в чем измеряют вакуум

Методы измерения вакуума — вакуумметры

Методы измерения вакуума — вакуумметры

Наиболее важной характеристикой газовой среды в вакуумной технике является плотность или молекулярная концентрация газа. Эта величина определяет теплоперенос, сорбционно-десорбционные процессы, воздействие газа на элементы электронных приборов и другие явления. Однако традиционно состояние газа оценивается давлением. Между давлением газа p и молекулярной концентрацией п существует связь: p-V = n ■ k — T

По принципу действия вакуумметры можно свести в следующие классы:

По методу измерения вакуумметры могут быть разделены на абсолютные и относительные.

Абсолютные вакуумметры измеряют непосредственно давление газа, т.е. силу, действующую на единицу поверхности измерительного элемента. Показания абсолютных приборов не зависят от рода газа. К вакуумметрам прямого действия относятся жидкостные, компрессионные и деформационные. Эти приборы перекрывают диапазон от 10 5 до 10 ’2 Па.

Относительные вакуумметры измеряют не само давление, а используют зависимость параметров некоторых физических процессов, протекающих в вакууме, от давления. Они нуждаются в градуировке. Вакуумметры измеряют общее давление газов, присутствующих в вакуумной системе.

К вакуумметрам косвенного действия относят

ся тепловые и ионизационные, которые перекрывают диапазон измеряемых давлений от атмосферного до 10 ’ 10 Па. Большинство вакуумметров состоит из двух элементов: манометрического преобразователя сигнала давления в электрический сигнал и измерительного блока.

В производственных условиях преимущественно используются вакуумметры косвенного действия, которые практически безынерционны, охватывают широкий диапазон давлений и просты в эксплуатации.

Тепловые вакуумметры

Принцип действия термопарных вакуумметров основан на зависимости теплопроводности разреженных газов от молекулярной концентрации (или давления). Передача теплоты происходит от тонкой металлической нити к баллону, находящемуся при комнатной температуре. Металлическая нить нагревается в вакууме путем пропускания электрического тока.

Из курса молекулярной физики известно, что в плотном газе (высокое давление) теплопроводность не зависит от давления.

При понижении давления уменьшается теплопроводность газа, соответственно, возрастает температура подогревателя и увеличивается термо-э.д.с. При низких давлениях, когда средняя длина свободно пробега молекул больше среднего расстояния между нагретым телом и стенками вакуумметра ( А^ d), теплопроводность газа пропорциональна молекулярной концентрации (давлению).

Преобразователь (рис. 23) представляет собой стеклянный или металлический корпус, в котором на двух вводах смонтирован подогрева

тель, на двух других вводах крепится термопара, изготовленная из хро-мель-копеля или хромель-алюмеля. Термопара соединена с подогревателем, который нагревается током, его можно регулировать реостатом и измерять миллиамперметром. Спай термопары, нагреваемый подогревателем, является источником термо-э.д.с., значение которой показывает милливольтметр.

в чем измеряют вакуум. Смотреть фото в чем измеряют вакуум. Смотреть картинку в чем измеряют вакуум. Картинка про в чем измеряют вакуум. Фото в чем измеряют вакуум

в чем измеряют вакуум. Смотреть фото в чем измеряют вакуум. Смотреть картинку в чем измеряют вакуум. Картинка про в чем измеряют вакуум. Фото в чем измеряют вакуум

Точность измерения давления термопарным вакуумметром существенно зависит от правильного подбора тока накала подогревателя. Калибровка термопарной лампы (установка тока подогревателя), подбирается таким образом, чтобы стрелка милливольтметра точно совпадала с последним делением шкалы. При этих условиях согласно градуировочной кривой термопарного манометрического преобразователя можно по показаниям милливольтметра определить давление в вакуумной системе.

Измерительное уравнение теплового преобразователя можно записать так:

Из уравнения (1.19) видно, что давление является функцией двух переменных: тока накала нити 1н и температуры нити ТН.

Преимуществом тепловых преобразователей является то, что они измеряют общее давление всех газов и паров, присутствующих в ваку-

Существенным недостатком тепловых вакуумметров является изменение тока накала нити с течением времени, что требует периодической проверки тока накала. Недостатком также можно считать и их относительную инерционность, т.е. задержку отсчета во времени при быстром изменении давления. Существенное влияние на погрешность измерения тепловыми вакуумметрами оказывает колебание температуры окружающей среды.

Электронные ионизационные вакуумметры.

Принцип действия электронных преобразователей основан на ионизации газа электронами и измерении ионного тока, по величине которого судят о давлении.

Ионизация молекул газа производится электронами, эмитируемыми термокатодом и ускоряемыми электрическим полем электрода, на который подается положительный потенциал относительно катода.

в чем измеряют вакуум. Смотреть фото в чем измеряют вакуум. Смотреть картинку в чем измеряют вакуум. Картинка про в чем измеряют вакуум. Фото в чем измеряют вакуум

в чем измеряют вакуум. Смотреть фото в чем измеряют вакуум. Смотреть картинку в чем измеряют вакуум. Картинка про в чем измеряют вакуум. Фото в чем измеряют вакуум

1 коллектора. Таким образом, для измерения давления достаточно при заданном электронном токе измерить ионный ток и разделить на постоянную преобразователя.

Чувствительность ионизационных вакуумметров зависит от свойств газа, его температуры, электрического режима и геометрии, то есть

Часть электронов пролетает в пространство между анодной сеткой и коллектором. Так как коллектор имеет отрицательный потенциал отУдельная ионизация зависит от рода газа. Поэтому вакуумметр должен градуироваться отдельно для каждого газа.

в чем измеряют вакуум. Смотреть фото в чем измеряют вакуум. Смотреть картинку в чем измеряют вакуум. Картинка про в чем измеряют вакуум. Фото в чем измеряют вакуум

Магнитные электроразрядные вакуумметры

Одним из путей, позволяющим сдвинуть границу измерения в сторону более низких давлений, может быть увеличение чувствительности манометра. Для этого необходимо, чтобы электроны проходили в пространстве ионизации по возможности большие расстояния до момента их попадания на коллектор электронов. Тогда вероятность ионизации молекул газа этими электронами значительно возрастает, что приведет к увеличению чувствительности манометра. Наиболее простым способом увеличения длины пути электронов в пространстве ионизации является использование магнитного поля, воздействующего на электроны.

Рассмотрим расположение электродов, предложенное Пеннингом. Принцип действия магнитных преобразователей основан на зависимости тока самостоятельного газового разряда в скрещенных магнитном и электрическом полях от давления. Электродные системы, обеспечивающие поддержание самостоятельного газового разряда при высоком и сверхвысоком вакууме, бывают нескольких видов.

Манометр имеет катод, которым является корпус 1, и анод в виде металлического кольца 2. Вдоль оси анода создается постоянным магнитом 3 магнитное поле с индукцией 0,05-0,2 Тл. Через балластный резистор на анод подается высокое положительное напряжение порядка 2,5-3 кВ.

Разряд поддерживается между анодом и катодами, соединенными электрически и расположенными по обе стороны от анода. Равномерное магнитное поле, параллельное оси системы, препятствует немедленному уходу на анод электронов. Из-за большой длины пути электрона сильно повышается вероятность ионизации даже при низких давлениях газа. Образующиеся в результате ионизации молекул электроны движутся, как и первичные электроны, тоже по спиральным траекториям и в конце концов после совершения актов ионизации попадают на анод. Вторичные электроны, выбиваемые из катода положительными ионами, также участвуют в поддержании разряда. Таким образом, благодаря магнитному полю и специальной конструкции электродов тлеющий разряд поддерживается даже тогда, когда средняя длина свободного пути электронов в газе во много раз превышает расстояние между анодом и катодом, что позволяет измерять низкие и сверхнизкие давления газа.

в чем измеряют вакуум. Смотреть фото в чем измеряют вакуум. Смотреть картинку в чем измеряют вакуум. Картинка про в чем измеряют вакуум. Фото в чем измеряют вакуум

Недостатки: данные вакуумметры имеют меньшую точность измерения давления, нуждаются в периодической чистке.

Достоинства — простота конструкции и отсутствие горячего катода. Из-за этого вакуумметры могут быть включены при любом давлении.

Источник

Информация о вакуумных системах и компонентах: понятие вакуума, примеры использования

Общая информация: понятие вакуума и единицы измерения

Количественной характеристикой вакуума служит абсолютное давление. Основной единицей измерения давления в Международной системе (СИ) служит Паскаль (1 Па = 1Н/м 2 ). Однако, на практике встречаются и другие единицы измерения, такие как миллибары (1 мбар = 100Па) и Торры или миллиметры ртутного столба (1 мм.рт.ст. = 133,322 Па). Данные единицы не относятся к СИ, но допускаются для измерения кровяного давления.

Уровни вакуума

В зависимости от того, на сколько давление ниже атмосферного (101325 Па), могут наблюдаться различные явления, вследствие чего могут использоваться различные средства для получения и измерения такого давления. В наше время выделяют несколько уровней вакуума, каждый из которых имеет свое обозначение в соответствии с интервалами давления ниже атмосферного:

Данные уровни вакуума в зависимости от области применения разделяют на три производственные группы.

— Низкий вакуум: в основном используется там где требуется откачка большого количества воздуха. Для получения низкого вакуума используют электромеханические насосы лопастного типа, центробежного, насосы с боковым каналом, генераторы потока и т.д.

Низкий вакуум применяется, например, на фабриках шелкотрафаретной печати.

Такой уровень вакуума используется в основном при лиофилизации, металлизации и термообработке. В науке технический вакуум используется в качестве симуляции космического пространства.

Наивысшее значение вакуума на земле значительно меньше значения абсолютного вакуума, которое остается чисто теоретическим значением. Фактически, даже в космосе, несмотря на отсутствие атмосферы, имеется небольшое количество атомов.

Основным толчком к развитию вакуумных технологий послужили исследования в промышленной области. В настоящий момент существует большое количество применений в различных секторах. Вакуум используется в электролучевых трубках, лампах накаливания, ускорителях частиц, в металлургии, пищевой и аэрокосмической индустрии, в установках для контроля ядерного синтеза, в микроэлектронике, в стекольной и керамической промышленности, в науке, в промышленной роботехнике, в системах захвата с помощью вакуумных присосок и т.д.

Источник

Что такое вакуум и с чем его едят?

Рассмотрим для наглядности на примере, что такое вакуум и как его измеряют.

На нашей планете существует атмосферное давление, принятое за единицу (одна атмосфера). Оно меняется в зависимости от погода, от высоты над уровнем моря и так далее, но это мы не будем принимать во внимание, так как оно ни как не будет влиять на понятие вакуум в нашем случае. Итак, мы имеем давление на поверхности земли равное 1 атмосфере, все, что ниже 1 атмосферы и будет техническим вакуумом.

Возьмем какой нибудь сосуд и закроем его герметичной крышкой. Давление в сосуде будет равно 1 атмосфере. Если мы начнем откачивать из сосуда воздух, то в нем возникнет разряжение, которое и будет называться вакуумом.

в чем измеряют вакуум. Смотреть фото в чем измеряют вакуум. Смотреть картинку в чем измеряют вакуум. Картинка про в чем измеряют вакуум. Фото в чем измеряют вакуум

Так как в сосуде всего одна атмосфера, то теоритически максимальный вакуум мы можем получить ноль атмосфер. Почему теоритически? Потому, что абсолютно все молекулы из сосуда выловить невозможно.

Поэтому в любом сосуде, в котором откачали воздух (газ) всегда остается какое то минимальное его количество. И это количество называется остаточным давлением, т.е. давление которое осталось в сосуде после откачки из него газов.

Существуют специальные насосы, которые могут достичь глубокого вакуума до 0,00001 Па, но все равно не до нуля.

Есть несколько вариантов измерения вакуума, которые зависят от выбора точки отсчета.

За единицу принимается атмосферное давление, т.е. все, что ниже атмосферного давления технический вакуум. Шкала вакууметра от 1,0 атм. до 0 атм.

Так шкалы могут быть в других единицах измерения, к примеру кПа, mBar и так далее, но все это аналогично шкалам в атмосферах. Но мы рекомендуем приобретать вакууметры все атки со шкалой кПа (Па), так как это соответствует международнйо системе измерения СИ.

На картинке показаны вакууметры с различными шкалами, но с одинаковым вакуумом.

в чем измеряют вакуум. Смотреть фото в чем измеряют вакуум. Смотреть картинку в чем измеряют вакуум. Картинка про в чем измеряют вакуум. Фото в чем измеряют вакуум

Из всего сказанного выше видно, что величина вакуума не может быть больше атмосферного давления.

И они очень удивляются когда узнают, что это невозможно (кстати, каждый второй из них говорит, что «вы сами ничего не знаете», «а у соседа так» и т.д. и.т.п.)

На самом деле, все эти люди хотят формовать детали под вакуумом, но чтобы прижим детали был более 1 кг/см2 (1 атмосферы).

Этого можно достичь, если накрыть изделие плёнкой, откачать из под неё воздух (в этом случае, в зависимости от созданного вакуума, максимальный прижим составит 1 кг/см2 (1 атм=1 кг/см2)), и после этого поместить это всё в автоклав, в котором будет создано избыточное давление. То есть для создания прижима в 2 кг/см2, достаточно создать в автоклаве избыточное давление в 1 атм.

Теперь несколько слов о том, как многие клиенты измеряют вакуум:

включают насос, прикладывают палец (ладонь) к всасывающему отверстию вакуумного насоса и сразу делают вывод о величине вакуума.

Обычно, все очень любят сравнивать советский вакуумный насос 2НВР-5ДМ и предлагаемый нами его аналог VE-2100.

После такой проверки, всегда говорят одно и тоже – вакуум у 2НВР-5ДМ выше (хотя на самом деле оба насоса выдают одинаковые параметры по вакууму).

В чем же причина такой реакции? А как всегда – в отсутствии знаний законов физики и что такое давление вообще.

Немного ликбеза: давление «P» – это сила, которая действует на некоторую площадь поверхности, направленная перпендикулярно этой поверхности (отношение силы «F» к площади поверхности «S»), то есть P=F/S.

По-простому – это сила, распределённая по площади поверхности.

Из этой формулы видно, что чем больше площадь поверхности, тем меньше будет давление. А также сила, которая потребуется для отрыва руки или пальца от входного отверстия насоса, прямо пропорциональна величине площади поверхности (F=P*S).

Диаметр всасывающего отверстия у вакуумного насоса 2НВР-5ДМ – 25 мм (площадь поверхности 78,5 мм2).

Диаметр всасывающего отверстия у вакуумного насоса VE-2100 – 6 мм (площадь поверхности 18,8 мм2).

То есть для отрыва руки от отверстия диаметром 25 мм, требуется сила в 4,2 раза большая, чем для диаметра отверстия 6 мм (при одинаковом давлении).

Именно по этому, когда вакуум измеряют пальцами, получается такой парадокс.

Давление «P», в этом случае, рассчитывается как разница между атмосферным давлением и остаточным давлением в сосуде (то есть вакуумом в насосе).

Как посчитать силу прижима какой-либо детали к поверхности?

Очень просто. Можно воспользоваться формулой приведенной выше, но попробуем объяснить попроще.

Например, пусть требуется узнать, с какой силой может быть прижата деталь размером 10х10 см при создании под ней вакуума насосом ВВН 1-0,75.

Берём остаточное давление, которое создаёт этот вакуумный насос серии ВВН.

Конкретно у этого водокольцевого насоса ВВН 1-0,75 оно составляет 0,4 атм.

1 атмосфера равна 1 кг/см2.

Площадь поверхности детали – 100 см2 (10см х10 см).

То есть, если создать максимальный вакуум (то есть давление на деталь будет 1 атм), то деталь прижмётся с силой 100 кг.

Так как у нас вакуум 0,4 атм, то прижим составит 0,4х100=40 кг.

Но это в теории, при идеальных условиях, если не будет подсоса воздуха и т.п.

Реально нужно это учитывать и прижим будет на 20…40% меньше в зависимости от типа поверхности, скорости откачки, и т.п.

Теперь пару слов о механических вакуумметрах.

Эти устройства показывают остаточное давление в пределах 0,05…1 атм.

То есть он не покажет более глубокого вакуума (будет всегда показывать «0»). Например, в любом пластинчато-роторном вакуумном насосе, по достижении его максимального вакуума, механический вакуумметр всегда будет показывать «0». Если требуется визуальное отображение значений остаточного давления, то нужно ставить электронный вакуумметр.

Часто к нам приходят клиенты, которые формуют детали под вакуумом (например, детали из композиционных материалов: углепластика, стеклопластика и т.п.), это нужно для того, чтобы во время формовки из связующего вещества (смолы) выходил газ и тем самым улучшались свойства готового продукта, а так же деталь прижималась к форме плёнкой, из-под которой откачивают воздух.

Встаёт вопрос: каким вакуумным насосом пользоваться – одноступенчатым или двухступенчатым?

Обычно думают, что раз вакуум у двухступенчатого выше, то и детали получаться лучше.

Вакуум у двухступенчатого насоса 0,2 Па, а у одноступенчатого 2 Па. Кажется, что раз разница в давлении в 10 раз, то и прижиматься деталь будет гораздо сильнее.

Но так ли это на самом деле?

1 атм = 100000 Па = 1 кг/см2.

Значит разница в прижиме плёнки при вакууме 0,2 Па и 2 Па составит 0,00018 кг/см2 (кому не лень – посчитает сам).

То есть, практически, разницы никакой не будет, т.к. выигрыш в 0,18 г в силе прижима погоды не сделает.

Источник

Электронный микроскоп в гараже: Про вакуум

Для тех, кто ещё не в курсе о проекте — почитать можно вот здесь.

в чем измеряют вакуум. Смотреть фото в чем измеряют вакуум. Смотреть картинку в чем измеряют вакуум. Картинка про в чем измеряют вакуум. Фото в чем измеряют вакуум

Обратная связь

Спасибо вам за позитивный отклик к первой части, за предложения о помощи, которые поступили и личными сообщениями и в комментариях. Не могу точно обещать даты выхода новых серий, но постараюсь радовать вас хотя бы раз в неделю.

Также у меня есть мысль записывать тематические видео про проект. Сделал пробный вариант про внутреннее устройство форвакуумного насоса для этой статьи. В этом видео есть, что улучшать: надо заменить свет в гараже, использовать хороший микрофон. Буду следить за комментариями и просмотрами, чтобы узнать, насколько вам это понравится.

Вакуум

Вакуум — это целый новый мир, где привычные материалы ведут себя совершенно по-другому. Обычная вода в вакууме мгновенно закипает и испаряется даже при собственной температуре около нуля по цельсию (одновременно делая вакуум не таким уж вакуумом).

Вообще в вакууме всё пропускает и испаряется: даже металлы, вопрос глубины вакуума и температуры. Только представьте, что обычное резиновое уплотнение пропускает значительный объём газа для того, чтобы помешать вакуумированию. Не где-то через щель, а через саму резину. Или, например, гибкий шланг помимо того, что пропускает сквозь себя воздух, ещё и слегка испаряется сам. А внутренняя поверхность вакуумной камеры накапливает газ в своих шероховатостях, и поэтому её обычно полируют. Всё это очень непривычно для понимания.

Под вакуумом работают многие интересные научные приборы: масс-спектрометры, Оже-спектрометры, напылительные установки, ускорители элементарных частиц, лазеры и, конечно, различные виды электронных микроскопов. Распространённые предметы домашнего быта, в которых есть высокий вакуум — это термос, электронно-лучевая трубка телевизора или монитора, различные виды электронных ламп.

В этой статье есть наглядное описание всего необходимого для того, чтобы вы разбирались в теме и, конечно, дальнейший прогресс в восстановлении микроскопа!

Разный вакуум

Колонна этого микроскопа рассчитана на высокий вакуум порядка 10^-5 торр. В среде вакуумщиков принято обозначать миллиметры ртутного столба как торр, либо использовать единицы измерения для давления — Паскали и миллибары. Лично я привык к торрам.

Как измерить вакуум — на самом деле ещё та задачка! Обычный мембранный манометр вакууметр покажет в лучшем случае от 750 до 1 торр, а разница между 1 и 10^-5 торр для него неосязаема (различные источники указывают на возможность измерения вакуума до 10^-3 торр мембранными вакууметрами, однако на практике я с такими не сталкивался).

Почему эта разница настолько важна? Потому, что школьная физика перестаёт работать при таком давлении. Попробуем представить наглядно вакуум различной глубины:

1. От атмосферного давления к форвакууму (10^-3 торр)

на каждого человека, даже партийного, давит атмосферный столб весом в двести четырнадцать кило … Это закон физики.

Наглядно сравнить движения молекул в твёрдом, жидком и газообразном веществе можно с помощью вот этих анимаций, взятых отсюда.

в чем измеряют вакуум. Смотреть фото в чем измеряют вакуум. Смотреть картинку в чем измеряют вакуум. Картинка про в чем измеряют вакуум. Фото в чем измеряют вакуумв чем измеряют вакуум. Смотреть фото в чем измеряют вакуум. Смотреть картинку в чем измеряют вакуум. Картинка про в чем измеряют вакуум. Фото в чем измеряют вакуумв чем измеряют вакуум. Смотреть фото в чем измеряют вакуум. Смотреть картинку в чем измеряют вакуум. Картинка про в чем измеряют вакуум. Фото в чем измеряют вакуум

Длина свободного пробега молекул азота при атмосферном давлении составляет около 70нм = 7 * 10^-8 м, а примерный размер молекулы азота равен 10^-10 м.

Тем не менее, несмотря на то, что на картинке с газообразным веществом молекулы пролетают сравнительно длинный путь, закон Паскаля работает, и давление в любой точке газа будет одинаковым.

Для достижения этого уровня вакуума применяют форвакуумные насосы.

2. Высокий вакуум (10^-5 торр)

Здесь начинается самое интересное: радикально меняется физическая природа находящегося внутри вакуумной камеры газа (а газ там будет всегда, абсолютный вакуум недостижим, см. выше про испарение всего и вся). И молекулы газа начинают больше ударяться о стенки камеры, чем сталкиваться между собой.

в чем измеряют вакуум. Смотреть фото в чем измеряют вакуум. Смотреть картинку в чем измеряют вакуум. Картинка про в чем измеряют вакуум. Фото в чем измеряют вакуум

Для достижения этого уровня вакуума применяют высоковакуумные насосы.

3. Сверхвысокий вакуум (10^-9 торр и ниже)

В этом случае количество газа, проходящего сквозь резиновые уплотнения играет настолько существенную роль, что приходится переходить на специальные фланцы с медным уплотнением.

в чем измеряют вакуум. Смотреть фото в чем измеряют вакуум. Смотреть картинку в чем измеряют вакуум. Картинка про в чем измеряют вакуум. Фото в чем измеряют вакуум

Для достижения этого уровня вакуума применяют специальные геттерные насосы. Они не откачивают газ в атмосферу, а поглощают его (переводят из газообразной фазы в твёрдую химическим путём).

Это один из самых сложных уровней, и к счастью, в большинстве старых микроскопов получать такой уровень вакуума не требуется. В новых и самых передовых приборах такой уровень вакуума нужно поддерживать для работы катодов с полевой эмиссией.

4. Космический вакуум

Космический вакуум зависит от местоположения. На орбите спутников (300км от Земли) давление соответствует сверхвысокому вакууму. Для сравнения в межзвёздном пространстве вакуум составляет 10^-17 торр. Но дело в том, что даже в этом пространстве всё-таки встречаются редкие атомы водорода, много фотонов и других частиц.
Идеального вакуума нет даже там.

Измерение вакуума

0.5 до 10^-4 торр с достаточно высокой точностью, но, очевидно, большой инерционностью.

Для продвижения вглубь измерений, нужно использовать следующую идею, которая звучит гораздо сложнее нагрева проволочки, но получила широкое распространение. Бомбардируем газ электронами, а они, сталкиваясь с молекулами газа, ионизируют его. Эти позитивно заряженные ионы притягиваются к коллектору, и таким образом в этой «цепи» протекает очень маленький ток, значение которого прямо пропорционально давлению (чем меньше давление, тем меньше ток, т.к. меньше ионов, переносящих позитивный заряд).

Этот принцип измерения так называется — ионизационный, и позволяет измерять вакуум от 10^-3 торр (как раз нижний практический предел теплового вакууметра) до 10^-10 торр.

Для микроскопа мне удалось купить относительно современный комбинированный вакууметр (два датчика в одном — пирани и горячий катод) на известном западном интернет-аукционе за не слишком большие деньги (новые из магазина могут стоит порядка 100 тыс. рублей), имеющий аналоговый выход и не требующий дополнительных приборов кроме источника питания.

в чем измеряют вакуум. Смотреть фото в чем измеряют вакуум. Смотреть картинку в чем измеряют вакуум. Картинка про в чем измеряют вакуум. Фото в чем измеряют вакуум

Создание вакуума

в чем измеряют вакуум. Смотреть фото в чем измеряют вакуум. Смотреть картинку в чем измеряют вакуум. Картинка про в чем измеряют вакуум. Фото в чем измеряют вакуумНаверное, вы уже догадались, что если бы подключённый к вакуумной камере пылесос смог обеспечить нужный нам вакуум, то я бы не писал этот пост 🙂

Я поискал по разным источникам, и выяснил, что мощный бытовой пылесос может дать вакуум порядка 400-500 торр.

Если подключить всасывающий патрубок поршневого компрессора, то результат будет гораздо лучше: около 100 торр. Но всё-равно ничего полезного из этого не выйдет. Нужно применять специальные вакуумные насосы.

Форвакуум

Незаменимый компонент любой вакуумной техники — это специальный насос, который может откачать в хороших условиях до 10^-3 торр (отсюда и название). Как правило, это двухступенчатый пластинчато-роторный насос, который может обеспечить то самое давление форвакуума в системе. Его часто используют установщики кондиционеров для удаления воздуха из системы перед закачкой туда фреона.
NB! Более дешёвые одноступенчатые не подойдут, их вакуум на порядок хуже.

В качестве бонуса я сделал видео о том, как работает небольшой двухступенчатый пластинчато-роторный форвакуумный насос ITE Blue VAC.

Существуют и другие варианты форвакуумных насосов, которые лучше (безмасляные, например), но стоят существенно дороже (несколько тысяч евро). Пока я не располагаю таким оборудованием, поэтому не могу сделать полноценный обзор. Если вдруг найду — обязательно расскажу в одной из статей.

Высокий вакуум

10^-2 торр (или 10^-3 торр, если использовать новенький насос с очень хорошим и дорогим вакуумным маслом). Чтобы откачать ниже, нужно применить высоковакуумный насос.

Распространены два типа высоковакуумных насосов:

Оба этих насоса обязательно подключаются к форвакуумному, и включение любого из них при атмосферном давлении приведёт к выходу их из строя. В масляном сгорит масло, а в ТМН сгорят диски ротора.

Понять принцип их работы легко, если вы представите, что они качают не газ, как целое, а кинетически взаимодействуют с отдельными молекулами газа. Задача этих насосов — переместить как можно больше молекул газа из высоковакуумной камеры на вход форвакуумного насоса.

Несмотря на их совсем разное устройство делают они это одинаковым способом: ударяют по этим молекулам в направлении своего выхода (соответственно входа форвакуумного насоса). Но ударять нужно так, чтобы молекула действительно полетела в сторону выхода, а не слегка изменила направление (молекулы постоянно находятся в тепловом движении).

Турбомолекулярный насос

Турбомолекулярный насос достигает этого за счёт множества очень быстро вращающихся дисков ротора, лопасти которых бьют по молекулам так, чтобы они смогли долететь до лопатки следующего диска, которая поддаст ещё сильнее, и таким образом молекула достигнет выхода. Понятно, что как раз длина свободного пробега молекулы и определяет зазор между ротором и статором. Для атмосферного давления эта длина составляет 70нм, поэтому и нужен форвакуумный насос.

Для будущих проектов, я прикупил вот такой маленький ТМ-насосик от компании Leybold.

в чем измеряют вакуум. Смотреть фото в чем измеряют вакуум. Смотреть картинку в чем измеряют вакуум. Картинка про в чем измеряют вакуум. Фото в чем измеряют вакуум

Нельзя сказать, что он полностью безмасляный, т.к. подшипники там смазываются маслом. Но, конечно, по-сравнению с паромасляным насосом, количество масла, которое проникает в высоковакуумную часть очень и очень мало. Малый размер насоса накладывает определённые требования на скорость вращения дисков, которая для этой модели составляет 72 тыс. оборотов в минуту. Примерно в 10 раз быстрее, чем НЖМД. Поэтому ТМН представляют собой опасность, т.к. попадание даже малейшего загрязнения (песок, к примеру, или пыль) может привести к соприкосновению ротора и статора с последующим их разрушением и одномоментным освобождением кинетической энергии, запасённой в роторе. Поэтому на них всегда пишут: в целях безопасности корпус насоса должен быть обязательно жёстко закреплён.

Схематично механизм работы представляется таким образом (из Википедии):

в чем измеряют вакуум. Смотреть фото в чем измеряют вакуум. Смотреть картинку в чем измеряют вакуум. Картинка про в чем измеряют вакуум. Фото в чем измеряют вакуум

На самом деле есть ТМН, которые содержат две ступени на одном роторе: молекулярную и разновидность насоса Геде. Они конструктивно реализованы по-разному, и позволяют сделать совершенно безмасляную систему. Это очень важно для аналитических работ, но не будем углубляться в дебри.

Паромасляный насос

В паромасляном насосе по молекулам газа ударяют молекулы паров масла (отсюда и название — К.О.), которые вылетают из сопла со сверхзвуковой скоростью. Похоже на чайник, со свистком, который кипит на плите.

Картинка из википедии иллюстрирует сказанное. Внизу кипит масло, по центру расположен цилиндр с соплами, из которых «свистит» масляный пар, снаружи — радиатор, чтобы пар конденсировался на стенках и снова стекал вниз в виде масла.

в чем измеряют вакуум. Смотреть фото в чем измеряют вакуум. Смотреть картинку в чем измеряют вакуум. Картинка про в чем измеряют вакуум. Фото в чем измеряют вакуум

В нашей колонне стоит именно паромасляный насос, производства этой же компании. В снятом виде выглядит он вот так:

в чем измеряют вакуум. Смотреть фото в чем измеряют вакуум. Смотреть картинку в чем измеряют вакуум. Картинка про в чем измеряют вакуум. Фото в чем измеряют вакуум

Внизу должен был быть специальный нагреватель, на 600Вт и 100В, однако его нет, а крепёжная шпилька — есть. Поэтому зажал её в маленький токарный патрончик, чтобы насос удобно стоял на столе.

Потом попробую приспособить что-нибудь в качестве нагревателя, или найти среди читателей, у кого есть лишний.

Переходим дальше к восстановлению микроскопа.

II. Подключение вакуумной системы

К счастью, вакуумная система оказалась «в сборе», включая вакуумные клапана с пневматическим приводом, набор воздушных соленоидов для подачи сжатого воздуха к вакуумным клапанам, два напускных клапана (нельзя просто так взять и запустить воздух в вакуумную камеру через форвакуумный насос — это приведёт к загрязнению системы маслом, к тому же, напускать надо медленно, чтобы не повредить тонкие вакуумные датчики), и паромасляным насосом.

Оригинальная установка с двумя форвакуумными насосами не сохранилась, поэтому друг нашёл для этой задачи пластинчато-роторный двухступенчатый форвакуумный насос советского производства 2НВР-5ДМ.

в чем измеряют вакуум. Смотреть фото в чем измеряют вакуум. Смотреть картинку в чем измеряют вакуум. Картинка про в чем измеряют вакуум. Фото в чем измеряют вакуум

Начинаем оживлять систему с единственного оставшегося электрического узла — это панель управления вакуумом с соленоидами.

Панель управления вакуумом

Выглядит она достаточно олдскульно, что только прибавляет шарма. Разобрав всю систему, найдя точки подключения питания (не ракетная наука, всего-лишь с десяток тумблеров) постоянными 24В, попробовал пощёлкать клапанами, которыми никто уже давным-давно не щёлкал:

Слева — клапана для подачи сжатого воздуха к вакуумным пневмоклапанам, справа — панель управления вакуумом (оригинальная). Всё, естественно, после мытья и просушки.

Подключаем компрессор с ресивером, даём в пневмосистему давление 4 атм и пробуем подключить один вакуумный клапан (2 минуты втыкания клапанов для истинных ценителей):

Это уже отличный источник вдохновения для продолжения работы!

Подключение форвакуумного насоса

Колонна этого микроскопа штатно оснащается двумя форвакуумными насосами. Почему двумя? Инструкция не даёт однозначный ответ, и после долгих размышлений и после того, как мне удалось полностью разобраться в схеме и алгоритме работы вакуумной системы, я, наверное, нашёл разгадку (комментарии приветствуются!).

Дело было в 1970 году (более 40 лет назад, представляете?), и форвакуумные насосы тогда не обладали большой производительностью, а работа с микроскопом напрямую зависит от того, насколько быстро можно откачать колонну, т.е. получить в ней высокий вакуум.

Поэтому, как я думаю, японские инженеры спроектировали такую систему:

После некоторых раздумий я решил самостоятельно изготовить вакуумный тройник. Плюс один в список токарных работ.

Всё это нужно подключать шлангами. Обычные шланги не пойдут (вы же помните, что вакуум — вещь тонкая), они или сожмутся, или будут испаряться. А небольшие куски старых пришли в полную негодность.

в чем измеряют вакуум. Смотреть фото в чем измеряют вакуум. Смотреть картинку в чем измеряют вакуум. Картинка про в чем измеряют вакуум. Фото в чем измеряют вакуум

Решил купить новые, благо в Москве есть даже интернет-магазин, торгующий специализированной вакуумной техникой. Цены, мягко говоря, кусаются, но метров нужно было мало, я взял с запасом и заодно набрал ещё немножко KF-соединений и уплотнительных колечек.

Бюджет проекта

Различные вещи, упомянутые в этой статье, были найдены за относительно разумную цену, или подарены добрыми людьми, разделяющими идею проекта — делиться полученными знаниями и опытом.

Ради интереса напишу вам цены и происхождение этих устройств и материалов.

В следующей серии — токарно-фрезерные работы по изготовлению всех переходничков и заглушек для микроскопа.

Как всегда рад вашим предложениям и комментариям. До новых встреч!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *