвы, ботулизма, столбняка и др.). Попав в благоприятную среду, споры прорастают, т. е. превращаются в обычную вегетативную размножающуюся форму.
Извитые бактерии могут быть в виде запятой — вибрионы, с несколькими завитками — спириллы, в виде тонкой извитой палочки — спирохеты. К вибрионам относится возбудитель холеры, а возбудитель сифилиса — спирохета.
Некоторые бактерии могут двигаться. Движение осуществляется с помощью жгутиков — тонких нитей разной длины, совершающих вращательные движения. Жгутики могут быть в виде одиночной длинной нити или в виде пучка, могут располагаться по всей поверхности бактерии. Жгутики есть у многих палочковидных бактерий и почти у всех изогнутых бактерий. Шаровидные бактерии, как правило, не имеют жгутиков, они неподвижны.
Размножаются бактерии делением на две части. Скорость деления может быть очень высокой (каждые 15-20 мин), при этом количество бактерий быстро возрастает. Такое быстрое деление наблюдается на пищевых продуктах и других субстратах, богатых питательными веществами.
Вирусы
Вирусы вызывают такие распространенные болезни человека, как грипп, вирусный гепатит, корь, а также болезни животных — ящур, чуму животных и многие другие.
Риккетсии — микроорганизмы, занимающие промежуточное положение между бактериями и вирусами. Они представляют собой неподвижные палочки длиной не более 1,0 мкм, не образующие спор и капсул. Как и вирусы, они являются внутриклеточными паразитами.
Грибы
Отдельные виды грибов способны не только приводить к порче продуктов, но и вырабатывать токсические для человека вещества — микотоксины. К ним относятся некоторые виды грибов рода аспергиллус, рода фузариум и др.
Рис. 2. Виды плесневых грибов: 1 — пениииллиум; 2- аспергиллус; 3 — мукор.
Дрожжи
Дрожжи широко распространены в природе, их можно обнаружить в почве и на растениях, на пищевых продуктах и различных отходах производства, содержащих сахара. Развитие дрожжей в пищевых продуктах может приводить к их порче, вызывая брожение или закисание. Некоторые виды дрожжей обладают способностью превращать сахар в этиловый спирт и углекислый газ. Этот процесс называется спиртовым брожением и широко используется в пищевой промышленности и виноделии.
Некоторые виды дрожжей кандида вызывают заболевание человека — кандидоз.
Микробиолог Мартин Блейзер из школы медицины при Нью-Йоркском университете определяет понятие «микробиом» как «совокупность всех микроорганизмов, которые живут в теле человека и взаимодействуют друг с другом и с самими собой». Некоторые из обитателей человеческого тела, в числе которых есть бактерии, грибки и различные простейшие одноклеточные организмы проявляют удивительные свойства.
5 фактов о жизни внутри нас
1. Число микробов и бактерий в организме превышает количество клеток тела человека
Человеческий организм буквально кишит микробами: по некоторым сведениям, внутри нас клеток бактерий примерно в десять раз больше, чем клеток тела. Как заявил в интервью «LiveScience» Мартин Блейзер: «Конечно, никто не будет считать, сколько бактерий живёт в человеке, точное количество не имеет значения, но ясно одно — бактерий гораздо больше, чем клеток, из которых мы состоим».
Развитие бактерий, населяющих наш «внутренний мир», происходило на протяжении всей эволюции человека и продолжается до сих пор. Ожидается, что в 2013-м году завершится масштабный 5-летний проект по каталогизации и классификации микробиома человека — над ним трудились сотни учёных по всему миру.
2. Люди появляются на свет без бактерий
Зная, какую важную роль микроорганизмы играют в жизнеобеспечении, можно подумать, что бактерии появляются на свет вместе с человеком. Однако, как выяснилось, это не так: согласно Блейзеру, люди рождаются без бактерий и обзаводятся ими в течение нескольких первых лет жизни.
Первую «порцию» микробов младенец получает при прохождении через родовые пути матери, если же малыш появился на свет с помощью кесарева сечения, то он не получает этой доли микроорганизмов, из-за чего у него может быть повышен риск возникновения некоторых видов аллергии, а также ожирения.
Большая часть микробиома ребёнка формируется к трём годам — это период интенсивного развития всех систем организма.
3. Одна бактерия способна приносить как пользу, так и вред
Некоторые микробы вызывают недуги, другие способны от них защитить, а иногда одна и та же бактерия может и навредить и оказать положительное влияние.
Например, Helicobacter Pylori — когда-то эти бактерии были широко распространены, обитая в телах практически всех людей на Земле, но сейчас они есть лишь у половины человечества. Большинство из этих бактерий не доставляют их «хозяевам» никаких неприятностей, но в некоторых случаях могут способствовать образованию болезненных язв в пищеварительном тракте (за работы по изучению влияния Helicobacter Pylori на возникновение гастрита и язвы желудка и двенадцатиперстной кишки австралийский врач Маршалл Барри в 2005-м году получил Нобелевскую премию).
Победить негативное влияние бактерии можно с помощью антибиотиков, но Блейзер и его коллеги обнаружили, что отсутствие этого микроорганизма может вызвать рефлюкс-эзофагит (повреждение слизистой оболочки) и даже рак пищевода.
Таким образом, некоторые бактерии могут быть как полезными, так и смертельно опасными.
4. Лечение антибиотиками может спровоцировать астму и ожирение
В 1928-м году Александр Флемминг изобрёл пенициллин, и это был грандиозный прорыв в медицине. Во всём мире антибиотики широко применяются в борьбе с самыми разнообразными заболеваниями, однако, как показывают последние исследования, использование антибиотиков может увеличить риск развития астмы, воспалительных заболеваний кишечника и даже ожирения. Кроме того, микробы научились приспосабливаться к антибиотикам: к примеру, метициллин-резистентный золотистый стафилококк способен вызвать тяжёлые заболевания вроде пневмонии или сепсиса.
Конечно, бывают случаи, когда лечение антибиотиками необходимо, но, как заявил «LiveScience» Мартин Блейзер, иногда стоит воздержаться от их использования: некоторые детские инфекционные заболевания ушей или горла могут пройти сами по себе.
5. Пробиотики не так хороши, как считается
В последнее время во всём мире наблюдается повальное увлечение пробиотическими (состоящими из микроорганизмов) добавками к пище: многие принимают их после курса лечения антибиотиками, полагая, что это дарует им здоровье. Насколько их применение оправдано?
«Сама концепция восстановления микрофлоры после использования антибиотиков хороша, — считает Блейзер. — Но наивно считать, что принимая пробиотики, содержащие один или несколько видов микроорганизмов, можно добиться впечатляющих результатов — у нас в организме тысячи разновидностей!». Учёный считает, что продавцы пробиотиков преувеличивают положительный эффект от своих препаратов.
«Возможно, в будущем у нас появятся пробиотики, способные побеждать болезни, но до этого пока далеко — эта отрасль слишком молода», — подытоживает микробиолог.
Размер бактерий, спор, вирусов и грибов, микроорганизмов
Размеры микроорганизмов
Как показывает само название, объекты, относимые к микроорганизмам, были выделены по признаку их малых размеров. Если принять за критерий границу видимости невооруженным глазом, равную 70—80 мкм5, то все объекты, которые лежат за пределами этой границы, можно отнести к микроорганизмам. Мир микроорганизмов — это преимущественно мир одноклеточных форм. Диапазон размеров микроорганизмов велик (табл.2).
Величина самых крупных представителей микромира, лежащих на границе видимости невооруженным глазом, приблизительно 100 мкм (некоторые диатомовые водоросли, высшие протисты). На порядок ниже размеры одноклеточных зеленых водорослей и клеток дрожжей, еще ниже размеры, характерные для большинства бактерий. В среднем линейные размеры бактерий лежат в пределах 0,5–3 мкм, но есть среди бактерий свои «гиганты» и «карлики». Например, клетки нитчатой серобактерии Beggiatoa alba имеют диаметр до 50 мкм; Achromatium oxaliferum, считающийся одним из крупных бактериальных организмов, имеет в длину 15—100 мкм при поперечнике примерно 5—33 мкм, а длина клетки спирохеты может быть до 250 мкм.
Таблица 2. Размеры различных объектов
Объект | Линейные размеры, мкм* |
Одноклеточные эукариоты | |
Некоторые диатомовые водоросли и высшие протисты | 100 |
Зеленая водоросль Chlorella | 2-10 |
Клетка дрожжей Saccharomyces | 6-10 |
Прокариотные организмы | |
Крупные | |
Achromatium oxaliferum | 5-33х15-100 |
Beggiatoa alba | 2-10х1-50 |
Cristispira pectinis | 1,5х36-72 |
Macromonas mobilis | 6-14х10-30 |
Thiovulum majus | 5-25 |
Spirochaeta plicatilis | 0,2-0,7х80-250 |
Обычные | |
Bacillus subtilis | 0,7-0,8×2-3 |
Escherichia coli | 0,3-1х1-6 |
Staphylococcus aureus | 0,5-1,0 |
Thiobacillus thioparus | 0,5х1-3 |
Rickettsia prowazeki | 0,3-0,6×0,8-2 |
Мелкие | |
Mycoplasma mycoides | 0,1х0,25 |
Bdellovibrio bacteriororus | 0,3×1,2 |
Haemobarfonella muris | 0,1×0,3-0,7 |
Wolbachia melophagi | 0,3х0,6 |
Вирусы | |
Крупные | |
табачной мозаики | 0,02×0,3 |
коровьей оспы | 0,26 |
гриппа | 0,1 |
фаг Т2 | 0,06×0,2 |
Мелкие | |
0Х174 | 0,025 |
желтой лихорадки | 0,022 |
вирус-сателлит | 0,018 |
Толщина ЦПМ бактериальной клетки | 0,01 |
Рибосома | 0,018 |
Молекула глобулярного белка | |
крупная | 0,013 |
мелкая | 0,004 |
Самые мелкие из известных прокариотных клеток — бактерии, принадлежащие к группе микоплазм. Описаны микоплазмы с диаметром клеток 0,1–0,15 мкм. Поскольку молекулы всех соединений имеют определенные физические размеры, то, исходя из объема клетки с диаметром 0, 15 мкм, легко подсчитать. что в ней может содержаться порядка 1200 молекул белка и осуществляться около 100 ферментативных реакций. Минимальное число ферментов, нуклеиновых кислот и других макромолекулярных компонентов, необходимых для самовоспроизведения теоретической «минимальной клетки», составляет, по про веденной оценке, около 50. Это то, что необходимо для поддержания клеточной структуры и обеспечения клеточного метаболизма. Таким образом, в группе микоплазм достигнут размер клеток, близкий к теоретическому пределу клеточного уровня организации жизни. Мельчайшие микоплазменные клетки равны или даже меньше частиц другой группы микроскопических организмов — вирусов.
Если бактериальные клетки обычно можно увидеть в световой микроскоп, то вирусы, размеры большинства которых находятся в диапазоне 16–200 нм, лежат за пределами его разрешающей способности. Впервые наблюдать вирусы и выяснить их структуру удалось после изобретения электронного микроскопа. По своим размерам вирусы занимают место между самыми мелкими бактериальными клетками и самыми крупными органическими молекулами. Размер частиц вируса-сателлита (18 нм) и величина крупной молекулы глобулярного белка (13 нм) близки. Таким образом, если раньше между известными биологам организмами и неживыми молекулами химиков существовала пропасть, то теперь этой пропасти нет: она заполнена вирусами.
Размеры всех живых организмов, выраженные в одних единицах, например в ангстремах, располагаются в диапазоне от 102 (самые мелкие вирусы) до 1011 (размеры кита). Если за границу, разделяющую микро- и макромиры, принять предел видимости невооруженным глазом, т. е. приблизительно 106Å. то, как можно видеть из приведенных значений, на долю микромира приходится огромный диапазон величин.
Краткое рассмотрение различных представителей микромира, занимающих определенные «этажи» размеров, показывает. что, как правило, величина объектов определенно связана с их структурной сложностью. Нижний предел размеров свободноживушего одноклеточного организма определяется пространством, требуемым для упаковки внутри клетки аппарата, необходимого для независимого существования. Ограничение верхнего предела размеров микроорганизмов определяется, по современным представлениям, соотношениями между клеточной поверхностью и объемом. При увеличении клеточных размеров поверхность возрастает в квадрате, а объем — в кубе, поэтому соотношение между этими величинами сдвигается в сторону последнего. У микроорганизмов по сравнению с макроорганизмами очень велико отношение поверхности к объему. Это создает благоприятные условия для активного обмена между микроорганизмами и внешней средой. И действительно, метаболическая активность микроорганизмов, измеренная по разным показателям, в расчете на единицу биомассы намного выше, чем у более крупных клеток. Поэтому представляется закономерным, что низшие формы жизни могли возникнуть и в настоящее время могут существовать только на базе малых размеров, так как последние создают целый ряд преимуществ, обеспечивающих жизнеспособность этим формам жизни.
Бактерии могут иметь большой набор форм и размеров (или морфологий). За размером бактериальные клетки обычно в 10 раз меньшие, чем клетки эукариотов, имея только 0,5-5,0 м в своем самом большом размере, хотя гигантские бактерии, такие как Thiomargarita namibiensis и Epulopiscium fishelsoni, могут вырастать до 0, 5 мм в размере и быть видимыми невооруженным глазом.
Наименьшими свободноживущими бактериями являются микоплазмы, члены рода Mycoplasma, лишь 0,3 м в длину, приблизительно уровне за размером самым большим вирусам.
Мелкий размер важный для бактерий, потому что он приводит к большому соотношению объема к площади поверхности, которая ускоряет транспорт питательных веществ и выделения отходов. Низкое соотношениях объема к площади наоборот ограничивает скорость метаболизма микробу. Причина для существования больших клеток неизвестная, хотя кажется, что большой объем используется прежде всего для хранения дополнительных питательных веществ.
Однако, существует и наименьший размер свободноживущей бактерии. Согласно теоретическим подсчетам, сферическая клетка диаметром меньше 0,15-0,20 мкм становится неспособной к самостоятельному воспроизведению, поскольку в ней физически не помещаются все необходимые биополимеры и структуры в достаточном количестве.
Недавно были описанные нанобактерии (и похожие нанобы и ультрамикробактерии), что имеют размеры меньше «допустимых», хотя факт существования таких бактерий все еще остается под вопросом. Они, в отличие от вирусов, способные к самостоятельному росту и размножению, но требуют получения ряда питательных веществ, которые они не могут синтезировать, из среды или от клетки-хозяина.
Размеры микробов и вирусов
Известный ботаник Карл Линней в конце XVIII века ввел систему классификации животных и растений, которая служит и до настоящего времени. Однако даже Линней не смог разобраться в мире бесконечно малых существ и отнес их в сборную группу, названную им хаосом.
Микробы – это в основном одноклеточные бесхлорофилльные организмы прокариотического типа.
По форме различают шаровидные, палочковидные и извитые микробы. Между этими группами имеются многочисленные и часто незаметные переходы. Большая часть относится к группе бактерий.
С линнеевских времен прошло немало лет.
Первозданный микробный хаос постепенно упорядочился. Оказалось, что и у микробов можно найти признаки, столь же типичные для каждого из них, как, скажем, окраска надкрылий для жука-кузьки. Но кое в чем хаос еще остался — ив первую очередь в самом названии «микроб».
Оно происходит от двух греческих слов: «микрос» — малый и «биос» — жизнь. Если так, то к микробам можно сопричислить все живые существа, которые едва заметны или вовсе незаметны для невооруженного глаза.
Тогда наибольший размер микроба — 1/10 — 1/20 доля миллиметра (в 2—3 раза меньше, чем точка на этой странице). В микробиологии принято производить измерения в тысячных долях миллиметра — микронах, и в тысячных долях микрона — миллимикронах.
Следовательно, размер заметного (особенно, когда он подвижен) невооруженным глазом микроба до 50 микрон.
Выращивание микробов для тестирования на них антибиотиков. Фото: Nathan Reading
Многие простейшие (инфузории, амебы) имеют довольно сложное строение и достигают нескольких сот микрон. Ими занимается особая наука, называемая протистологией, которая уже давно отделилась от микробиологии.
Среди простейших есть настоящие гиганты, например раковинные амебы, раковинки которых такой же величины, как и у мелких улиток. Но не будем задерживаться на этом классе мельчайших живых существ.
Хоть они и мельчайшие, но все же во много раз больше, чем любой микроб.
Отдельную бактерию простым глазом не увидишь. Правда, есть так называемые серобактерии, которые образуют нити длиной в десятки сантиметров, но это исключение. А правило таково: размер бактерии колеблется около величины в два микрона. Для этой величины уже не найдешь подходящего наглядного сравнения: такая бактерия меньше типографской точки в 250—500 раз.
Итак, существа, которых биологи прошлых лет относили в одну группу (точь-в-точь, как мы называем букашкой и муравья, и тлю, и жучка-короеда), даже по размерам сильно отличаются друг от друга.
Крупная инфузория в 400—500 микрон почти в сто тысяч раз больше вируса.
Еще Д, И. Ивановский получил вирус табачной мозаики в форме кристаллов.
Кристаллическое живое существо! Это казалось настолько странным, что многие ученые только на этом основании отвергали возможность признания вирусов живыми, считая их химическим веществом.
А тем не менее ничего странного в этом нет. Размеры вирусов настолько малы, что в формировании их облика огромную роль играют межмолекулярные силы. Они-то и заставляют химически однородные вирусы образовывать кристаллы из живых существ. Кристаллы, которые живут!
Долгое время считалось, что такие кристаллы могут образовывать только вирусы растений, но затем удалось провести также кристаллизацию живой материи из вирусов животных и людей.
Размер бактерий
На первом совещании по вопросам происхождения жизни, которое состоялось в Москве, американский ученый лауреат Нобелевской премии Уэндел М. Стенли демонстрировал кристаллы, полученные из вирусов полиомиелита.
Каковы же размеры вируса? Понятие о «среднем росте» ввести для вирусов довольно затруднительно: в мире невидимых есть свои великаны и свои карлики.
Обычно размеры микробов измеряются микронами (микрон – это одна тысячная миллиметра), а для вирусов используют еще в 1000 раз более мелкую единицу измерения – миллимикрон.
По сравнению с копейкой вирус выглядит таким же маленьким, как сама монета по сравнению с футбольным полем стадиона «Динамо» в Москве. Микробы, возбуждающие возвратный тиф, имеют размеры 10–12 микронов, безвредный микроб «чудесная палочка» – чуть меньше микрона. А вот вирус клещевого энцефалита имеет величину в 30 миллимикронов, вирус табачной мозаики в два раза меньше, размеры вирусов гриппа не превышают 120 миллимикронов, а вирус «крошка», возбуждающий ящур, равен примерно 8 миллимикронам.
Между тем самое крупное млекопитающее — синий кит, величиной в 30 метров — длиннее четырехсантиметровой землеройки-малютки всего в 750 раз.
Значит, в наших руках уже есть один признак, который поможет нам навести порядок в мире микробов.
По форме и по строению микробы отличаются друг от друга, пожалуй, не меньше, чем по величине. Несомненно, самые красивые и причудливые из них это простейшие, особенно инфузории.
Шаровидные микробы — кокки в форме единичных шариков, или шариков, сцепленных между собой в цепочку — стрептокков, или шарики сцепленных по четыре — тетракокки; из 8 клеток расположенных в два яруса один над другим — сарцины; в виде гроздей винограда — стафилоккоки.
Палочковидные или цилиндрические формы принято делить на бактерии и бациллы.
Все палочковидные формы, не образующие спор, называются бактериями, а образующие споры-бациллыами. Парные соединения клеток- диплобактерии или диплобациллы, соединенные в цепочки- стрептобактерии или стрептобациллы.
Извитые или изогнутые, бактерии различаются по длине, толщине и степени изогнутости.
Палочки, изогнутые в виде запятой называют вибрионами. палочки с одним или несколькими завитками – спириллами, а с многочисленными завитками наподобие длинной спирали- спирохеты.
Размеры бактерий очень малы.
В среднем диаметр тела б. бактерий 0,5 — 1 мкм. (микрон), а длина 1-5 мкм. Масса бактериальной клетки — 0,004 г. Формы тела бактерий, как и размеры, может изменяться под влиянием условий развития.
Недавно на портале maminuklubs.lv одна из мамочек задала вопрос, какова же разница между микробами, бациллами, бактериями и вирусами. Мамин Клуб связался с Центром по контролю и профилактике заболеваний Латвии, чтобы дать полный ответ на этот вопрос. Итак, что же нам ответили специалисты центра.
Что такое микробы, бактерии, бациллы и вирусы?
Все вышеперечисленное является микроорганизмами, которых называют так же микробами.
Одни из главных микробов это вирусы.
Вирусы это мельчайшие микроорганизмы, которые могут размножаться только в живой клетке. Вирусы это паразиты со сравнительно простым строением: его внутренность это нуклеокапсид, который состоит из нуклеиновой кислоты. После попадания в клетку вирус теряет свою оболочку, а нуклеиновая кислота управляет процессами в клетке. Клетка начинает производить новые составляющие, необходимые для построения нового вируса, а потом сама умирает, в свою очередь вновь образовавшиеся вирусы внедряются в другие клетки, и процесс образования вируса начинается снова.
Хочется подчеркнуть и то, что антибиотики на вирусы не действуют.
В основном вирусы вызывают часто встречаемые заболевание, такие как грипп и инфекции дыхательных путей, кишечные инфекции (рота и норавирусы), гепатит А, так называемые детские болезни – ветрянку, корь, свинку и другие тяжелые инфекционные заболевания, такие как полиомиелит, энцефалит, гепатиты В и С, СПИД, геморрагические лихорадки и так далее.
Бактерии это одноклеточные организмы, которые очень просты – у них нет ядра, и они обычно содержат только одну хромосому.
Бактерии находятся везде — в почве, воде, воздухе, на фруктах, в организме животных и людей.
В нашем организме триллионы бактерий, которые сосредоточены в основном в пищеварительном тракте. Они помогают переварить пищу, а также являются главным источником витамина К, необходимого для свертывания крови. В отличие от вирусов, бактерии могут жить и размножаться в организме человека или животного, а также во внешней среде при наличии благоприятных условий.
Только 300 из 4600 известных видов бактерии считаются патогенными, но все же бактерии вызывают множество различных заболеваний у растений, животных и людей.
Среди патогенных бактерий, которые угрожают жизни человека туберкулез, дифтерия, столбняк, менингит, кишечные инфекции (сальмонеллез, дизентерия, кампилобактериоз), различные сексуально трансмиссивные заболевания, некоторые виды пневмонии, а также кариес.
Очень опасными инфекциями являются чума, холера, брюшной тиф.
Протозои или одноклеточные, также как и бактерии, одноклеточны организмы, но в некоторых случая имеющие больше одного ядра. К ним относятся амебы и трипаносомы, а также паразиты, вызывающие малярию. Примерно третья часть одноклеточных являются паразитами, а всего их насчитывают около 10 тысяч, но лишь небольшая часть вызывает заболевания у человека.
Грибки также могут вызывать заболевания.
У этих организмов есть ядро, и, свиваясь тонкими нитями, они образуют мицелий. На данный момент самые распространенные грибки, те которые относятся к деформации кожного покрова, к примеру, инфекция грибка на ногах и кандидоз. Более тяжелые грибковые инфекции угрожают людям с очень сильно ослабленной иммунной системой вследствие недостаточного питания, рака, употребления сильных медикаментов и вирусных инфекций.
Как и при каких условиях все эти микроорганизмы воздействую на наше здоровье?
Что касается инфекционных заболеваний – их может возбуждать один вид микроорганизмов (простая инфекция) или несколько (смешанная инфекция).
Процесс инфицирования начинается с того момента, как возбудитель попал в человеческий организм. Процессы жизнедеятельности микроорганизмов и их размножение стимулируют защитные реакции организма: вырабатываются антитела, возникают аллергии, развивается иммунитет.
Случается, что микроорганизм-возбудитель заболевания может находиться в организме человека в неактивном состоянии, и сам человек может чувствовать себя здоровым, но при наличии неблагоприятных условий (переутомление, переохлаждение, неполноценное питание) могут открыться патогенные особенности микроорганизма, и человек может заболеть (аутоинфекция).
Мир микроорганизмов крайне богат и многообразен, и их роль в природе велика.
Микроорганизмы широко распространены в природе и активно участвуют в обмене веществ. Они находятся повсюду, в том числе на предметах окружающей вас среды.
Тем не менее, у каждого микроорганизма есть свой метод выживания. Вирусы вне живого организма размножаться не могут, и многие из них во внешней среде могут выжить небольшой отрезок времени.
Например, вирус гриппа может жить несколько часов, вирусы гепатита — несколько дней, вирус полиомиелита в воде может сохраняться более длительный период времени.
Жизнеспособность и способность бактерий к размножению во внешней среде зависит от особенностей конкретной бактерии. Бактерии не только выживают, они могут и размножаться в окружающей среде в зависимости от подходящей им температуры, влажности, количества кислорода и питательных веществ.
Отдельные бактерии при неблагоприятных условиях могут образовывать споры (Сибирская язва, бактерия ботулизма, палочки столбняка), которые могут сохраняться долгие годы.
Микроорганизмы гибнут под воздействием высоких, реже низки температур, высыхая, от химических средств, содержащих хлор или спирт, УФ лучей.
Поэтому очень часто активность того или иного заболевания зависит от времени года.
Помимо этого микроорганизмы могут вырабатывать сопротивляемость к употребляемым лекарствам (антибиотики, противовирусные препараты), что называется резистентность. Такое обычно случается, когда противомикробные препараты применяются необоснованно, бесконтрольно и без назначения врача.
Это делает лечение отдельных болезней более затруднительными и создает необходимость в поиске новых медикаментов.
Большое значение в борьбе с микробами имеет профилактика — личная гигиена и гигиена окружающей среды, а также иммунизация.