в чем измеряются конденсаторы

Основы автоэлектрики. Часть5. Электрическая ёмкость и конденсаторы

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Сегодня мы коснёмся темы накопителей заряда, именуемых конденсаторами.

Конденсатор — пассивный электронный компонент, состоящий из двух полюсов, накапливающий заряд.

Электрическая ёмкость — это отношение электрического заряда к разности потенциалов между полюсами конденсатора (или иного другого электронного компонента). Единица измерения — Фарад и его производные (пикоФарад, наноФарад, микроФарад). Обозначается ёмкость латинской буквой С.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Мы уже обсуждали, что ток — это есть скорость перемещения заряда, а напряжение — это разность потенциалов. Мы всегда удобно проводить некие параллели, поэтому напряжение ассоциируется с разницей давления в жидкости или газе, а ток — с объёмной скоростью жидкости или газа. Поэтому конденсатор можно представить себе как некий сосуд, который наполняют жидкостью или газом давлением, которое выше чем в сосуде. Наполнение сосуда будет происходить до тех пор, пока давление подачи не уровняется с давлением в сосуде. Так и работает конденсатор: по мере наполнения зарядом растет напряжение. Чем ближе будет напряжение в конденсаторе к напряжению заряжающего источника, тем меньше будет скорость заряда. Это аналогично тому, как наполняется сосуд. Если мы заполнили сосуд, затем открыли кран у него — ток начинает утекать, тем самым снижая количество заряда и понижая напряжение.

Если рассматривать провод или резистор как трубу, а конденсатор — как сосуд, многое становится понятно на интуитивном уровне. Ну, и проще понять реактивные сопротивления, о которых мы говорили ранее. Но надо понимать, что сосуд — это сосуд, а конденсатор — это конденсатор=)

Итак, в простейшем виде конденсатор представляет собой две параллельные пластины, между которыми находится некий диэлектрик. Самый простой диэлектрик — это воздух. Конечно, сегодня воздушные конденсаторы уже и не встретить, но я ещё несколько лет назад использовал переменный воздушный конденсатор для сборки радиоприёмника=) Правда, в этом конденсаторе пластин было гораздо больше двух, и выглядел примерно вот так:

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Вращая ручку, можно было изменять значение электрической ёмкости.

На, а вот так обычно представляют простейший конденсатор:

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

В случае такого конденсатора ёмкость вычисляется следующим образом:

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Сегодня конденсаторов огромное множество. Наиболее популярные — керамические, электролитические и танталовые. Отличие последних двух в том, что они полярны, и крайне не рекомендую включать их в схему обратной полярностью=)

Основными параметрами конденсатора являются:
— Электрическая ёмкость,
— Максимально допустимое напряжение на его обкладках (немаловажный параметр, при подачи бОльшего напряжения можно увидеть много весёлых, но крайне не безопасных эффектов:-), особенно на конденсаторах большой ёмкости),
— Полярность (т.е. полярный или неполярный),
— Допустимые отклонения от номинального значения ёмкости (обычно в процентах),
— Диапазон рабочих температур,
— Тип корпуса.

Полярность, допустимые отклонения и диапазон температур напрямую зависят от применяемого диэлектрика. Как правило, конденсаторы большой ёмкости — электролитические, т.е. в качестве диэлектрика — электролит. А электролитические конденсаторы по физике процессов сильно напоминают всем знакомые свинцово-кислотные аккумуляторы и аналогично им имеют полярность, что приводит к некоторым ограничениям. Кроме того, они имеют свойство высыхать. И именно они являются частой причиной выхода из строя бытовой и промышленной электроники, в результате чего страдают и иные компоненты. Выглядят электролитические конденсаторы так:

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Танталовые конденсаторы были некогда призваны заменить электролитические, но и те имеют ряд ограничений и так и не достигли приличных ёмкостей. Кроме того, взрываются они не менее весело=) Выглядят они вот так:

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Спешу обрадовать, что развитие электроники не стоит на месте и сегодня вполне можно приобрести обычные керамические конденсаторы с ёмкостью, сравнимой с танталовыми, а некоторые достигают ёмкости 330 мкФ при допустимом напряжении в 4 В. И это всё в малом чип-корпусе 1206!
Кстати, размеры основных корпусов чип-конденсаторов:

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Ну, и не все конденсаторы в чипах, поэтому существуют и выводные конденсаторы:

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Причина такому прорыву — отличный диэлектрик под кодовым названием X5R. 330 мкФ при 4В — не густо конечно. Но на большие напряжения ёмкости также достигли впечатляющих значений — на те же 16В найти 100 мкФ не проблема, на 25 В — на 22 мкФ, на 35-50 В пока не больше 10 мкФ. Тем не менее, во многих и многих приложениях электроники появляется возможность отказаться от электролитов и танталов.

Вернемся к основным свойствам. Если рассматривать глубже, то параметров конденсаторов гораздо больше:
— Температурная зависимость параметров,
— Входное сопротивление (ESR),
— Внутреннее сопротивление,
— Время наработки на отказ (очень интересный параметр, которому реально посвятить целую статью),
— многие другие.

Расписывать здесь все детали не вижу смысла, так эти параметры важны тем, кто глубоко занимается электроникой. Тем не менее счел важным упомянуть о них. Кому захочется капнуть — можно порыться в сети.

Помимо указанных выше конденсаторов следует немного сказать о плёночных конденсаторах. Выглядят они вот так:

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Их основное отличие от предыдущих — это поражающая надежность и способность работать в силовых цепях, особенно в цепях с высоким напряжением.

Наверное, сегодня краткого обзора будет достаточно. О применении конденсаторов поговорим в следующих статьях.

В прошлой статье писал, но и здесь напомню, что конденсаторы на схемах обозначаются так:

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

На сим всё;)
Продолжение следует=)
___________________________________________________________________________

Источник

Как измерить ёмкость конденсатора мультиметром?

Ёмкость — это мера способности конденсатора накапливать заряды. Ёмкость измеряется в фарадах, по имени почетного члена Петербургского университета английского физика Майкла Фарадея.

Что такое емкость?

Если удалить одиночный электропроводник бесконечно далеко, исключить влияние заряженных тел друг на друга, то потенциал удаленного проводника станет пропорционален заряду. Но у отличающихся по размеру проводников потенциалы не совпадают.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Единицей емкости конденсатора в СИ является фарад. Коэффициент пропорциональности обозначают буквой С — это емкость, на которую влияет размер и внешняя структура проводника. Материал, фазовое состояние вещества электрода роли не играют — заряды распределяются на поверхности. Поэтому в международных правилах СГС ёмкость измеряется не в фарадах, а в сантиметрах.

Уединенный шар радиусом 9 млн км (1400 радиусов Земли) содержит 1 фарад. Отдельный проводящий элемент удерживает заряды в недостаточных для применения в технике количествах. По технологиям XXI в. создается ёмкость конденсаторов с единицами измерений выше 1 фарада.

Накапливать требуемое для работы электронных схем количество электричества способна структура из минимум 2 электродов и разделяющего диэлектрика. В такой конструкции положительные и отрицательные частицы взаимно притягиваются и сами себя держат. Диэлектрик между электронно-позитронной парой не допускает аннигиляции. Подобное состояние зарядов называется связанным.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Раньше для измерения электрических величин применяли громоздкое оборудование, не отличающееся точностью. Теперь, как измерить ёмкость тестером, знает даже начинающий радиолюбитель.

Маркировка на конденсаторах

Знать характеристики электронных приборов требуется для точной и безопасной работы.

Определение ёмкости конденсатора включает измерение величины приборами и чтение маркировки на корпусе. Обозначенные значения и полученные при измерениях отличаются. Это вызвано несовершенством производственных технологий и эксплуатационным разбросом параметров (износ, влияние температур).

На корпусе указана номинальная емкость и параметры допустимых отклонений. В бытовых устройствах используют приборы с отклонением до 20%. В космической отрасли, военном оборудовании и в автоматике опасных объектов разрешают разброс характеристик в 5-10%. Рабочие схемы не содержат значений допусков.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Номинальная емкость кодируется по стандартам IEC — Международной электротехнической комиссии, которая объединяет национальные организации по стандартам 60 стран.

Стандарт IEC использует обозначения:

Маркировка IEC, национальные обозначения и кодировки брендов делают запоминание кодов бессмысленным. Разработчикам аппаратуры и мастерам-ремонтникам требуются справочные источники.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Вычисление с помощью формул

Вычисление номинальной емкости элемента требуется в 2 случаях:

RC цепи рассчитывают с применением величины импеданса — комплексного сопротивления (Z). Rа — потери тока на нагревание участников цепи. Ri и Rе — учитывают влияние индуктивности и ёмкости элементов. На выводах резистора в RC цепи напряжение Uр обратно пропорционально Z.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Тепловое сопротивление увеличивает потенциал на нагрузке, а реактивное уменьшает. Работа конденсатора на частотах выше резонансных, когда растет реактивная составляющая комплексного сопротивления, приводит к потерям напряжения.

Частота резонанса обратно пропорциональна способности накапливать заряд. Из формулы для определения Fр вычисляют, какие значения Ск (емкости конденсатора) требуются для работы цепи.

Для расчета импульсных схем используют постоянную времени цепи, определяющую воздействие RC на структуру импульса. Если знают сопротивление цепи и время заряда конденсатора, по формуле постоянной времени вычисляют емкость. На истинность результата влияет человеческий фактор.

Мастера используют параллельные и последовательные соединения конденсаторов. Формулы расчета обратны формулам для резисторов.

Последовательное соединение делает емкость меньше меньшей в соединении элементов, параллельная схема суммирует величины.

Как измерить ёмкость конденсатора мультиметром?

Измеряя параметры, конденсатор предварительно разряжают, замкнув выводы между собой отверткой с изоляцией на ручке. Если этого не сделать, маломощный мультиметр выйдет из строя.

Ответ на вопрос, как проверить емкость конденсатора мультиметром с режимом «Сх» такой:

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Амперовольтметром или мультиметром определяют наличие внутри корпуса короткого замыкания или обрыва.

Полярный конденсатор включают в цепь прибора с учетом направления тока. Электроды изделия производители маркируют. Конденсатор, рассчитанный для напряжения 1-3 В, при обратном токе выше нормы выйдет из строя.

Перед тем как измерить характеристики, полярный электролитический конденсатор выпаивают из платы. Включают мультиметр в режим измерения сопротивления или проверки полупроводников. Прикладывают щупы к электродам полярного конденсатора — плюс к плюсу, минус к минусу. Исправная емкость покажет плавный рост сопротивления. По мере заряда ток уменьшается, ЭДС растет и достигает напряжения источника питания.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Обрыв в конденсаторе будет выглядеть на мультиметре как бесконечное сопротивление. Прибор не отреагирует или стрелка на аналоговом экземпляре едва шевельнется.

При пробое элемента измеряемый параметр не соответствует номинальному значению в меньшую сторону, пропорционально величине пробоя.

Если задаться вопросом, как измерить мультиметром комплексное или эквивалентное последовательное сопротивление (ESR конденсатора), то без приставки сделать это проблематично. Реактивные свойства конденсатор проявляет при высокочастотном токе.

Источник

Как определить емкость конденсатора?

Основной характеристикой конденсатора является его емкость. Очень часто замеры емкости требуется проводить в электролитическом конденсаторе. В отличие от керамических и оксидных конденсаторов, которые редко выходят из строя (разве что в результате пробоя диэлектрика), электролитическим деталям свойственна потеря ёмкости из-за высыхания электролита. Поскольку работа электронных схем сильно зависит от емкостных характеристик, то необходимо знать, как определить емкость конденсатора.

Существуют разные способы определения ёмкости:

Измерить емкость проще всего с помощью измерителя C и ESR. Для этого контакты измерительных щупов подсоединяют к выводам конденсатора, соблюдая полярность электролитических деталей. При этом результаты измерений выводятся на дисплей. (Рисунок 1). Радиолюбители, которым часто приходится делать измерения, приобретают такой прибор или изготавливают его самостоятельно.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы Рис. 1. Измерение ёмкости с помощью измерителя C и ESR

С использованием мультиметра и формул

Если в вашем распоряжении есть мультиметр с функцией измерения параметра «Cx», то измерить ёмкость конденсатора довольно просто: следует переключить прибор в режим «Сх», после чего выбрать оптимальный диапазон измерения, соответствующий параметрам конденсатора. Ножки конденсатора вставляем в соответствующее гнездо (соблюдая полярность подключения) и считываем его параметры.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторыРежим «Сх» в мультиметре

Менее точно можно определить ёмкость с помощью тестера, у которого нет режима «Сх». Для этого потребуется источник питания, к которому подключают конденсатор по простой схеме (рис. 2).

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы Рис. 2. Схема подключения конденсатора

Алгоритм измерения следующий:

Подчеркнём ещё раз, что точность измерения ёмкости данным способом не слишком высока, но определить работоспособность радиоэлемента на основании такого измерения вполне возможно. Некоторые узлы электронных приборов исправно работают, если есть небольшие отклонения от номинальных емкостей, главное, чтобы не было электрического пробоя.

Осциллографом

С приемлемой точностью можно определить ёмкость конденсатора с помощью цифрового или обычного электронного осциллографа. Принцип похож на метод измерения ёмкости тестером. Разница только в том, что не потребуется секундомер, так как с высокой точностью время зарядки конденсатора отображается на экране осциллографа. Если применить генератор частоты и последовательную RC-цепочку (рис. 4), то ёмкость можно рассчитать по простой формуле: C = UR / UC* ( 1 / 2*π*f*R ).

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы Рис. 4. Простая схема

Алгоритм вычисления простой:

При измерении ёмкостей неполярных конденсаторов часто вместо RC-цепочки собирают мостовую схему с частотным генератором (показано на рис. 5), а также другие сборки. Сопротивления резисторов подбирают в зависимости от параметров номинальных напряжений измеряемых деталей. Ёмкость вычисляют из соотношения: r4 / Cx = r2 / C0.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы Рисунок 5. Мостовая схема

Гальванометром

При наличии баллистического гальванометра также можно определить ёмкость конденсатора. Для этого используют формулу:

Из-за падения сопротивления утечки ёмкость конденсаторов уменьшается. Энергия теряется вместе с током утечки.

Описанные выше методики определения ёмкости позволяют определить исправность конденсаторов. Значительное отклонение от номиналов говорит, что конденсаторы неисправны. Пробитый электролитический радиоэлемент легко определяется путём измерения сопротивления. Если сопротивление стремится к 0 – изделие закорочено, а если к бесконечности – значит, есть обрыв.

Следует опасаться сильного электрического разряда при подключениях щупов к большим электролитам. Они могут накапливать мощный электрический заряд от постоянного тока, который молниеносно высвобождается током разряда.

По маркировке

Напомним, что единицей емкости в системе СИ является фарада ( обозначается F или Ф). Это очень большая величина, поэтому на практике используются дольные величины:

Мы перечислили название единиц и их сокращённое обозначение потому, что они часто встречаются в маркировке крупных конденсаторов (см. рис. 6).

Обратите внимание на маркировку плоского конденсатора (второй сверху): после трёхзначной цифры стоит буква М. Данная буква не обозначает единицы измерения «мегафарад» – таких просто не существует. Буквами обозначены допуски, то есть, процент отклонения от ёмкости, обозначенной на корпусе. В нашем случае отклонение составляет 20% в любую сторону. Надпись 102М на большом корпусе можно было бы написать: 102 нФ ± 20%.

Теперь расшифруем надпись на корпусе третьего изделия. 118 – 130 MFD обозначает, что перед нами конденсатор, ёмкость которого находится в пределах 118 – 130 микрофарад. В данном примере буква М уже обозначает «микро». FD – обозначает «фарады», сокращение английского слова «farad».

На этом простом примере видно, какая большая путаница в маркировке. Особенно запутана кодовая маркировка, применяемая для крохотных конденсаторов. Дело в том, что можно встретить конденсаторы, маркировка которых выполнена старым способом и детали с современной кодировкой, в соответствии со стандартом EIA. Одни и те же символы можно по-разному интерпретировать.

По стандарту EIA:

Возможна и такая надпись: «1B253». При расшифровке необходимо разбить код на две части – «1B» (значение напряжения) и 253 = 25 × 10 3 = 25 000 пФ = 0,025 мкФ.

В кодовой маркировке используются прописные буквы латинского алфавита, указывающие допуски. Один пример мы рассмотрели, анализируя маркировку на рис. 6.

Приводим полный список символов:

Изделия с кодовой маркировкой изображены на рис. 7.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы Рис. 7. Пример кодовой маркировки

Если в кодировке отсутствует символ из приведённого выше списка, а стоит другая буква, то она может единицу измерения емкости.

Важным параметром является его рабочее напряжение конденсатора. Но так как в данной статье мы ставим задачу по определению ёмкости, то пропустим описание маркировки напряжений.

Отличить электролитический конденсатор от неполярного можно по наличию символа «+» или «–» на его корпусе.

Цветовая маркировка

Описывать значение каждого цвета не имеет смысла, так как это понятно из следующей таблицы (рис. 8):

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы Рис. 8. Цветовая маркировка

Запомнить символику кодовой и цветовой маркировки довольно трудно. Если вам не приходится постоянно заниматься подбором конденсаторов, то проще пользоваться справочниками или обратиться к информации, изложенной в данной статье.

Источник

Конденсаторы | Принцип работы и маркировка конденсаторов

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Конденсаторы выполняют множество полезных функций в схемах электронных устройств, несмотря на их простую конструкцию. Если разобрать до деталей несколько радиоэлектронных устройств, и сосчитать их, то окажется, что количество, рассматриваемых в данной статье элементов, превысит количество других отдельных радиоэлектронных приборов, в том числе и резисторов. Ввиду такого обстоятельства, нам следует уделить особое внимание конструкции, устройству и принципу работы конденсаторов.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Принцип работы конденсатора

Для большего понимания принципа работы конденсатора рассмотрим его конструкцию. Простейший конденсатор состоит из двух металлических пластин, называемых обкладками. Между обкладками расположен диэлектрик, то есть веществом, которое практически не пропускает электрический ток. Обкладки, как правило, имеют одинаковые геометрические размеры (квадрат, прямоугольник, круг) и равны по площади. Пластинки выполняются из алюминия, меди или драгоценных металлов. Наличие в составе обкладок драгоценных металлов вызывает повышенную охоту на радиорынках за советскими образцами данного радиоэлектронного элемента.

В качестве диэлектрика, расположенного между пластинами, применяют сухую бумагу, керамику, фарфор, воздух и т.п.

Принцип работы конденсатора состоит в следующем. Если одну пластину подключить к плюсу источника электрического тока, а втору – к минусу, то обе пластины зарядятся разноименными зарядами. Заряды будут продолжать удерживаться на обкладках даже после отсоединения источника питания. Это поясняется тем, что заряды разных знаков («+» и «-») стремятся притянуться друг к другу. Однако этому препятствует диэлектрик (материал, не проводящий заряды), расположенный на их пути. Поэтому заряды, распределенные по всей площади обкладок, остаются на своих местах и удерживаются силами взаимного притяжения.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Поляризация диэлектрика

Такое явление называется накоплением электрических зарядов. А конденсатор называют накопителем электрического поля, так как вокруг каждого заряд действует электрическое поле, под действием которого диэлектрик поляризуется, то есть молекулы его становятся полярными – имеют четко выраженные положительный и отрицательный полюса. Полюса молекул непроводящего вещества ориентированы вдоль линий электрического поля, созданного зарядами, расположенными на обкладках. Причем отрицательный полюс молекулы направлен к положительной пластинке, а положительный – к отрицательной.

Способность накапливать электрические заряды характеризуется емкостью конденсатора, отсюда происходит обозначение его на чертежах электрических схем C ( англ. capacitorнакопитель). Аналогично емкости сосуда – чем больше емкость сосуда, тем больше в нем помещается жидкости.

Емкость конденсатора относится к главному параметру и измеряется в фарадах [Ф], названная в честь выдающегося английского физика Майкла Фарадея.

Следует обратить внимание: правильно говорить не «один фарад», а «одна фарада».

Емкостью в одну фараду обладает конденсатор, который накапливает заряд, величиной в один кулон, если приложит к пластинкам напряжение один вольт.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Ранее часто можно было услышать такое утверждение, что емкость в 1 Ф – это очень много – почти емкость нашей планеты. Однако сейчас, с появлением суперконденсаторов так больше не говорят, поскольку емкость последних достигает сотни фарад. Тем не менее в большинстве электронных схем используют накопители меньшей C – пикофарады, нанофарады и микрофарады.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Расчет емкости конденсатора

Расчет емкости конденсаторов довольно прост. Она определяется тремя параметрами: площадью пластины S, расстоянием между пластинами d и типом диэлектрика ε:

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Физический смысл данной формулы следующий: чем больше площадь обкладок, тем больше зарядов на ней может расположиться (накопиться); чем больше расстояние между пластинами и соответственно между зарядами, тем меньшая сила их взаимного притяжения – тем слабее они удерживаются на обкладках, поэтому зарядам легче покинуть обкладки, что приводит к снижению их числа, а следовательно и уменьшению емкости накопителя электрического поля.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Диэлектрическая проницаемость ε показывает, во сколько раз заряд конденсатора с данным диэлектриком превосходит заряд аналогичного накопителя, если между его пластинками той же площади и находящихся на таком же расстоянии вакуум. Для воздуха ε равна единице, то есть практически ничем не отличается от вакуума. Сухая бумага обладает диэлектрической проницаемостью в два раза больше воздуха; фарфор – в четыре с половиной раза ε = 4,5. Конденсаторная керамика имеет ε = 10..200 единиц.

Отсюда вытекает важный вывод: чтобы получить максимальную емкость при сохранении прежних геометрических размеров, следует применять диэлектрик с максимальной диэлектрической проницаемостью. Поэтому в широко распространённых плоских конденсаторах используют керамику.

Конденсатор в цепи постоянного и переменного тока

Поскольку между обкладками конденсатора находится диэлектрик, то электрический ток от одной пластинки к другой протекать не может, следовательно, образуется разрыв электрической цепи для постоянного и для переменного тока. Поэтому уверенно можем сказать, что конденсатор не пропускает постоянный ток! Переменный ток он также не пропускает, однако переменный ток постоянно перезаряжает накопитель, что создает картину, будь-то переменный тока проходит сквозь обкладки конденсатора.

Если к обкладкам разряженного конденсатора приложить постоянное напряжение, то в цепи начнет протекать электрический ток. По мере его заряда ток будет снижаться и при равности напряжений на пластинках и источника питания, ток перестанет протекать – образуется как бы разрыв электрической цепи.

Конденсаторы постоянной емкости

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Емкость таких конденсаторов не предусмотрено изменять в процессе эксплуатации радиоэлектронной аппаратуры. Они отличаются широчайшим разнообразием и геометрическими размерами – от спичечной головки до огромных шкафов и находят наибольшее применение в печатных платах электронных устройств. Самые распространенные экземпляры показаны на фото.

Конденсаторы переменной емкости КПЕ

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Для изменения емкости отдельного узла электрической цепи непосредственно в процессе эксплуатации электронного устройства применяют конденсаторы переменной емкости (КПЕ). Главным образом КПЕ использовались в приемниках старого образца для настройки колебательного контура на резонансную частоту радиостанции. Однако сейчас вместо КПЕ применяют варикапы – полупроводниковые диоды, емкость которых определяется величиной подведенного обратного напряжения. Теперь достаточно изменить напряжение, подаваемое на варикап, чтобы изменить емкость последнего, а результате и частоту колебательного контура.

Как правило, КПЕ состоит из ряда параллельно расположенных металлических пластин, разделенных воздухом, поэтому габариты их весьма значительны. Варикапы, напротив – имеют гораздо меньшие габариты, потому и заменили КПЕ.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Подстроечные конденсаторы

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Подстроечные конденсаторы используются в узлах окончательной настройки радиоэлектронной аппаратуры. Чаще всего они встречаются в различного рода колебательных контурах или в устройствах, связанных с формированием частоты; в измерительных приборах. Также можно найти их в щупах цифровых осциллографов. Там они используются для устранения собственной емкости измерительных щупов, что позволяет максимально исключить погрешности при выполнении измерений высокочастотных сигналов.

Электролитические конденсаторы

Главным отличием и преимуществом электролитических конденсаторов является большая емкость при малых габаритах. Благодаря такому свойству они широко используются в качестве электрических фильтров для сглаживания выпрямленного напряжения, что делает их неотъемлемой частью любого блока питания.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Конструктивно электролитический конденсатор из алюминиевой фольги, которая служит одной из обкладок. Фольга смотана в рулон в виде цилиндра, что позволяет увеличить активную площадь обкладки. На фольгу наносится оксидный слой, который является диэлектриком. Второй обкладкой служит электролит или слой полупроводника. По этой причине электролитические конденсаторы являются полярными (значительно реже применяются и неполярные), то есть необходимо соблюдать полярность при включении их в цепь. В противном случае он выйдет из строя, чаще всего – взорвется. Поэтому следует быть крайне внимательным при включении такого радиоэлектронного элемента в электрическую цепь, что часто забывают делать при замене данного компонента.

Отрицательный вывод нового электролитического конденсатора короче положительного, а на корпусе рядом с ним наносится соответствующий знак – минус. В советской маркировке напротив, маркируется положительный вывод, со стороны которого на корпус наносится знак «+».

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Также на корпусах электролитических конденсаторов в обязательном порядке присутствуют значения трех основных параметров: номинальное значение емкости, максимальное допустимое напряжение и максимальная рабочая температура.

Если с емкостью и допустимой температурой все понятно, то особое внимание следует направить на напряжение.

На электролитический конденсатор нельзя подавать напряжение, величина которого больше, чем указано на корпусе. В противном случае он взорвется. Большинство разработчиков электронной аппаратуры советуют не превышать напряжение на пластинках больше 80 % от допустимого значения.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Обозначение конденсаторов в схемах

На чертежах электрических схем обозначение конденсаторов строго стандартизировано. Однако данный радиоэлектронный элемент можно всегда узнать в схеме по двум параллельным, рядом расположенным вертикальным черточкам. Две вертикальные лини обозначают две обкладки. Эти черточки подписываются латинской буквой C, рядом с которой указывается порядковый номер элемента в схеме, а ниже или сбоку указывается значение емкости в микрофарадах или пикофарадах.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Маркировка конденсаторов

По мере развития электроники развивается и элементная база. Поскольку многие страны производят собственные радиоэлектронные элементы, то и маркировка их отличается от маркировки радиоэлектронных элементов других стран. Поэтому на первых этапах промышленного производства электроники применялось много разнообразных типов маркировки, однако стремление к унификации привело к более-менее ее упорядочению. Это позволило привести и маркировку конденсаторов к общим правилам. А преимущество здесь очевидное – радиоэлектронному элементу, произведенному в одной стране теперь можно довольно просто подобрать аналог производства другой страны. Идеально было бы свести все типы обозначений и маркировки привести к единому типу, что практически полностью уже выполнено.

Однако до сих пор широкий оборот имеют советские конденсаторы, отличающиеся небольшим, но разнообразием маркировки. В советской маркировке было задействовано все – цифры, буквы и цвета. Причем на корпуса элементов наносились как цифры с буквами, так и цвета, цифры и буквы. Цифры обозначают значение, буквы – единицы измерения.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Более распространенный тип маркировки состоит из цифр, которые обозначают емкость в пикофарадах, не путать с фарадами! Всегда нужно помнить, что в отличие от резисторов, маркировка которых выполняется в омах, базовой величиной размерности независимо от способа маркировки являются пикофарады (если цифры отделяются запятой, – то микрофарады). В общем, отсчет емкости начинается с пикофарад.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Также, ранее применялась исключительно цветовая маркировка – сплошной цвет с цветной точкой. Определить параметры можно только, воспользовавшись справочником.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Рассмотренные выше типы маркировки постепенно выходят из обихода, однако о них всегда помнят специалисты, выполняющие ремонт советской аппаратуры, в которой радиоэлементы имеют «старое» обозначение.

Наиболее удачным и совершенным способом обозначения электронных элементов является цифровое кодирование. Цифровое кодирование конденсаторов, как и резисторов, предполагает использование всего трех цифр. Такой подход позволяет реализовать множество комбинаций. Две цифры, расположенные слева обозначают мантису, то есть значащее число, а последняя – третья цифра показывает, сколько нулей нужно прибавить к двум предыдущим цифрам. Например, если на корпусе накопителя указано 153, то емкость его равна 15×10 3 = 15000 пФ = 15 нФ = 0,015 мкФ.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Помимо емкости накопители характеризуются еще рядом основных параметров, которые рассмотрены далее.

Маркировка SMD конденсаторов

Маркировка SMD конденсаторов может наноситься на корпус в виде цифрового кодирования, но в преобладающем большинство – это несколько запутанная шифровка, состоящая из одной или двух букв латинского алфавита. Если букв две – то первая обозначает производителя, что нас интересует в меньшей степени. А вот вторая или единственная буква обозначает мантису, аналогично, как и при цифровом кодировании. Оставшаяся цифра показывает количество нулей после мантисы. Расшифровать цифровое значение буквы можно с помощью таблицы, приведенной ниже.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

SMD накопители с аналогичными характеристиками также отличаются размерами. Ряд стандартных размеров приведен в таблице и на рисунке, приведенных ниже. Особенно важно учитывать размеры радиоэлектронных элементов при проектировании печатных плат.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Маркировка электролитических SMD конденсаторов практически ничем не отличается от выводных аналогов. Отрицательная контактная площадка обозначается черной меткой на плоской стороне корпуса со стороны соответствующей контактной площадки. Также указываются допустимое напряжение в вольтах и емкость в микрофарадах.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Довольно часто встречаются корпуса, на которых отсутствуют какие-либо обозначения. Здесь может выручить только измеритель емкости.

Последовательное соединение конденсаторов

Последовательно соединение конденсаторов позволяет подать на их обкладки большее напряжение, чем на отдельный накопитель. Напряжение на пластинках распределяется в зависимости от емкости элемента.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Если два накопителя обладают одинаковой емкостью, то подведенное напряжение распределяется поровну между ними. Однако суммарная емкость будет в два раза меньше отдельного накопителя.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

В общем случае, следует помнить такое правило: при последовательном соединении конденсаторов вместе они способны выдержать большее напряжение, но за это приходится расплачиваться снижением емкости.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Параллельное соединение конденсаторов

Такой способ соединения наиболее распространен в практическом применении, поскольку не всегда хватает емкости одного накопителя особенно в электрических фильтрах качественных блоков питания. Параллельное соединение конденсаторов реализует суммирование емкостей отдельных накопителей. Это довольно просто запомнить, опираясь на приведенную выше формулу, из которой видно, что с увеличением площади пластин повышается емкость. в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Поэтому при параллельном соединении конденсаторов происходит как бы увеличение площади обкладок, благодаря чему они способны накопить большее число электрических зарядов.

в чем измеряются конденсаторы. Смотреть фото в чем измеряются конденсаторы. Смотреть картинку в чем измеряются конденсаторы. Картинка про в чем измеряются конденсаторы. Фото в чем измеряются конденсаторы

Основные параметры и номиналы конденсаторов рассмотрены здесь.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *